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Abstract: Earth observation data cubes are increasingly used as a data structure to make large
collections of satellite images easily accessible to scientists. They hide complexities in the data
such that data users can concentrate on the analysis rather than on data management. However,
the construction of data cubes is not trivial and involves decisions that must be taken with regard to
any particular analyses. This paper proposes on-demand data cubes, which are constructed on the fly
when data users process the data. We introduce the open-source C++ library and R package gdalcubes
for the construction and processing of on-demand data cubes from satellite image collections, and
show how it supports interactive method development workflows where data users can initially
try methods on small subsamples before running analyses on high resolution and/or large areas.
Two study cases, one on processing Sentinel-2 time series and the other on combining vegetation,
land surface temperature, and precipitation data, demonstrate and evaluate this implementation.
While results suggest that on-demand data cubes implemented in gdalcubes support interactivity
and allow for combining multiple data products, the speed-up effect also strongly depends on how
original data products are organized. The potential for cloud deployment is discussed.
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1. Introduction

Recent open data policies from governments and space agencies have made large collections
of Earth observation data freely accessible to everyone. Scientists nowadays have data to analyze
environmental phenomena on a global scale. For example, the fleet of Sentinel satellites from the
European Copernicus program [1] is continuously measuring variables on the Earth’s surface and in
the atmosphere, producing terabytes of data every day. At the same time, the structure of satellite
imagery is inherently complex [2,3]. Images spatially overlap, may have different spatial resolutions
for different spectral bands, produce an irregular time series e.g., depending on latitude and swath,
and naturally use different map projections for images from different parts of the world. This becomes
even more complicated when data from multiple sensors and satellites must be combined as pixels
rarely align in space and time, and the data formats in which images are distributed also vary.

Earth observation (EO) data cubes [4,5] offer a simple and intuitive interface to access
satellite-based EO data by hiding complexities for data users, who can then concentrate on developing
new methods instead of organizing the data. Due to its simplicity as a regular multidimensional
array [6], data cubes facilitate applications based on many images such as time series and even
multi-sensor analyses. At the same time, they simplify computational scalability because many
problems can be parallelized over smaller sub-cubes (chunks). For instance, time series analyses
often process individual pixel time series independently and a data cube representation hence makes
parallelization straightforward.
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Fortunately, there is a wide available array of technology that works with Earth observation
imagery and data cubes. The Geospatial Data Abstraction Library (GDAL) [7] is an open source
software library that is used on a large scale by the Earth observation community because it can
read all data formats needed, and has high-performance routines for image warping (regridding an
image to a grid in another coordinate reference system) and subsampling (reading an image at a lower
resolution). However, it has no understanding of the time series of images, nor of temporal resampling
or aggregation.

Database systems such has Rasdaman [8] and SciDB [9,10] have been used to store satellite image
time series as multidimensional arrays. These systems follow traditional databases in the sense that
they can organize the data storage, provide higher level query languages for create, read, update,
and delete operations, as well as managing concurrent data access. The query languages of both
mentioned systems also come with some basic data cube-oriented operations like aggregations over
dimensions. However, array databases are rather infrastructure-oriented. They require a substantial
effort in preparing and setting up the infrastructure, and databases typically require data ingestion,
meaning that they maintain a full copy of the original data.

The Open Data Cube project (ODC) [11] provides open-source tools to set up infrastructures
providing access to satellite imagery as data cubes. The implementation is written in Python and
supports simple image indexing without the need of an additional copy. Numerous instances like
the Australian data cube [4] or the Swiss data cube [5] are already running or are under development
and demonstrate the impact of the technology with the vision to “support . . . the United Nations
Sustainable Development Goals (UN-SDG) and the Paris and Sendai Agreements” [11].

Google Earth Engine (GEE) [3] even provides access to global satellite imagery including the
complete Sentinel, Landsat, and MODIS collections. GEE is a cloud platform that brings the computing
power of the Google cloud directly to data users by providing an easy-to-use web interface for
processing data in JavaScript. The success of GEE can be explained not only by the availability of
data, computing power, and an accessible user interface but also by the interactivity it provides for
incremental method development. Scripts are only evaluated for the pixels that are actually visible on
the interactive map, meaning that computation times are highly reduced by sub-sampling the data.
GEE does not store image data as a data cube but provides cube-like operations, such as reduction
over space and time.

Both, ODC and GEE provide Python clients but lack interfaces to other languages used in data
science such as R or Julia. Additionally, the Pangeo project [12] is built around the Python ecosystem,
including the packages xarray [13] and dask [14]. For data users working with R [15], two packages
aiming at processing potentially large amounts of raster data are raster [16] and stars [17]. While raster
represents datasets as two- or three-dimensional only and hence requires some custom handling of
multispectral image time series, the stars package implements raster and vector data cubes with an
arbitrary number of dimensions, and follows the approach of GEE by computing results only for pixels
that are actually plotted, whereas raster always works with full resolution data. However, the stars
package at the moment cannot create raster data cubes from spatially tiled imagery, where images
come e.g., from different zones of the Universal Transverse Mercator (UTM) system.

Most of the presented tools to process data cubes including Rasdaman, SciDB, xarray, and stars
assume that the data already come as a data cube. However, satellite Earth observation datasets are
rather a collection of images (Section 2) and generic, cross language tools to construct data cubes
from image collections are currently missing. In this paper, we propose on-demand data cubes as
an interface on how data users can process EO imagery, supporting interactive analyses where data
cubes are constructed on-the-fly and properties of the cube including the spatiotemporal resolution,
spatial and temporal extent, resampling or aggregation strategy, and target spatial reference system
can be user-defined. We present the gdalcubes C++ library and corresponding R package as a generic
implementation of the construction of on-demand data cubes.
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The remainder of the paper is organized as follows. Section 2 introduces the concept of on-demand
data cubes for satellite image collections and presents our implementation as the gdalcubes software
library. Two study cases on Sentinel-2 time series processing and constructing multi-sensor data cubes
from precipitation, vegetation, and land surface temperature data evaluate the approach in Section 3,
after which Sections 4 and 5 discuss the results and conclude the paper.

2. Representing Satellite Imagery as On-Demand Data Cubes with gdalcubes

2.1. Data Cubes vs. Image Collections

Earth observation data cubes are commonly defined as multidimensional arrays [6] with
dimensions for space and time. We concentrate on the representation of multi-spectral satellite
image time series as a data cube and here we therefore narrow it down to the following definition of a
regular, dense raster data cube.

Definition 1. A regular, dense raster data cube is a four-dimensional array with dimensions x (longitude or
easting), y (latitude or northing), time, and bands with the following properties:

(i) Spatial dimensions refer to a single spatial reference system (SRS);
(ii) Cells of a data cube have a constant spatial size (with regard to the cube’s SRS);
(iii) The spatial reference is defined by a simple offset and the cell size per axis, i.e., the cube axes are aligned

with the SRS axes;
(iv) Cells of a data cube have a constant temporal duration, defined by an integer number and a date or time

unit (years, months, days, hours, minutes, or seconds);
(v) The temporal reference is defined by a simple start date/time and the temporal duration of cells;
(vi) For every combination of dimensions, a cell has a single, scalar (real) attribute value.

This specific data cube type has a number of limitations and other definitions are more general
(see e.g., [18–20]). However we will show how our implementation in the gdalcubes library allows
the construction of such cubes from different data sources in Section 3, and help solve a wide range
of problems.

As discussed in Section 1, satellite imagery is inherently complex and irregular. For example,
a single Sentinel-2 image has different pixel sizes for different spectral bands. Multiple Sentinel-2
images may spatially overlap, and use different map projections (UTM zones). Furthermore,
although the regular revisit time for Sentinel-2 data is five days (including both satellites), the temporal
differences between images from adjacent orbits might be less than five days, leading to an irregular
time series as soon as analyses cover larger spatial regions. Space agencies and cloud computing
providers including new platforms such as the Copernicus Data and Information Access Services
(DIASes), currently do not provide a data cube access to the data. Except for some platforms discussed
in Section 1, including Google Earth Engine, the starting point for data users is often just the files,
whether in the cloud or on a local computer. To efficiently build on-demand data cubes from irregularly
aligned imagery, we define a data structure for image collections, representing how satellite-based
Earth observation data products are distributed to the users.

Definition 2. An image collection is a set of n images, where images contain m variables or spectral bands.
Band data from one image share a common spatial footprint, acquisition date/time, and spatial reference system
but may have different pixel sizes. Technically, the data of bands may come from one or more files, depending on
the organization of a particular data product.

Obviously, images in a collection should come from the same data product, i.e., measurement
values must be comparable. Figure 1 illustrates how image collections are implemented in gdalcubes.
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Figure 1. Data structure for image collections in gdalcubes. Geospatial Data Abstraction Library
(GDAL) datasets refer to actual image data, which can be local or remote files, objects in cloud storage,
sub-datasets in a more complex file format, or any other resources that GDAL can read.

2.2. Constructing User-Defined Data Cubes from Image Collections

Constructing data cubes involves some decisions that may include loss of information. These include
the selection of the spatial reference system, the resolution in space and time, the area and time range of
interest, and a resampling algorithm. Decisions may or may not be appropriate for particular analyses
and we therefore delay the construction of the data cube until data must actually be read in the analysis.
The idea is similar to how Google Earth Engine works: Users write their analysis and independently
select parameters, like the area of interest and the resolution. We define a target cube with a data cube
view, an object that defines the cube “geometry”, and how it is created, including the target cube’s:

• Spatial reference system;
• Spatiotemporal extent;
• Spatial size and temporal duration of cells (resolution);
• Spatial image resampling method, and;
• Temporal aggregation method.

The spatial resampling algorithm is applied when reprojecting, cropping, and/or resizing pixels of
one image. The temporal aggregation method specifies how pixel values from multiple images that are
covered by the same cell in the target data cube are combined. For example, if a data cube pixel has a
temporal duration of one month, values from multiple images need to be combined, e.g., by averaging
the five-daily values covered by a particular month. Similar to [21], who formalize a topological
map algebra for analyzing irregular spatiotemporal datasets including satellite image collections, this
allows to adapt the temporal granularity to the specific needs, and to make this explicit.

To lower memory requirements and to read and process data in parallel for larger cubes, we divide
a target data cube into smaller chunks, whose spatiotemporal size can be specified by users and can
be tuned to improve the performance of particular analyses. A chunk always contains data from all
bands. Below, we summarize the algorithm to read a data cube chunk, given an image collection and a
data cube view. The algorithm returns an in-memory four-dimensional dense array.

1. Allocate and initialize an in-memory chunk buffer for the resulting chunk data (a four-dimensional
bands, t, y, x array);

2. Find all images of the collection that intersect with the spatiotemporal extent of the chunk;
3. For all images found:

3.1. Crop, reproject, and resample according to the spatiotemporal extent of the chunk and the
data cube view and store the result as an in-memory three-dimensional (bands, y, x) array;

3.2. Copy the result to the chunk buffer at the correct temporal slice. If the chunk buffer already
contains values at the target position, update a pixel-wise aggregator (e.g., mean, median,
min., max.) to combine pixel values from multiple images which are written to the same cell
in the data cube.

4. Finalize the pixel-wise aggregator if needed (e.g., divide pixel values by n for mean aggregation).
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In the case of median aggregation, non-missing values from all contributing images are collected
in an additional dynamically sized per-pixel buffer before the median can be calculated in the final step.

2.3. Data Cube Operations

Since data cubes as defined in this paper are simple multidimensional arrays, it is easy to express
higher-level operators that take one (or more) data cubes as input and produce one data cube as
a result. Examples include reduction over dimensions, applying arithmetic expressions on pixels,
or focal window operations like image convolution. Table 1 lists some operations that are already
implemented in gdalcubes.

Table 1. Implemented data cube operations in the current version of the gdalcubes library.

Operator Description

raster_cube Create a raster data cube from an image collection and a data cube view
reduce_time Apply a reducer function independently over all pixel time series
reduce_space Apply a reducer function independently over all spatial slices
apply_pixel Apply an arithmetic expression on band values over all pixels
filter_pixel Filter pixels with a logical predicate on one or more band values
join_bands Stack the bands of two identically shaped cubes in a single cube
window_time Apply a reducer function or kernel filter over moving windows for all pixel time series
write_ncdf Export a data cube as a netCDF file
chunk_apply Apply a user-defined function over chunks of a data cube

These operations can be chained, essentially constructing a directed acyclic graph of operations.
The graph allows reordering operations in order to optimize computations and minimize data reads.
Furthermore, chunks of data cubes can be processed in parallel.

2.4. The gdalcubes Library

The open-source C++ library and R package gdalcubes implement the concept of on-demand raster
data cubes described above. The library includes data structures for image collections, raster data cubes,
data cube views, and includes some high-level data cube operations (see Table 1). It uses the Geospatial
Data Abstraction Library (GDAL) [7] to read and warp images, the netCDF C library [22] to export
data cubes as files, SQLite [23] to store image collection indexes on disk, and libcurl [24] to perform
HTTP requests. Additionaly it includes the external libraries tinyexpr [25] to parse and evaluate C
expressions at runtime, date [26] for a modern C++ datetime approach, a tiny-process-library [27] to
start external processes, and json [28] to parse and convert C++ objects from/to json. In the following,
we focus on the description of the R package which simply wraps classes and functions from the
underlying C++ library but does not add important features. The R package is available from the
Comprehensive R Archive Network (CRAN)1.

Figure 2 illustrates the basic workflow of how the package is used. At first, available images must
be indexed to build an image collection. The image collection stores the spatial extent, the spatial
reference system, the acquisition time of images, how bands relate to individual datasets or files,
and where the image data can be found. The resulting image collection is a simple SQLite single file
database with tables for images, bands, datasets, and metadata according to Figure 1.

1 https://cran.r-project.org/package=gdalcubes

https://cran.r-project.org/package=gdalcubes
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Figure 2. Typical analysis workflow for users of the R package gdalcubes.

Since we use GDAL to read image data, datasets can point to anything that GDAL can read,
including local or remote files, object storage from cloud providers, sub-datasets in hierarchical file
formats, compressed files, or even databases. GDAL dataset identifiers simply tell GDAL where to
find and how to read the image data. The data structure with a one-to-many relationship between
images and GDAL datasets and a one-to-many relationship between GDAL datasets and bands brings
maximum flexibility in how the input collections can be organized. Images can be composed from a
single file containing all bands (e.g., MODIS), from many files where one file contains data for one
band (e.g., Landsat 8), or even from many files where files store some of the bands (e.g., grouped
by spatial resolution). Again, files here are not limited to local files but refer to anything that GDAL
can read. We chose SQLite for its portability and simplicity, relieving users from the need to run an
additional database. To support fast spatiotemporal range selection and filtering, the image table
contains indexes on the spatial extent and the acquisition date/time.

However, due to the variety of available EO products and its diverse formats and naming
conventions, it is not trivial to extract all the information automatically. We abstract from specific
products by defining collection formats for specific EO products. The package comes with a set of
predefined formats including some Sentinel, Landsat, and MODIS data products. Further formats
can be either user-defined or downloaded from a dedicated GitHub repository2, where new formats
will be continuously added. Internally, the collection formats are JSON files following a rather simple
format that includes a description of the collection’s bands and a few regular expressions on how to
extract the needed fields, e.g., from a granule’s file name.

After one or more image collections have been created, the typical workflow (Figure 2) is to define
a data cube view that includes the area and time of interest, the target spatial reference system, and the
spatiotemporal resolution, then define operations on the data cube, and finally plot or write the result
to disk. These steps are typically repeated, where users refine the data cube view or the operations
carried out on retrieved cubes. This fits well to incremental method development because users can
try their methods on coarse resolution and/or a spatiotemporal extent first, before scaling the analysis
to large regions and/or high resolution.

The workflow can also be identified in Figure 3, showing a minimal example R script to derive
a preview image from a collection of Sentinel-2 Level 2A images by applying a median reducer
over the visible bands at a 300 m spatial resolution. We first create an image collection with
create_image_collection(), indexing available files on the local disk, then define a data cube view
with cube_view(), and create the cube with raster_cube(). Calling this operation will however

2 https://github.com/appelmar/gdalcubes_formats

https://github.com/appelmar/gdalcubes_formats
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neither start any expensive computations nor read any pixel data from disk. Instead, the function
immediately returns a proxy object that can be passed to data cube operations. We subset available
bands of the data cube by calling select_bands() and apply a median reducer over time with
reduce_time(). These functions also return proxy objects, containing the complete chain of operations
and the dimensions of the resulting cube. Expressions passed as strings to data cube operations directly
translate to C++ functions. In this case, the median reduction is fully implemented in C++ and does
not need to call any R functions on the data. The plot() call finally executes the chain of operations
and starts actual computations and data reads. The advantage of such a lazy evaluation is that no
intermediate results must be written to disk but can be directly streamed to the next operation so that
the order of operations can be optimized. In an example with 102 images from three adjacent grid tiles
(summing to approximately 90 gigabytes), stored as original ZIP archives as downloaded from the
Copernicus Open Access Hub [29] (see also Section 3, where we use the same dataset in the second
study case), computations take around 40 s on a personal laptop with a quad-core CPU, 16 GB main
memory, and a solid state disk drive. The resulting image is shown in Figure 4. The complete script
has less than 20 lines of code and if users want to apply the same operation at a higher resolution,
possibly for a different spatial extent and time range, only parameters that define the data cube view
must be changed.

library(gdalcubes)
library(magrittr)
gdalcubes_set_threads(8)

# 1. create an image collection from files on disk
files = list.files("/data/sentinel2_l2a_archive", ".zip", full.names = TRUE)
S2.col = create_image_collection(files, format = "Sentinel2_L2A")

# 2. create a data cube view for a coarse resolution overview
v = cube_view(srs="EPSG:3857", extent=S2.col, dx=300, dt="P5D",
aggregation="median", resampling = "bilinear")

# 3. create a true color overview image
raster_cube(S2.col, v) %>%
select_bands(c("B02", "B03", "B04")) %>%
reduce_time("median(B02)", "median(B03)", "median(B04)") %>%
plot(rgb=3:1,zlim=c(0,1200))

Figure 3. Example R script to derive a mosaic preview of Sentinel-2 images by calculating the median
of visible bands over pixel time series.
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Figure 4. Output of R script in Figure 3, plotting median reflectances of visible Sentinel-2 bands
over time.

Figure 5 shows a Google Earth Engine (GEE) script for applying a median (time) reduction over
the same study region. The results are very similar but not identical on pixel level because of a few
different images being used and because GEE reduced the entire image collections whereas gdalcubes
creates data cubes with regular temporal resolution, which involves aggregating values from multiple
images before applying the reducer.

Figure 5. Screenshot of using Google Earth Engine [3] to apply a median RGB reduction of Sentinel-2
images for the same study area and time as used in Figures 3 and 4. Background imagery and map
data c© 2019 GeoBasis-DE/BKG ( c© 2019), Google.
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3. Study Cases

We now demonstrate and evaluate the R package implementation in two study cases. The first
study case focuses on demonstrating how gdalcubes can be used to combine different data products.
The second study case processes Sentinel-2 time series and evaluates the scalability of computation
times as a function of the resolution of the data cube view and the number of CPUs used.
All computation time measurements have been performed on a Dell PowerEdge R815 Server with
4 AMD Opteron 6376 CPUs, summing to 64 CPU cores in total and 256 GB of main memory.

3.1. Constructing a Multi-Sensor Data Cube from Precipitation, Vegetation Data, and Land Surface
Temperature Data

In this case study, we build a multi-sensor data cube including 16-daily vegetation index data
from the Moderate-resolution Imaging Spectroradiometer (MODIS) product MOD13A23, daily land
surface temperature data from the MODIS product MOD11A14, and daily precipitation data from
the Global Precipitation Measurement mission (GPM) product IMERG5 (using the daily accumulated,
final-run product). Table 2 summarizes some important properties of the datasets used in this study
case. Combining data from such sensors including meteorological and optical measurements is an
important step in analyzing statistical dependencies between environmental phenomena. In this case,
the combined resulting data cube can, for example, be used to study the resistance of vegetation against
heat or drought periods.

Table 2. Summary of the data products as used in the first study case. Definitions: GPM, Global
Precipitation Measurement mission; NDVI, normalized difference vegetation index; liquid_accum,
liquid daily accumulated precipitation; LST_DAY, daytime land surface temperature; SRS, spatial
reference system; MODIS, Moderate Resolution Imaging Spectroradiometer.

MOD13A2 GPM MOD11A1

Selected Variables NDVI liquid_accum LST_DAY
Spatial Resolution 1 km × 1 km 0.1◦ × 0.1◦ 1 km × 1 km
Area of Interest global (land only) global (60◦ N–60◦ S full) Europe (land only)
Temporal Resolution 16 days daily daily
Time Range 2014-01-01–2019-01-01 2014-01-01–2019-01-01 2014-01-01–2019-01-01
File Format HDF4 GeoTIFF (zip compressed) HDF4
SRS MODIS sinusoidal Lat/Lon grid MODIS sinusoidal

The script to build a combined data cube is shown in Figure 6. We first create a common data
cube view, covering Europe from the beginning of 2014 to the end of 2018 at a 10 km spatial and daily
temporal resolution. Then, we create three separate raster data cubes and apply some individual
operations, e.g., to compute 30-day precipitation means from daily measurements. We then combine
the cubes using two calls to the join_bands() function, which collects the bands from two identically
shaped data cubes. Since the MOD13A2 product covers land areas only, we ignore any pixels in the
combined cube without vegetation data by calling filter_predicate(). Expressions passed to the
apply_pixel and filter_predicate functions are translated to C++ functions, with iif denoting
a simple one line if-else statement. Finally, we export the cube as a netCDF file. Figure 7 shows a
resulting temporal subset of a cube derived at a 10 km spatial resolution. Computation times to execute
the script varied between 40 and 240 min on a 50 km and 1 km spatial resolution respectively, meaning
that by reducing the number of pixels in the target data cube by a factor of 2500, we could reduce

3 https://lpdaac.usgs.gov/products/mod13a2v006/
4 https://lpdaac.usgs.gov/products/mod11a1v006/
5 https://pmm.nasa.gov/data-access/downloads/gpm

https://lpdaac.usgs.gov/products/mod13a2v006/
https://lpdaac.usgs.gov/products/mod11a1v006/
https://pmm.nasa.gov/data-access/downloads/gpm
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computation times by a factor of 6. In this case, data users would additionally need to reduce the area
and/or time range of interest to try out methods and get interactive results within a few minutes.

v.europe = cube_view(srs= "EPSG:3035", extent=list(left=2500000, right = 6000000,
top = 5500000, bottom = 1500000, t0 = "2014-01-01", t1 = "2018-12-31"),
dx=10000, dt="P1D")

MOD13A2.col = image_collection("MOD13A2_global_2014_2018.db")
GPM.col = image_collection("GPM.db")
MOD11A1.col = image_collection("MOD11A1_2014_2018.db")

GPM.cube =
raster_cube(GPM.col, v.europe) %>%
select_bands("liquid_accum") %>%
apply_pixel("liquid_accum / 10", names = "PREC") %>%
window_time(expr = "mean(PREC)", window = c(30,0))

MOD13A2.cube =
raster_cube(MOD13A2.col, v.europe) %>%
select_bands("NDVI") %>%
apply_pixel("NDVI / 1e4", names="NDVI")

MOD11A1.cube =
raster_cube(MOD11A1.col, v.europe) %>%
select_bands("LST_DAY") %>%
apply_pixel("LST_DAY * 0.02", names="LST") %>%
window_time(expr = "mean(LST_30D)", window = c(30,0))

join_bands(MOD13A2.cube, GPM.cube) %>%
join_bands(MOD11A1.cube) %>%
filter_predicate("iif(isnan(NDVI), 0, 1)") %>%
write_ncdf("combined.nc")

Figure 6. R script to combine data cubes from three different data products. The construction of the
image collection is omitted here.
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Figure 7. Temporal subset of the combined data cube with NDVI measurements (left), average daytime
land surface temperature (K) during the last 30 days (center), and average daily precipitation (mm)
during the last 30 days (right).

3.2. Processing Sentinel-2 Time Series

In a second study case, we applied a time series analysis on a collection of 102 Sentinel-2 images.
The dataset covers the border region of Poland and Belarus, covering a total area of approximately
25,000 km2. The images have been recorded between March and November 2018 and come from
three different grid tiles and two different UTM zones. Images sum up to approximately 90 gigabytes
and are stored as original compressed ZIP archives, downloaded from the Copernicus Open Access
Hub [29]. Figure 8 shows the chain of data cube operations to detect permanent water bodies. We first
compute the normalized difference water index (NDWI) based on green and near infrared reflectance,
then simply classify all pixels with NDWI larger than or equal to zero as water (value 1), other pixels
as no water (value 0), and then derive the mean over all pixel time series, representing the proportion
of time instances where a pixel has been classified as water. In the last step, we set all pixels with value
less than or equal 0.1 to NA and export the resulting image as a netCDF file. Figure 9 illustrates the
study area and the results of the water detection on a low and high resolution in a map.

raster_cube(S2.col, v) %>%
select_bands(c("B03", "B08")) %>%
apply_pixel("(B03-B08)/(B03+B08)", names = "NDWI") %>%
apply_pixel("iif(NDWI >= 0, 1, 0)", names = "water") %>%
reduce_time("mean(water)") %>%
filter_predicate("water_mean > 0.1") %>%
write_ncdf(tempfile())

Figure 8. R script to detect permanent water bodies from a Sentinel-2 data cube.
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Figure 9. Result map from water detection in the second study case. The right part illustrates the
results at a high spatial resolution.

To evaluate how the implementation scales with the spatial resolution of the target data cube, we
vary the spatial resolution in the data cube view and measure computation times for executing the
code in Figure 8. At a fixed spatial resolution with pixels covering an area of 100 m × 100 m, we vary
the number of used CPUs.

Figure 10 (left) shows how the speedup changed if the number of pixels was reduced by a certain
factor. Reducing the number of pixels by a factor of 10,000, i.e., working with 1 km × 1 km pixel
size compared to 10 m × 10 m, reduced the computation times by a factor of approximately 100.
Although this may seem like a rather low effect, it means that we can process the whole dataset
within less than a minute on low resolution as opposed to approximately one hour at full resolution.
Computation times reduced consistently with an increasing number of CPUs (Figure 10). For example,
we have been able to process 7.61 times more pixels per second when using eight threads compared to
using a single thread.

1 10 100 1000

1
2

5
20

50

Pixel count reduction factor (log scale) 

S
pe

ed
up

 fa
ct

or
 (

lo
g 

sc
al

e)

0 5 10 15 20 25 30

50
0

10
00

15
00

Number of CPUs

C
om

pu
ta

tio
n 

tim
e 

(s
ec

on
ds

)

0 5 10 15 20 25 30

50
00

00
20

00
00

0

Number of CPUs

P
ix

el
s 

pe
r 

se
co

nd

Figure 10. Computational results for the second study case. The left plot shows the achieved speedup
factors depending on the reduction of pixels in the target data cube. For example, reducing the number
of pixels by a factor of 100 resulted in a speedup of around 20, compared to computation times with
a 10 m by 10 m spatial resolution. The center and right plots show computation times and pixel
throughput respectively as a function of the number of used CPUs.

4. Discussion

Today, data cubes are increasingly used as the basis for further analysis of large Earth observation
image time series. For the creation of data cubes from image collections, resampling and/or aggregation
in space and time is needed, in addition to image warping. As discussed below, the presented
approach does this on-the-fly and interfaces existing open source software to process Earth observation
data cubes.
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4.1. Interactive Analyses of Large EO Datasets

The case studies have demonstrated that on-demand raster data cubes, where users define the
shape of the target cube, allow the reduction of computation times and thus improve interactivity
in analyses of large satellite image collections. This approach is similar to Google Earth Engine in
that it only reads the pixels that are actually needed, as late as possible (lazy evaluation). However,
the magnitude of reduction in computation times depends on particular data products. In the example
of Sentinel-2 time series processing, gdalcubes makes use of provided image overviews or pyramids
when working on a coarse resolution cube view. In contrast, MODIS products do not include such
overviews and hence the full data must be read first, which reduces the gain in interactivity. In these
cases, users may need to reduce the area and temporal range of interest to yield acceptable computation
times. Under certain situations it might pay off to build overview images manually using the GDAL
implementation before using gdalcubes. This also becomes important in cloud environments, where
overviews may even reduce costs associated with data access or transfer.

There is currently quite some discussion about whether so-called analysis-ready data, which
are essentially data cubes, should be processed for large scale imagery (e.g., [5] and CEOS-ARD6)
in order to make these data usable for a larger community. As this creation is a very expensive
operation, we argue in line with [3] that it is hard to create data cubes with parameters that satisfy
every researcher, and that the on-the fly creation of data cubes retains maximum flexibility in this
respect. More research on quantifying the loss of statistical accuracy or power due to resampling and
working at lower-than-maximum resolutions is still needed.

4.2. Scalable and Distributed Processing in the Cloud

The examples shown here were executed on a local machine. Several days were needed to
download the data, whereas the time for processing in the case study was much lower. While this is
acceptable for medium-sized datasets, it becomes impossible for large scale, high resolution analyses.
The rational trend is to move computations to cloud platforms where the data is already available.
These include Amazon Web Services, the Google Cloud, and specialized EO data centers such as the
Copernicus DIASes. Since the gdalcubes implementation uses GDAL to read imagery, it can directly
access object storage from major cloud providers. Image collections then simply point to globally
unique object storage identifiers and hence image collection indexes can be shared. Furthermore,
though not yet available in the R package, the C++ implementation of gdalcubes comes with a
prototypical server application, providing a simple REST-like API to process specific chunks of a cube.
Running several of these gdalcubes worker instances in containerized cloud environments would
allow process distribution over many compute instances.

An interesting open question is how the image collection index performs with much larger
datasets. In the case studies with up to 34,000 images in a collection (global vegetation index data
from MODIS for 5 years), we could not see any performance decreases so far. The image collection
typically consumes a few kilobytes per image and images can be added incrementally. However,
since the underlying table structure in the SQLite database only uses one-dimensional indexes on
the spatial extent, acquisition time, and identifier of images, this might not scale well e.g., for the full
Sentinel-2 archive. Implementations with more advanced indexes as in the S2 Geometry Library7

might be needed in these cases.

6 http://ceos.org/ard
7 http://s2geometry.io

http://ceos.org/ard
http://s2geometry.io
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4.3. Interfaces to Other Software and Languages

The presented examples demonstrate how the gdalcubes library can be used in R. All data cube
operations, the construction of data cubes from files, and the export as netCDF files are however
implemented in C++. The R package is a thin software layer that makes the C++ library easily usable
for R users. Since other languages such as Python or Julia also allow one to interface the C++ code,
writing interfaces in these languages is feasible and relatively straightforward.

The data model to represent data cubes in memory is rather simple. A chunk is nothing more
than a one-dimensional contiguous double precision C++ vector with additional attributes storing
the dimensionality. As a result, it is also possible to interface and extend gdalcubes with linear
algebra, image processing (e.g., Orfeo ToolBox [30]), or other external libraries including the NumPy C
application programming interface [31].

The only other software systems we know of that can create regular data cubes from image
collections are GRASS GIS [21], Open Data Cube [11], and the (non-open source) Google Earth
Engine [3]. The open source library gdalcubes introduced here is a nice addition to these as it
is relatively easy to integrate in scripting languages such as R, Julia, or Python, and can work in
conjunction with software that can process data cubes such as GRASS GIS [32], R packages raster [16]
and stars [17], and Python packages numpy [33] and xarray [13]. At the moment, a more user-friendly
package to interface gdalcubes with the Python ecosystem is missing.

4.4. Limitations

The presented work focused on representing satellite imagery as raster data cubes and the
implementation always uses a four-dimensional array with two spatial, one temporal, and one band
dimension (see Definition 1). Hence, it is not directly applicable for higher dimensional data such
as climate model output with vertical space or in cases where it is useful to represent time as two
dimensions (e.g., year and day of year, or time of forecast and time to forecast). Furthermore, it currently
represents raster data cubes only. Fortunately, the existing R package stars [17] implements generic
multidimensional arrays, including support for rectilinear and curvilinear rasters and some first
attempts to bring together functionalities from both packages are currently in progress.

The case studies demonstrated that the speed-up effect of on-demand data cubes on interactivity
for lower resolution analyses strongly depends on particular datasets. One very important factor is
whether the data comes with image pyramids/overviews, as well as the data format. In this regard,
modern approaches such as the cloud-optimized GeoTIFF format with additional overviews seem
very promising.

Similar to Google Earth Engine [3], the gdalcubes library is not well suited to problems that are
hardly scalable and perform global analyses where results depend on distant pairs of pixels. There are
also some parameters like the selection of chunk size, which are not easy to automatically optimize.

5. Conclusions

This paper proposes an approach to the on-demand creation of raster data cubes and presents
an open source implementation in the gdalcubes library. It presents a generic solution to convert
and combine irregular satellite imagery to regular raster data cubes, thereby supporting interactive
incremental method development. This makes it easier for data users to exploit the potential of Earth
observation data cubes such as combining data from several sensors and satellites. The organization
of particular data products has a strong effect on speedups for computations on sub-sampled data.
As the library has been written in C++, interfaces to scripting languages like Python and Julia could
be developed easily; a gdalcubes R interface has been published on the Comprehensive R Archive
Network (CRAN).
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