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Abstract: The natural and semi-natural areas within cities provide important refuges for biodiversity,
as well as many benefits to people. To study urban ecology and quantify the benefits of urban
ecosystems, we need to understand the spatial extent and configuration of different types of vegetated
cover within a city. It is challenging to map urban ecosystems because they are typically small
and highly fragmented; thus requiring high resolution satellite images. This article describes a
new high-resolution map of land cover for the tropical city-state of Singapore. We used images
from WorldView and QuickBird satellites, and classified these images using random forest machine
learning and supplementary datasets into 12 terrestrial land classes. Close to 50 % of Singapore’s
land cover is vegetated while freshwater fills about 6 %, and the rest is bare or built up. The overall
accuracy of the map was 79 % and the class-specific errors are described in detail. Tropical regions
such as Singapore have a lot of cloud cover year-round, complicating the process of mapping using
satellite imagery. The land cover map provided here will have applications for urban biodiversity
studies, ecosystem service quantification, and natural capital assessment.

Dataset: Doi: 10.6084/m9.figshare.8267510

Dataset License: CC-BY 4.0
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1. Summary

Urbanization has progressed rapidly since the 20th Century, due to both urban population
growth and migration from rural areas. The increase in urban sprawl has altered the earth’s surface
dramatically [1], through deforestation and terrestrial ecosystem loss, and land reclamation from the
sea. The environmental changes brought by urbanization have substantially altered the ecology of the
areas affected [2]. Urban areas are very heterogeneous and incorporate various types of land cover
and land use within them. In particular, parks and roadside planting contain vegetation that hosts a
variety of wildlife [3]. Bluescapes, such as ponds and canals, can also contain a diversity of life [4].
Even within the most densely built-up urban landscapes, birds, insects, and mammals can be found [5].
Therefore, urban areas do have some ecological value attached to them. Furthermore, the ecosystems
within urban areas provide many benefits, or “ecosystem services” to humans that can improve urban
ecosystems and the quality of life of residents [6]. Examples of urban ecosystem services include
cooling the air [7], regulating flood risk [8], and providing spaces for recreation [9].

To study urban ecosystems across a city, they must first be mapped. High resolution satellite
images with finer than ten meters of precision can be useful in the studies of urban areas as these
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images allow us to distinguish interstitial vegetation growing in urban landscapes [10]. Some examples
of small patches of ecosystems found in urban areas are trees and shrubs growing by the road, patches
of turf, and rivers and canals flowing through the city. Satellite images with high resolution typically
sacrifice the breadth of coverage (in terms of swath width per run) and thus, several images are needed
to stitch together a map of a city [11]. Not only must the map show vegetated areas in a city, it should
also distinguish between different types of vegetation for ecosystem quantifications. For example, a
swamp forest is different in structure, function, and species composition compared to the vegetation
found in urban parks [12].

This study aims to produce a high resolution ecosystem map of Singapore updated to 2018.
The specific objectives of the study were to classify the imagery and evaluate the accuracy of the
classification. The resulting dataset indicates the current extent of terrestrial and freshwater ecosystems
in Singapore, providing a base layer to be used in future urban ecological research or quantification of
urban ecosystem services in the city.

2. Data Description

2.1. Data

The classified map of high resolution images of Singapore from 2003 to 2018 is shown in Figure 1.
The map has a maximum spatial resolution of 30 cm (as per the panchromatic resolution of WorldView-3).
The area of each map class is shown in Table 1. The total non-marine area classified was 742.22 km2, of
which 359.06 km2 (49 %) was covered by vegetation and 46.63 km2 (6 %) was covered with surface
freshwater features. The remaining area was unvegetated land; consisting of built-up impervious
surfaces of 284.10 km2 (38 %) and pervious surfaces of 53.00 km2 (7 %).Data 2019, 4, 116 3 of 11 

 

 
Figure 1. The classified map of Singapore made from satellite images taken from 2003 to 2018. 

Table 1. A list of map classes with their surface areas. 

Map Class Code Area (km2) 
Percentage of 
Land Area (%) 

Buildings 1 91.1 12.3 
Artificial impervious surfaces 2 193.0 26.0 

Non-vegetated pervious surfaces 3 53.0 7.1 
Vegetation with limited human management 

(with Tree Canopy) 
4 139.0 18.7 

Vegetation with limited human management 
(without Tree Canopy) 

5 14.1 1.9 

Vegetation with structure dominated by human 
management (with Tree Canopy) 

6 82.8 11.1 

Vegetation with structure dominated by human 
management (without Tree Canopy) 

7 112.5 15.1 

Freshwater swamp forest 8 2.2 0.3 
Freshwater marsh 9 0.4 0.1 
Mangrove forest 10 8.1 1.1 

Water courses 11 8.2 1.1 
Water bodies 12 38.4 5.2 

Marine 13 647.4 - 

The overall accuracy of the map was 79 % and the kappa coefficient was 77 %. A detailed 
confusion matrix of the accuracy assessment can be found in Table 2, in which the errors of 
classification to each map class can be identified. The lowest accuracy classification was that of 
freshwater marsh; this was most frequently misclassified as water bodies. The highest number of 
points were misclassified for managed vegetation without tree canopy cover, which was typically 
misclassified as unmanaged vegetation without tree canopy cover. This is not surprising given the 
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Table 1. A list of map classes with their surface areas.

Map Class Code Area (km2) Percentage of Land Area (%)

Buildings 1 91.1 12.3
Artificial impervious surfaces 2 193.0 26.0

Non-vegetated pervious surfaces 3 53.0 7.1
Vegetation with limited human management

(with Tree Canopy) 4 139.0 18.7

Vegetation with limited human management
(without Tree Canopy) 5 14.1 1.9

Vegetation with structure dominated by human
management (with Tree Canopy) 6 82.8 11.1

Vegetation with structure dominated by human
management (without Tree Canopy) 7 112.5 15.1

Freshwater swamp forest 8 2.2 0.3
Freshwater marsh 9 0.4 0.1
Mangrove forest 10 8.1 1.1

Water courses 11 8.2 1.1
Water bodies 12 38.4 5.2

Marine 13 647.4 -

2.2. Accuracy Assessment

To validate the accuracy of the map produced, random points were generated across the study
area to act as validation points. A stratified sample of 80 points per map class was conducted to
ensure representativeness of the accuracy assessment. The exceptions to this number were for the
freshwater swamp forest and marsh classes where owing to the small area of these ecosystems in
Singapore [12], the number of validation points was 40 each instead. Each validation point was visually
inspected by an expert using the original satellite imagery, both in true colour and false-coloured
infrared. The validation points were compared to the map’s classes using the sample tool and the
Cohen’s kappa coefficient statistic and percentage accuracy was calculated to quantify the level of
agreement between the map classification and validation sample.

The overall accuracy of the map was 79 % and the kappa coefficient was 77 %. A detailed confusion
matrix of the accuracy assessment can be found in Table 2, in which the errors of classification to each
map class can be identified. The lowest accuracy classification was that of freshwater marsh; this was
most frequently misclassified as water bodies. The highest number of points were misclassified for
managed vegetation without tree canopy cover, which was typically misclassified as unmanaged
vegetation without tree canopy cover. This is not surprising given the similar taxonomic composition
and hence spectral signatures of unmanaged scrub and grass, and managed shrub and turf [13].

The accuracy of the map is comparable with similar studies that classified the land cover of high
resolution satellite imagery [14,15]. This study uses 12 land cover classes. When classifying between a
larger number of classes, the likelihood of the errors typically increases because the spectral differences
between the classes are smaller. Misclassification was most often between classes that are structurally
and ecologically very similar, and that cover small areas of Singapore. For example, the class that
showed the greatest class error was vegetation with limited human management and no tree canopy
(Table 2). This class covers less than 2 % of Singapore’s area, and furthermore was predominately
misclassified as vegetation dominated by human management with no tree canopy; a categorization
that is functionally very similar in terms of its ecology. The classes with less than 70 % accuracies
together occupy less than 10 % of the area (Tables 1 and 2).
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Table 2. The confusion matrix for this map’s accuracy assessment. The acronyms used in this table are:
UA for user accuracy; PA for producer accuracy; CE for commission errors; and OE for omission errors.

1 2 3 4 5 6 7 8 9 10 11 12 Total UA CE

1 71 4 2 77 92% 8%
2 8 68 16 3 1 8 104 65% 35%
3 7 53 4 1 65 82% 18%
4 3 78 3 5 1 1 1 92 85% 15%
5 1 18 19 95% 5%
6 1 3 6 65 1 1 77 84% 16%
7 1 2 46 8 80 137 58% 42%
8 1 36 6 43 84% 16%
9 7 7 100% 0%
10 63 2 65 97% 3%
11 3 26 9 77 2 117 66% 34%
12 1 76 77 99% 1%

Total 80 80 80 80 80 80 80 40 40 80 80 80 880
PA 89% 85% 66% 98% 23% 81% 100% 90% 18% 79% 96% 95% Overall 79%
OE 11% 15% 34% 3% 78% 19% 0% 10% 83% 21% 4% 5% Kappa 77%

2.3. Data in Perspective

There are many different types of map that can be derived from satellite imagery. This map
does not describe land use, but represents ecologically-relevant classes of vegetation and water cover
that are intended for use in ecological studies. The classes therefore represent contrasting types of
ecosystems that may be expected to have different ecological values. This map is building on the works
of references [12,16] that investigate the changing physical landscape of Singapore.

Many users of the map will be interested in broad-scale patterns of vegetation cover in Singapore,
so will find their analyses robust to the classification errors reported here. Users interested in particular
types of ecosystem should be aware of the uncertainties involved in the classification (Table 2), and
may find the dataset unsuitable for studies of some categories (e.g., vegetation with limited human
management and without a tree canopy).

3. Methods

This section details the steps in processing satellite imagery of Singapore into a land cover map for
natural capital assessment. For the purposes of this study, only the terrestrial, freshwater environments
of Singapore will be mapped in detail, while the marine environment that is underwater will be classed
as just ‘Marine’. The exception is the mangrove forests, which cross the coastal boundary but generally
have at least a part of the vegetation above the water at all times [17]. The classification uses a hybrid
approach; first conducting a supervised machine learning to classify broad land cover types, before
adding more detailed sub-classes using secondary sources of spatial data.

Singapore is a city-state located in the tropics with its central point at latitude 1.21◦ N and
longitude 103.49◦ E. The land area of Singapore measures 724.20 km2 [18] that consists of one main
island and many smaller islands within its territorial boundary. Singapore’s location near the equator
means that satellite images are frequently obstructed by cloud cover due to convection of water vapour
in the atmosphere [19]. Hence, it is difficult to find a single cloud-free satellite image of the entire
island. Therefore, multiple satellite images acquired over a period of time are needed to provide
island-wide coverage. Although the country is highly urbanized, there are many pockets of green
spaces in between buildings and tree-lined road networks. Major green spaces in the country are at the
Western and Central portions of the main island, and Pulau Ubin and Pulau Tekong in the northeast.
As with high-density urban areas around the world, Singapore’s urban form is highly heterogeneous,
incorporating industrial commercial and residential land use zones, with a mix of high- and low-rise
buildings [20].
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3.1. Data Acquisition

High resolution images of Singapore were downloaded from DigitalGlobe’s ‘Discover’ online
search tool (no longer available due to DigitalGlobe’s merger with Maxar). Multiple images were
needed (Figure 2 and Table 3) since the swath widths of the WorldView 2 and 3 satellite sensors do
not span the entire island. Further, cloud cover obscures parts of all the images. WorldView 2 and 3
capture eight multispectral bands between 400 to 1040 nm (Table 3). The images were taken between
2010 to 2018 by the space-borne WorldView 2 and 3 sensors that have multispectral spatial resolutions
of 2.0 and 1.2 m, respectively, and panchromatic spatial resolutions of 0.3 and 0.5 m. Additionally, one
image from QuickBird was used to patch an area of cloud cover in the north (Figure 2). The QuickBird
image was taken on October 2003; it has a multispectral spatial resolution of 2.5 m and a panchromatic
spatial resolution of 0.6 m.Data 2019, 4, 116 6 of 11 
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Table 3. Information of the satellite imagery classified in this study sorted by acquisition date.

Sensor Image ID Date Time (GMT+8) Wavelength (nm) Coverage (%)

WorldView-3 308 18 Feb 18 1138 h 400–1040 0.17
WorldView-3 302 10 Feb 18 1158 h 400–1040 31.07
WorldView-3 305 10 Feb 18 1157 h 400–1040 19.99
WorldView-3 307 10 Feb 18 1158 h 400–1040 7.38
WorldView-3 306 15 Nov 17 1106 h 400–1040 9.56
WorldView-3 301 5 May 17 1152 h 400–1040 11.97
WorldView-3 304 12 Nov 16 1145 h 400–1040 1.88
WorldView-3 303 29 Jun 16 1141 h 400–1040 1.18
WorldView-2 208 19 Apr 15 1136 h 400–1040 1.00
WorldView-2 203 23 Mar 15 1134 h 400–1040 0.01
WorldView-2 207 23 Mar 15 1133 h 400–1040 0.67
WorldView-2 206 17 Jan 15 1133 h 400–1040 1.97
WorldView-2 201 14 Jun 12 1143 h 400–1040 0.27
WorldView-2 202 18 Jul 11 1149 h 400–1040 0.26
WorldView-2 204 8 Apr 11 1143 h 400–1040 0.11
WorldView-2 205 19 Nov 10 1138 h 400–1040 0.11

QuickBird 901 16 Oct 03 1115 h 450–900 0.17
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3.2. Image Pre-Processing

The image pre-processing described in this section was done in ArcGIS Desktop 10.5 [21].
To prepare the images for classification, areas obscured by clouds were removed by visual inspection.
Polygons were drawn around cloudy areas and their shadows as the reflectance in the latter areas
are affected by cloud-obscurity. The polygons were then clipped from the image and reflectance
corrected with the apparent reflectance function from the image analysis tool [22]. There was a total of
17 different images taken from different dates to classify.

3.3. Image Classification

A summary of the object based image classification detailed in this section is presented in Figure 3.
To classify high resolution imagery, an object-based approach was used instead of a pixel-based
classification technique, to avoid ‘salt and pepper’ effects on the resultant map [23]. To segment
images into objects, a means-shift approach was applied using the segment means-shift function [24]
in ArcGIS. In the parameters of the function, spectral and spatial details were both given maximum
importance (set as 20.0 and 1.0, respectively) to discriminate as best as the function can between
features in the landscape, for example, trees and grass [25]. The spectral detail setting was used
in means-shift segmentation to discriminate objects based on spectral signatures [25]. The spatial
detail setting was used to discriminate objects based on the shape of the features to produce sharper
segments, like buildings and roads within impervious surfaces [25]. A minimum mapping unit of
300 pixels (approximately 5 m2) was set to save on processing time and storage space. Since the
function can only read three bands in a composite raster to be segmented, the multispectral bands
of near infrared (760–900 nm), red (630–690 nm), and green (510–600 nm) were used to focus on
discriminating vegetation features. The segmentation produced 25,882,810 objects in the study area
that were visually checked to ensure that they enveloped a meaningful object (e.g., building outlines,
jetties, and grass patches).

Next, the data from the multispectral satellite image bands were added as attributes to each
object to be classified. The zonal statistics function was used to calculate the median of each of the
multispectral band pixel values from all pixels within the objects created. Eight multispectral bands
were available for the WorldView images [26], while four were available for the QuickBird images [27].
The objects were exported to R statistical software 3.5.3 [28].

Five broad-level land and water cover types were initially classified using a supervised method
using a random forest algorithm 4.6 [29]. The classes were impervious surfaces; pervious bare surfaces;
trees; grass; water. Shadows cast by tall buildings and trees were also classified as a separate class.
A separate random forest classification was conducted for each image individually. To train the random
forest classifier, at least 150 objects were visually selected for each class by hand on ArcGIS Desktop.
Hence each image would have at least 900 training points. The random forests were built with 500 trees
with two variables tried at each split [29]. The out-of-box (OOB) estimates of error rate were all less
than 10% for each image classified. The 17 classified images were then mosaicked together starting
with the earliest image (Image 901) in ascending date order (Table 3) with the most recent imagery
replacing areas of overlap.

The precision of land cover was further refined into land use classes with data inputs from other
sources. Shadows were first dealt with using the zonal statistics to estimate which of the five preceding
land cover classes lie in it. The remaining patches of shadows that were not fixed were re-classified
manually based on cross referencing to Google Earth Images (that are also high resolution) and local
knowledge of the area. Impervious surfaces were refined into buildings with building footprint
information downloaded from OpenStreetMap [30]. Areas of vegetation were also divided between
managed and unmanaged vegetation by manually digitizing 2014 SPOT5 satellite image of Singapore
based on ground-truthing and a previous lower-resolution vegetation map of Singapore [12]. Vegetated
areas that intersected with swamp and marsh classes from the aforementioned map of Singapore [12]
were reclassified as these classes accordingly. Inland freshwater ecosystems were manually reclassified
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into water courses (rivers, canals, drains) and water bodies (lakes, reservoirs, swimming pools) based
on knowledge of the freshwater network [31].

Finally, the map was error-checked and manually corrected with on screen digitization and
rectification of errors in classification. This was done systematically with a regular grid laid out across
the study area with a size of 1990 m by 1200 m. The map classification within every one of the 649 grids
was manually checked for classification errors at a map scale of 1:5500. The erroneous raster pixels
were edited using the raster painting [32] tool in ArcGIS to selectively convert misclassified raster
pixels to the correct ones.
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Figure 3. A flowchart of classifying high resolution satellite imagery into the land cover map. The image
sample was taken from a WorldView 3 image (ID 301).

4. User Notes

The image segmentation applied a minimum mapping unit of 300 pixels, approximately 5 m2.
This translates approximately to the size of a tree canopy. Nonetheless, no restraints were imposed
on the configurations to the 300 pixels that made an object and thus, 300 pixels were not always
square in configuration but may represent a row of shrubs or hedges. This minimum mapping unit
threshold may cause vegetated sections smaller than 300 pixels (such as small trees or shrubs) to be
neglected. While urban vegetation patches are small and heterogeneous, most vegetated areas are
nonetheless larger than 5 m2 and are thus discernible using this approach. Furthermore, it would be
too computationally intensive to decrease the minimum mapping unit; the current analysis took two
weeks to conduct the segmentation using a high-spec desktop PC (four cores and 16 GB of RAM),
further computational time would be required to add data values to each segment.

With mapping of the earth’s surface at such high spatial resolution, errors of accuracy and precision
are bound to occur. For maps derived from remote sensing, accuracy assessments are integral to data
reporting [33]. This study has adopted Congalton’s and Green’s [34] rules of thumb for such accuracy
assessments where at least 30 validation points were sampled per map class. Their works focused
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largely on global land cover maps where accuracy depends on many factors including number of
classes, quality of remotely sensed data and validation techniques, and classification methods [34]. In a
city-scale study by Myint and colleagues [35], 100 points per class (similar to 80 points per class in this
study) were used to evaluate the accuracy of different classification methods. The accuracy assessed
in this study is comparable to other studies using high resolution imagery (75 % to 86 % [36]), and
similar to a previous map of Singapore’s vegetation types [12]. The accuracy reported in the previous
Singapore mapping study was slightly higher; 86 % to 90 % with a Kappa coefficient of 79 % to 86 %,
but this is likely due to the lower number of classes used (five compared to 13 in this study) [12].

The satellite composite used to build the map was captured over a period of eight years, except
Image 901 that was captured 15 years before the latest image. In rapidly-changing areas like cities,
this can cause mismatches between the classification in overlapping areas, and cause artefacts where
two images are composited across an area that changed between the two dates; such as areas that were
under construction (pervious unvegetated) and were later built (impervious vegetated). Furthermore,
because Singapore is located near the equator where cloud cover constantly obscures satellite imagery,
images taken at different dates and times are necessary to build a cloud free map of the entire
country [19].

A further issue in an urban setting is caused by tall buildings obscuring shorter objects below.
Images from satellite imagery are rarely taken at nadir and tall buildings blocks the view of objects at
ground level such as trees, shrubs, and roads [37]. Such building “shadows” also conceal objects below.
This is an issue in high-rise parts of Singapore, especially in the central business district where the
tallest buildings are in close proximity. Orthorectification was not possible in this study due to the lack
of overlapping imagery that was also free of clouds.

Author Contributions: Conceptualization, D.R. and L.G.; methodology, D.R. and L.G.; validation, L.G. and A.Y.;
formal analysis, D.R. and L.G.; resources, D.R. and A.Y.; data curation, L.G. and A.Y.; writing—original draft
preparation, L.G. and D.R.; writing—review and editing, D.R., L.G. and A.Y.; visualization, L.G.; supervision,
D.R.; project administration, D.R.; funding acquisition, D.R.

Funding: This research is supported by the National Research Foundation, Prime Minister’s Office, Singapore under
its Campus for Research Excellence and Technological Enterprise (CREATE) Programme (NRF2016-ITC001-013).

Acknowledgments: High resolution satellite imagery was provided courtesy of the DigitalGlobe Foundation
(www.digitalglobefoundation.org). A.Y. would like to thank Ting Ying Ying and Gabriel Lim for their assistance
in digitising the managed vegetation areas.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion.
PLoS ONE 2011, 6, e23777. [CrossRef]

2. Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and
the Ecology of Cities. Science 2008, 319, 756–760. [CrossRef]

3. Song, X.P.; Tan, P.Y.; Edwards, P.; Richards, D. The economic benefits and costs of trees in urban forest
stewardship: A systematic review. Urban For. Urban Green. 2018, 29, 162–170. [CrossRef]

4. Hoellein, T.; Rojas, M.; Pink, A.; Gasior, J.; Kelly, J. Anthropogenic Litter in Urban Freshwater Ecosystems:
Distribution and Microbial Interactions. PLoS ONE 2014, 9, e98485. [CrossRef]

5. Freeman, C. Geographic information systems and the conservation of urban biodiversity. Urban Policy Res.
1999, 17, 51–60. [CrossRef]

6. Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [CrossRef]
7. Jenerette, G.D.; Harlan, S.L.; Stefanov, W.L.; Martin, C.A. Ecosystem services and urban heat riskscape

moderation: Water, green spaces, and social inequality in Phoenix, USA. Ecol. Appl. 2011, 21, 2637–2651.
[CrossRef]

8. Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature
based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610–611,
997–1009. [CrossRef]

www.digitalglobefoundation.org
http://dx.doi.org/10.1371/journal.pone.0023777
http://dx.doi.org/10.1126/science.1150195
http://dx.doi.org/10.1016/j.ufug.2017.11.017
http://dx.doi.org/10.1371/journal.pone.0098485
http://dx.doi.org/10.1080/08111149908727790
http://dx.doi.org/10.1016/S0921-8009(99)00013-0
http://dx.doi.org/10.1890/10-1493.1
http://dx.doi.org/10.1016/j.scitotenv.2017.08.077


Data 2019, 4, 116 9 of 10

9. Thiagarajah, J.; Wong, S.K.M.; Richards, D.R.; Friess, D.A. Historical and contemporary cultural ecosystem
service values in the rapidly urbanizing city state of Singapore. Ambio 2015, 44, 666–677. [CrossRef]

10. Li, D.; Ke, Y.; Gong, H.; Li, X. Object-Based Urban Tree Species Classification Using Bi-Temporal WorldView-2
and WorldView-3 Images. Remote Sens. 2015, 7, 16917–16937. [CrossRef]

11. Busetto, L.; Meroni, M.; Colombo, R. Combining medium and coarse spatial resolution satellite data to
improve the estimation of sub-pixel NDVI time series. Remote Sens. Environ. 2008, 112, 118–131. [CrossRef]

12. Yee, A.T.K.; Corlett, R.T.; Liew, S.C.; Tan, H.T.W. The vegetation of Singapore—An updated map. Gard. Bull.
Singap. 2011, 63, 205–212.

13. Fuller, R.M.; Groom, G.B.; Jones, A.R. The land-cover map of great Britain: An automated classification of
landsat thematic mapper data. Photogramm. Eng. Remote. Sens. 1994, 60, 553–562.

14. Liu, X.; He, J.; Yao, Y.; Zhang, J.; Liang, H.; Wang, H.; Hong, Y. Classifying urban land use by integrating
remote sensing and social media data. Int. J. Geogr. Inf. Sci. 2017, 31, 1675–1696. [CrossRef]

15. Randall, M.; Fensholt, R.; Zhang, Y.; Bergen Jensen, M. Geographic Object Based Image Analysis of
WorldView-3 Imagery for Urban Hydrologic Modelling at the Catchment Scale. Water 2019, 11, 1133.
[CrossRef]

16. Yee, A.T.K.; Chong, K.Y.; Neo, L.; Tan, H.T.W. Updating the classification system for the secondary forests of
Singapore. Raffles Bull. Zool. 2016, 32, 11–21.

17. Lovelock, C.E.; Cahoon, D.R.; Friess, D.A.; Guntenspergen, G.R.; Krauss, K.W.; Reef, R.; Rogers, K.;
Saunders, M.L.; Sidik, F.; Swales, A.; et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise.
Nature 2015, 526, 559–563. [CrossRef]

18. Singapore Land Authority (SLA). Total Land Area of Singapore. Available online: https://data.gov.sg/dataset/
total-land-area-of-singapore (accessed on 24 April 2019).

19. Asner, G.P. Cloud cover in Landsat observations of the Brazilian Amazon. Int. J. Remote Sens. 2001,
22, 3855–3862. [CrossRef]

20. Tan, P.Y.; Wang, J.; Sia, A. Perspectives on five decades of the urban greening of Singapore. Cities 2013,
32, 24–32. [CrossRef]

21. Environmental Systems Research Institute (ESRI). ArcGIS Release 10.5; Environmental Systems Research
Institute (ESRI): Redlands, CA, USA, 2016.

22. Environmental Systems Research Institute (ESRI). Apparent Reflectance Function. Available online:
http://desktop.arcgis.com/en/arcmap/10.5/manage-data/raster-and-images/apparent-reflectance-function.htm
(accessed on 2 May 2019).

23. Liu, D.; Xia, F. Assessing object-based classification: Advantages and limitations. Remote Sens. Lett. 2010,
1, 187–194. [CrossRef]

24. Environmental Systems Research Institute (ESRI). Segment Mean Shift Function. Available online: http://desktop.
arcgis.com/en/arcmap/10.5/manage-data/raster-and-images/segment-mean-shift-function.htm (accessed on 24
April 2019).

25. Butler, K. Pass the Classification but Hold the Salt and Pepper. Available online: https://www.esri.com/

arcgis-blog/products/product/national-government/pass-the-classification-but-hold-the-salt-and-pepper/
(accessed on 17 July 2019).

26. DigitalGlobe. WorldView-3 Data Sheet. Available online: http://satimagingcorp.s3.amazonaws.com/site/pdf/
WorldView3-DS-WV3-Web.pdf (accessed on 17 July 2019).

27. Satellite Imaging Corporation. QuickBird Imagery Products FAQ. Available online: http://satimagingcorp.s3.
amazonaws.com/site/pdf/quickbird_imagery_products.pdf (accessed on 17 July 2019).

28. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2014.

29. Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22.
30. OpenStreetMap. OpenStreetMap of Singapore. Available online: https://www.openstreetmap.org/search?

query=singapore#map=12/1.2905/103.8520 (accessed on 5 April 2018).
31. Public Utilities Board (PUB). Drainage Network. Available online: https://www.pub.gov.sg/drainage/network

(accessed on 24 April 2019).
32. Environmental Systems Research Institute (ESRI). About Using the Raster Painting Tools. Available

online: http://desktop.arcgis.com/en/arcmap/10.5/extensions/arcscan/using-the-raster-painting-tools-about-
using-the-ra.htm (accessed on 24 April 2019).

http://dx.doi.org/10.1007/s13280-015-0647-7
http://dx.doi.org/10.3390/rs71215861
http://dx.doi.org/10.1016/j.rse.2007.04.004
http://dx.doi.org/10.1080/13658816.2017.1324976
http://dx.doi.org/10.3390/w11061133
http://dx.doi.org/10.1038/nature15538
https://data.gov.sg/dataset/total-land-area-of-singapore
https://data.gov.sg/dataset/total-land-area-of-singapore
http://dx.doi.org/10.1080/01431160010006926
http://dx.doi.org/10.1016/j.cities.2013.02.001
http://desktop.arcgis.com/en/arcmap/10.5/manage-data/raster-and-images/apparent-reflectance-function.htm
http://dx.doi.org/10.1080/01431161003743173
http://desktop.arcgis.com/en/arcmap/10.5/manage-data/raster-and-images/segment-mean-shift-function.htm
http://desktop.arcgis.com/en/arcmap/10.5/manage-data/raster-and-images/segment-mean-shift-function.htm
https://www.esri.com/arcgis-blog/products/product/national-government/pass-the-classification-but-hold-the-salt-and-pepper/
https://www.esri.com/arcgis-blog/products/product/national-government/pass-the-classification-but-hold-the-salt-and-pepper/
http://satimagingcorp.s3.amazonaws.com/site/pdf/WorldView3-DS-WV3-Web.pdf
http://satimagingcorp.s3.amazonaws.com/site/pdf/WorldView3-DS-WV3-Web.pdf
http://satimagingcorp.s3.amazonaws.com/site/pdf/quickbird_imagery_products.pdf
http://satimagingcorp.s3.amazonaws.com/site/pdf/quickbird_imagery_products.pdf
https://www.openstreetmap.org/search?query=singapore#map=12/ 1.2905/103.8520
https://www.openstreetmap.org/search?query=singapore#map=12/ 1.2905/103.8520
https://www.pub.gov.sg/drainage/network
http://desktop.arcgis.com/en/arcmap/10.5/extensions/arcscan/using-the-raster-painting-tools-about-using-the-ra.htm
http://desktop.arcgis.com/en/arcmap/10.5/extensions/arcscan/using-the-raster-painting-tools-about-using-the-ra.htm


Data 2019, 4, 116 10 of 10

33. Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens.
Environ. 1991, 37, 35–46. [CrossRef]

34. Congalton, R.G.; Green, K. Sample Design Considerations. In Assessing the Accuracy of Remotely Sensed Data:
Principles and Practices, 2nd ed.; CRC Press: New York, NY, USA, 2009; pp. 63–103.

35. Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of
urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161.
[CrossRef]

36. Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image
classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [CrossRef]

37. Zhang, W.; Li, W.; Zhang, C.; Hanink, D.M.; Li, X.; Wang, W. Parcel-based urban land use classification in
megacity using airborne LiDAR, high resolution orthoimagery, and Google Street View. Comput. Environ.
Urban Syst. 2017, 64, 215–228. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0034-4257(91)90048-B
http://dx.doi.org/10.1016/j.rse.2010.12.017
http://dx.doi.org/10.1016/j.isprsjprs.2017.06.001
http://dx.doi.org/10.1016/j.compenvurbsys.2017.03.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Summary 
	Data Description 
	Data 
	Accuracy Assessment 
	Data in Perspective 

	Methods 
	Data Acquisition 
	Image Pre-Processing 
	Image Classification 

	User Notes 
	References

