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Abstract: This paper describes a large dataset of underwater hyperspectral imagery that can be used 
by researchers in the domains of computer vision, machine learning, remote sensing, and coral reef 
ecology. We present the details of underwater data acquisition, processing and curation to create 
this large dataset of coral reef imagery annotated for habitat mapping. A diver-operated 
hyperspectral imaging system (HyperDiver) was used to survey 147 transects at 8 coral reef sites 
around the Caribbean island of Curaçao. The underwater proximal sensing approach produced 
fine-scale images of the seafloor, with more than 2.2 billion points of detailed optical spectra. Of 
these, more than 10 million data points have been annotated for habitat descriptors or taxonomic 
identity with a total of 47 class labels up to genus- and species-levels. In addition to HyperDiver 
survey data, we also include images and annotations from traditional (color photo) quadrat surveys 
conducted along 23 of the 147 transects, which enables comparative reef description between two 
types of reef survey methods. This dataset promises benefits for efforts in classification algorithms, 
hyperspectral image segmentation and automated habitat mapping. 

Dataset: https://doi.org/10.1594/PANGAEA.911300  

Dataset License: CC-BY-NC 

Keywords: hyperspectral imaging; proximal sensing; machine learning; hierarchical learning; coral 
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1. Summary 

Assessing coral reef habitats has historically been difficult because they are highly 
heterogeneous and structurally complex systems. Reef habitat structures can vary substantially, both 
between and within reefs, in terms of topography, water depth, community composition, and 
remoteness from human populations [1]. Comprehensive assessments of large areas of reefs are 
required to sufficiently sample and represent the level of this heterogeneity. While in situ benthic 
field survey methods have long been the gold standard among coral reef ecologists and widely 
deployed for many monitoring programs around the world, they are limited in spatial scale due to 
logistical constraints [2,3]. Furthermore, taxonomic identification by experts is time-consuming, 
expensive, biased [4], and can delay the availability of survey data where near real-time monitoring 
data is preferred [5]. Therefore, there is a pressing need for a rapid and scalable method of assessing 
coral reefs. It is within this context that close-range [6], or underwater hyperspectral imaging [7] has 
been developed and deployed for surveying the habitat structure of coral reefs. 

Hyperspectral imaging has proven to be a powerful remote sensing technique, with many 
different applications in agriculture [8], forestry [9], urban planning [10], and ecology [11]. 
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Hyperspectral imaging refers to the collection of optical images across a wide range of wavelengths 
in hundreds of narrow contiguous bands [12], as opposed to 3 widely separated channels in color 
photography. Remote sensing analyses have elaborated automated classification tools to exploit the 
high spectral resolution of hyperspectral images and map large areas of land and ocean. Coral reef 
mapping using hyperspectral imaging has mostly employed airborne and satellite platforms [13–16], 
resulting in maps of limited spatial and taxonomic resolution. Proximal sensing with an underwater 
system brings the promise of increased spectral signal fidelity and higher spatial resolution, enabling 
better biodiversity identification and classification to much higher taxonomic resolutions [7]. 

The dataset described in this paper contains benthic survey data from coral reefs around the 
Caribbean island of Curaçao. Co-located underwater hyperspectral imagery and color photographs 
of 23 different scenes across 8 coral reef sites at different depths have been annotated for habitat 
descriptors and benthic taxonomic identity, down to mostly genus- and species-levels. We 
formulated a novel protocol to annotate hyperspectral coral reef imagery to reduce the amount of 
manual identification, thus easing the data annotation effort. This dataset also contains an 
independent set of annotations to develop and validate image segmentation efforts to extract 
semantic descriptions of habitat maps. Beyond this, a large part of the dataset contains unannotated 
hyperspectral imagery for automated classification and habitat mapping. 

Given the high taxonomic resolution of our annotations, this is perhaps the most detailed 
publicly available dataset for reef habitat mapping. Coral reef ecologists would benefit from the 
availability of this dataset, as it can be used to develop tools for scalable habitat description. This type 
of data is also of interest to research communities seeking real-world datasets to improve machine 
learning workflows for automated analyses such as data fusion, classification and segmentation [17]. 
As our annotation labels are hierarchically linked, hierarchical paradigms can be explored with this 
dataset. Another avenue of interest may be the use of incremental learning, where data is consumed 
gradually by classifier models, since this dataset contains hyperspectral images distributed across 
water depths (between 3 m and 10 m) and geographical location [18]. 

2. Data Description 

The dataset comes from surveys, conducted between 4th and 26th of August 2016, of 147 
underwater scenes of coral reefs around the Caribbean island of Curaçao. Each scene, approximately 
50 m long and 1 m wide, was imaged underwater as a linear transect with a pushbroom hyperspectral 
imager in the HyperDiver system. Even though hyperspectral imaging of each 50 m transect took 
only a few minutes, transects across 8 sites were surveyed over different days and at different times 
of the day, thus covering a wide range of natural light settings. Across 147 hyperspectral images, 
there are a total of 2.29 billion pixels, each containing spectral data of 400 wavelengths, adding up to 
almost 1 trillion “colors” that reflect the scope of the dataset. Of these, 23 are comparative transects, 
because a series of color photographs was taken along the length of the transect. By annotating the 
co-located hyperspectral and color images from these transects, a comparative analysis could be 
performed. Separately, the hyperspectral images of 8 other transects were also annotated, to help 
independent assessment of benthic target segmentation (Section 2.3.1). Annotations were made by 
marking regions-of-interest (ROIs) as polygons in the 31 annotated hyperspectral images, and 
associating labels with these ROIs. These annotations contain 47 unique labels of habitat descriptors 
and biodiversity. Due to the plan-view nature of the survey methods, only sessile biota, substrate 
types and other abiotic items were identified. No fish census was carried out during the surveys. 

2.1. Photo Quadrat Survey Data 

The dataset contains transects of 50 m length where a plan-view color photograph (“photo 
quadrat”) was captured every 2 m along the transect. Of the 24 transects captured with this method, 
one was excluded due to data corruption of the corresponding hyperspectral image, resulting in 23 
transects with a total of 575 images. In each photo quadrat, 80 random points were annotated for 
visible organisms or substrate found on the seafloor (Section 3.3.1) 
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2.2. Hyper Diver Survey Data 

The HyperDiver is a diver-operated hyperspectral surveying system that can be used to capture 
high-resolution underwater transects of seafloor scenes with standard diver survey protocols [7]. A 
HyperDiver survey at each transect resulted in one hyperspectral image of the scene. Each image was 
rectified through visual estimation and the hyperspectral data were organized into a cube with three 
dimensions (y, x, w), where y and x represent the two spatial dimensions of the image, while w 
represents the spectral dimension. The spectra were interpolated to a standardized 400 channels 
between 400 nm and 800 nm. The HyperDiver also simultaneously measured downwelling irradiance 
of photosynthetically active radiation (PAR), depth and altitude profiles (Figure 1) as well as a high-
resolution video stream of the scene. These supplementary sensor data give each HyperDiver transect 
some additional contextual information such as the variable light fields and topographic profiles. 

 
Figure 1. (a) The HyperDiver during an underwater survey of a coral reef transect. Sensors collect 
hyperspectral images, altitude, depth and irradiance. (b) Three-channel ‘natural’ view of the surveyed 
transect area derived from hyperspectral data. (c) Class map showing colored polygons that 
correspond to annotated regions-of-interest. (d) Depth and altitude information were used to generate 
the altitude and topographic profile of the transect. 

2.3. Benthic Habitat Description 

Among the 147 transects of HyperDiver survey data, we annotated a subset of them for benthic 
taxonomic identity, up to genus and species levels. The data from the two survey methods 
(HyperDiver and photo quadrats) were annotated separately, and with different annotation 
strategies. However, the hierarchical labels that had been used for the annotations were maintained 
across the two survey methods (See Methods). For the HyperDiver survey data, ROIs were manually 
selected and annotated with a class label, based on expert identification on a corresponding video. A 
total of 2089 ROIs were annotated across the 23 comparative transects, making up 8.2 million 
annotated data points of spectral information (Table 1). The average spectrum for a subset of the 
annotated classes were extracted for comparison (Figure 2).  
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Table 1. Curaçao coral reef sites surveyed using the HyperDiver and a tally of annotations by site. 

Site Name Site Location Total 
Transects 

Annotated 
Transects 

Annotated 
ROIs 

Annotated 
Pixels 

Carmabi 12.122331°N, 68.969234°W 22 3 331 828,968 
Kokomo 12.160331°N, 69.005403°W 20 3 244 968,617 

Playa Kalki 12.375344°N, 69.158931°W 20 3 183 828,019 
Habitat 12.197850°N, 69.079558°W 22 3 231 775,872 

Water Factory 12.109989°N, 68.956258°W 10 3 377 1,347,646 
Marie Pampoen 12.091894°N, 68.907918°W 18 3 281 1,076,596 
Sea Aquarium 12.083234°N, 68.895114°W 15 2 117 1,117,412 

East Point 12.042249°N, 68.745104°W 20 3 325 1,264,642 
 Total 147 23 2,089 8,207,772 

 
Figure 2. The normalized average spectrum shows the unique shapes and potentially distinguishing 
features of 12 different class labels. The average for each class label was calculated from all pixels 
annotated with that label across the dataset. These 12 labels provide a comparison between examples 
of labels occurring in the broader categories of corals, sponges, macroalgae and other habitat 
descriptors. 

2.3.1. Targets for Image Segmentation 

Apart from the annotated ROIs in the 23 comparative transects, another 56 ROIs were separately 
marked and annotated (Table 2). These annotations represent either whole colonies or contiguous 
areas of one particular target class. This set of ROIs can be useful to develop and assess image 
segmentation capabilities useful for habitat mapping. Image segmentation is a computer vision 
technique that subdivides an image into groups of pixels with a common semantic description (i.e. 
identity). In the context of reef habitat mapping, good image segmentation should result in machine 
generated semantic segments which correspond to habitat-level descriptions, such as full coral 
colonies, or contiguous areas of accurately labeled substrate. 

The segmentation ROIs were annotated across 8 previously unlabeled transects (Transects 28, 
46, 82, 90, 107, 125, 132 and 141) to provide an additional layer of validation by assessing how well a 
classifier is able to map unseen data. The target classes for these ROIs were chosen to represent a 
variety of significant categories or morphological types (Table 2). For example, in the Caribbean, 
branching corals of genus Acropora are considered indicators of reef health, due to their sensitivity to 
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environmental change [19,20]. Furthermore, the structural complexity of Acropora is likely to pose a 
different segmentation challenge than more evenly textured massive corals like Siderastrea siderea. 
The ability to segment full colonies of varying structural complexity (different morphologies, shapes, 
etc.) is an important metric to assess the quality of any reef mapping workflow. Rarely occurring class 
labels like Acropora cervicornis and Aiolochroia crassa have also been included among segmentation 
ROIs to help assess how class imbalances in the training data will affect the eventual performance of 
the automated habitat mapping. Across the different target class labels, with the exception of Acropora, 
there are at least three ROIs available for assessing segmentation and other analyses. 

Table 2. Description of the category and target classes of the ROIs annotated for image segmentation. 

Category Sub-Category / Morphology Target Class Annotated Regions 
Coral Branching Acropora cervicornis 2 

  Acropora palmata 1 
  Madracis aurentenra 3 

Coral Massive/sub-massive 
Diploria strigosa 

(Pseudodiploria strigosa) 
3 

  Montastrea cavernosa 3 
  Orbicella faveolata 3 
  Orbicella annularis 4 
  Siderastrea siderea 3 

Hydrozoan  Millepora sp. 3 
Macroalgae Brown Dictyota sp. 4 
Macroalgae Green Halimeda opuntia 3 

Soft coral  Gorgoniidae 3 
  Plexauridae 4 

Sponge Barrel Neofibularia nolitangere 4 
  Ircinia campana 4 

Sponge Massive Aiolochroia crassa 3 
Substrate  Sediment 3 

  Coral rubble 3 
  Total 56 

3. Methods 

3.1. Data Acquisition 

Survey data were obtained from 147 transects around Curaçao (12.166°N, −68.966°W) in the 
Caribbean Sea. In total, 8 coral reef sites all along the south-western coast of Curaçao were selected 
to cover a variety of habitat types with varying proximity to coastal urban settlements. Starting from 
the northernmost site, and in the southeast direction, the sites were Playa Kalki, Habitat, Kokomo, 
Carmabi, Water Factory, Marie Pampoen, Sea Aquarium, and East Point (Table 1; Figure 3). 
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Figure 3. Locations of the 8 HyperDiver survey sites — Playa Kalki, Habitat, Kokomo, Carmabi, Water 
Factory, Marie Pampoen, Sea Aquarium, Eastpoint — around the island of Curaçao in the Caribbean 
Sea (inset). 

At each of these sites, the HyperDiver was used to survey a large area by capturing between 10 
and 20 hyperspectral transects in total (Figure 4). The surveyed area was marked by laying out 50 m 
measuring tapes along the edges of the area. The seafloor area between depths ~3 m to 9 m was 
surveyed in a raster pattern at mostly constant seafloor depth. Of these transects, only three were 
chosen as comparative transects, where co-located color imagery was also captured. These 
comparative transects were at three different depths—3 m, 6 m, and 9 m. 

Every hyperspectral image of a transect includes a gray plastic board (25 cm × 25 cm) placed on 
the reef bottom at either one or both ends of the transect. This board provides a reference scale for 
spatial dimensions and the neutral gray color also allows estimation of the solar spectrum at a given 
depth and to derive local pseudo-reflectance values. The HyperDiver is maneuvered at near constant 
altitude along the direction parallel to the transect tape, ensuring that movement was largely smooth 
and compensated against cross-directional currents. During the scan, the HyperDiver continuously 
gathered a suite of different data at the same time (Figure 1; Section 3.2).  

To acquire the co-located photo quadrat survey data, a diver captured plane-view color images 
with an underwater digital camera at constant altitude along the length of the transect at 2 m intervals 
(Figure 4). This results in the acquisition of a total of 25 images per comparative transect. 
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Figure 4. Each coral reef survey site was surveyed using two methods. Depending on the slope of the 
site, between 10 and 20 HyperDiver scans were carried out per site, in alternating directions (gray 
arrows). Three transects at different depths were also surveyed using traditional photo quadrat 
method, where one natural color image was captured at 2 m intervals along the transect (white). Only 
transects with co-located data were annotated for biodiversity and substrate type. 

3.2. Hyper Diver Data Processing 

Hyperspectral data was first manually inspected for data quality. Transects with corrupted or 
incomplete data (N = 43) were excluded. Transects deemed acceptable (N = 147) were rectified to 
represent the imaged scene as approximately square pixels. Rectification is necessary because the 
HyperDiver generates variable longitudinal and transverse resolution based on the imaging optics, 
swimming speed and frame acquisition rate [7]. Furthermore, since it is an underwater system 
without georeferencing capabilities, image rectification could not be easily automated. The 
rectification was performed through cropping unwanted sections at the ends of the captured transect 
scene as well as stretching of the scan in the y direction to produce nearly square pixels and a visually 
coherent image of the scene. The spectrum in each pixel was linearly interpolated to 400 bands in the 
400 nm to 800 nm wavelength range, and its intensity scaled down from 16-bit to 8-bit radiometric 
resolution. The supplementary sensor data from the HyperDiver scan were also included in the 
dataset, but the use of these data should be approached with care as they have not been evaluated 
beyond calibration. These include photosynthetically active radiation (PAR), altitude, pressure, and 
system pose data like pitch, roll, yaw and acceleration. An underwater video camera was also 
mounted onto the HyperDiver to capture high-definition videos of the scene during each scan. As 
part of HyperDiver data processing, these videos were color-corrected to ease taxonomic 
identification. Video frames were extracted at 3 s intervals and are included in this dataset. 

3.3. Biodiversity and Substrate Labels for Habitat Mapping 

We created this dataset to be used for machine learning and automated habitat mapping. In 
order to produce a suitable learning dataset, we formulated a protocol to annotate a subset of the 
hyperspectral imagery with labels that are useful for habitat mapping, namely taxonomic identities 
for reef organisms and substrate descriptions for abiotic structures. We relied on existing ontologies, 
to propagate standard vocabularies of habitat description and to avoid creating a new annotation 
schema. For labels of reef organisms, we adopted a well-established database of marine organisms, 
the World Register of Marine Species (WoRMS) [21]. WoRMS provides scientific names of marine 
taxa, through unique and stable identifiers via its ‘Aphia’ database model [22]. For abiotic habitat 
substrate labels, we relied on the CATAMI classification scheme [23], in an effort to keep it consistent 
with best-practices in marine imagery annotations. Both the CATAMI and Aphia schemes of labeling 



Data 2020, 5, 19 6 of 14 

 

are hierarchical, and may enable the use of hierarchical learning paradigms for classification tasks 
(Figure 5). Combining these two annotation schemes, we were able to assign up to three tags per 
annotated data point, namely ‘visual’, ‘worms’ and ‘catami’. At the very least, an annotation consists 
of only a visual tag if it is neither a reef organism nor an abiotic substrate (e.g., “turf algae”). To label 
abiotic classes, both the visual and catami tags were assigned, like in the case of visual “sediment”, 
which was also tagged with a catami tag of “82001005” corresponding to soft, unconsolidated 
substrate under the CATAMI scheme. For biotic annotations, we assigned all three tags to it e.g. the 
visual “Siderastrea siderea” also has a worm’s tag of “207516” and catami tag of “11290906” for massive 
hard corals. In total, we generated 47 unique visual labels across the annotated dataset. 

 
Figure 5. Truncated tree schematic showing hierarchical nature of annotation labels was 
reconstructed from the unique identifiers from existing classification ontologies. Labels used for the 
annotated dataset are in red bounding boxes. Biotic labels were tagged with unique AFAID identifier 
from the World Register of Marine Species (WoRMS) database and abiotic labels were tagged with an 
identifier code from the Collaborative and Annotation Tools for Analysis of Marine Imagery and 
video (CATAMI) classification scheme. For the complete hierarchical tree that includes all labels 
under Kingdom Animalia, refer to Figure A1 in Appendix A. 

3.3.1. Annotation Strategy: Random Point Count Method 

Determining coral and substrate coverage in a photo quadrat employs the random point count 
methodology, a widely used method of obtaining minimally-biased estimations of percent cover 
from image-based surveys [24,25]. Using a point annotation software called Coral Point Count with 
Excel extensions (CPCe) [25], 80 random points were generated on each of the 25 photo quadrats. 
Every randomly selected point was identified either as a substrate type or a benthic organism to the 
highest taxonomic resolution possible, resulting in a total of 2000 annotated data points per transect. 
Pixel coordinates of the annotated points were then saved with their respective labels as a table (.csv file) 
associated with each quadrat. Since expert annotations are time-consuming and expensive to obtain, 
the reduced effort is achieved through labeling only a small subset of random points on each image 
[19]. For this dataset, 80 random points were chosen based on previous research [19] which used 

CLASS LABELS

Biota Abiota

Turf algae Plantae Bacteria Chromista refboard Substrate Materials

Chlorophyta Rhodophyta Cyanobacteria Ochrophyta Sediment float material reel tape

Ulvophyceae Florideophyceae Phaeophyceae Pebble/ Gravel

Bryopsidales Corallinales Dictyotales Biologenic

Halimedaceae Dictyotaceae Coral rubble

Lobophora Dictyota

Lobophora variegata

Halimeda

Halimeda opuntia

Animalia
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simulated data to determine that for a reef transect with 20% hard coral cover, 80 points per image 
was the minimum number of points to obtain for accurate percent cover estimates. 

3.3.2. Annotation Strategy: Deliberate Bias to Reduce Human Effort 

For the annotation of HyperDiver data, a natural color rendering of each transect’s hyperspectral 
image was visualized and annotated interactively with ROI polygons, with the help of the 
accompanying video recording of the scene (Figure 6). As opposed to the previously described 
random point selection method for photo quadrat surveys (Section 3.1), we developed an annotation 
strategy for HyperDiver data that was deliberately biased. 

 
Figure 6. Screen capture showing the annotation of regions on the transect scene (on the left) and 
accompanying high-resolution video (on the right) to assist in identification. The marked regions are 
assigned multiple labels, to the deepest taxonomic/hierarchical level possible. 

The selection of annotation ROIs was not random. Instead, for each transect, we selected and 
marked regions to generate the largest number of unique class labels. This was achieved through 
marking only a few ROIs (3–10) for the most commonly occurring class labels (e.g., “Sediment”, “Turf 
algae”, etc.) and then focusing on finding new classes to annotate. A given target’s area was marked 
with several ROI polygons without covering the entire target, thus generating a spatially under-
segmented labeling of the target. We also tried to ensure that ROIs were marked across different 
structural aspects (like shadow areas) of the targets. Labels were assigned to each ROI using the 
previously described schema (Section 3.3), with the label assigned at the deepest possible 
hierarchical/taxonomic level, which was variable depending on the target type and image quality at 
that location. 

As each transect’s annotation was approached as an independent evaluation with a focus on 
maximizing unique classes in the transect scene, the resulting set of labels reflects the class balance 
distribution of the surveyed area and with a spatial localization that was not random. As a result, 
there is severe class imbalance across the annotated survey dataset due to classes that appear in every 
transect (e.g., “Sediment”) and classes that appear in only one or few transects (e.g., Acropora palmata). 
Overall, this approach prioritized expert attention towards greater biodiversity coverage instead of 
spatial coverage. This greatly reduced annotation effort by avoiding relabeling very common target 
classes as would be necessary by a random selection of ROIs. 

Our curated and annotated dataset is designed to be used in training machine learning classifiers 
for automated habitat mapping. Our annotation protocol described above was formulated to 
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maximize two aspects, i.e. the number of classes represented in the annotated dataset, as well as the 
number of cases of each class. This could enable a well-trained classifier to predict class labels in 
unseen transects as well as classify benthic taxa, even if they are rare. 

4. User Notes 

The dataset is organized into transects, with one data folder each (Figure 7). Each transect folder 
has a JavaScript Object Notation (JSON) file metadata.json, containing the name of the surveyed 
site location and original source data folder. The HyperDiver’s hyperspectral image and auxiliary 
sensor data are saved in a single file transect.nc, in Network Common Data Form or netCDF 
format. The netCDF format can be inspected through a variety of libraries in multiple programming 
languages, or through a graphical browser such as Panoply (www.giss.nasa.gov/tools/panoply). 

The hyperspectral image is saved under the array cube, which is a 3-dimensional array with 
dimensions (y, x, w). The 8-bit integer cube array contains the raw radiance signal in 400 wavelength 
bands at each spatial location. If local reflectance is required, it can be derived by dividing the raw 
signals by a reference value obtained from the signal of the gray reference boards (Section 3.1). For 
each transect, this spectral information is available as ROIs labelled with the visual tag “refboard”. 
This will account for differences in solar spectrum across different sites and depths.  Using standard 
red, blue and green channels a natural color rendering of the scene was extracted from the 
hyperspectral image and saved as a composite image (natural.jpg). 

 
Figure 7. Data are organized into individual folders for each surveyed transect (transect_001 to 
transect_147). Every data folder contains HyperDiver data, a natural color image as well as extracted 
video frames. A subset of the transects will also contain additional files containing annotations of 
hyperspectral data (blue) and/or an additional sub-folder containing photo quadrat images (red). 

The other arrays in transect.nc, one-dimensional and indexed by timestamp, contain data 
from auxiliary sensors on the HyperDiver: pressure, altitude, acceleration, pose, and irradiance, each 
calibrated according to manufacturer specifications. Pressure (in bar) and altitude (in meter) allow 
localization of the HyperDiver in the water column. Acceleration data from a gyroscope is recorded 
for three axes, and the pose data such as heading, pitch and roll (in 10 × degree) are found in separate 
arrays. These data can be used to reconstruct the pose and motion of the HyperDiver during the scan, 
potentially enabling automated image rectification of each hyperspectral scan. The radiance 
information (PAR) is saved in units of μmol photons m−2 s−1. 

All transect scenes are also accompanied by a series of .jpg image files of still frames extracted 
from the corresponding high-resolution video (Figure 6). These are found in a sub-folder named 
“video_frames” (Figure 7). 

Hyperspectral images which have been annotated contain another netCDF file (classmap.nc) 
containing the labels for each ROI as an integer-coded map. While this enables ease of use 

├-- transect_001
├-- transect.nc (HyperDiver data)
├-- natural.jpg (RGB natural image)
├-- metadata.json (Metadata)
├-- video_frames
│ ├-- frame_001.jpg
│ ├-- frame_002.jpg
│ └-- …

│

├-- classmap.nc (Class map data)
├-- classmap.jpg (Class map image)
│

└-- photo_quadrats
├-- { M00XXXXX.jpg, M00XXXXX.csv }n
└-- …
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downstream in the machine learning workflow, the text labels for the visual tag can be recovered 
from the netCDF attributes of each classmap.nc file. These integer-coded maps were visualized as 
a false-color image (classmap.jpg) using a global colormap for ease of inspection, with black 
indicating unlabeled regions. When generating false color habitat maps with trained classifiers, users 
are reminded to use a similar global label list for color mapping to ensure consistency across all 
transects, regardless of the set of unique classes from each transect. 

Transects that were also surveyed using the photo quadrat method contains a sub-folder called 
“photo_quadrats” that contains all the co-located photo quadrat (.jpg files) and annotated labels 
in a comma-separated values (.csv) text file. This text file contains the pixel coordinates and visual 
labels for all 80 points in the corresponding quadrat image. 

Users of this dataset who intend to apply hierarchical learning for classification should note that 
all class labels of the annotated data are the leaf nodes of the hierarchy labels. To recover the entire 
hierarchy, users are reminded to reconstruct the tree from two schema, i.e. WoRMS and CATAMI 
(Section 3.3). First, use the worms tag of each ROI label in classmap.nc to query the parent nodes 
of those labels using the WoRMS REST webservice (www.marinespecies.org/rest/) to construct a tree-
of-life of biotic labels. The rest of the tree can be constructed based on the CATAMI classification 
schema and the fully constructed tree diagram published here (Appendix A; Figure A1).  
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Appendix A 

 

Figure A1. Full extent of the hierarchical labels found in the dataset, best viewed digitally. 
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