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Abstract: We describe a new multi-temporal classification for forest/non-forest classes for a 1.3
million square kilometer area encompassing the Xingu River basin, Brazil. This region is well known
for its exceptionally high biodiversity, especially in terms of the ichthyofauna, with approximately
600 known species, 10% of which are endemic to the river basin. Global and regional scale datasets
do not adequately capture the rapidly changing land cover in this region. Accurate forest cover and
forest cover change data are important for understanding the anthropogenic pressures on the aquatic
ecosystems. We developed the new classifications with a minimum mapping unit of 0.8 ha from cloud
free mosaics of Landsat TM5 and OLI 8 imagery in Google Earth Engine using a classification and
regression tree (CART) aided by field photographs for the selection of training and validation points.

Keywords: Landsat imagery; land cover change; deforestation; biodiversity; conservation;
Xingu river basin

1. Summary

Ongoing deforestation in the tropics is a well-known threat to biodiversity [1–3]. Species with
restricted ranges are particularly at risk of extinction from habitat loss [4]. Global- and regional-scale
maps developed to analyze large-scale trends (e.g., [5–8]) do not necessarily capture the small-scale
changes experienced by restricted range species. Therefore, these areas require the development of
detailed land cover datasets that allow for a better understanding of historical and current environmental
threats (e.g., deforestation, mining, etc.).

In addition to their high biodiversity, Amazonian forests are also important contributors to drivers
of global atmospheric circulation [9] and climate change mitigation [10]. The Xingu River basin
encompasses the fourth largest catchment area of the Amazon. It is known for its high fish biodiversity,
with an estimated 600 species, 10% of them endemic to this river basin with many remaining to be
described [11–14]. Several ethnic groups inhabit a mosaic of indigenous lands in a large part of the
basin, contributing greatly to a slower rate of deforestation than is seen in unprotected Xingu basin
headwaters [15–17]. The health of the riparian ecosystems is linked to changes in the overall forest
cover and has a direct impact the unique fish biota [18]. In order to assess the rapid changes that
the Xingu River basin has experienced over the last four decades, we developed a forest/non-forest
classification system for four time periods from 1989 to 2018 as a case study applicable elsewhere in
the tropics. These datasets were produced from cloud free surface reflectance mosaics of Landsat
TM5 and Landsat 8-OLI images, classified with a classification and regression tree (CART) in Google
Earth Engine.
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2. Data Description

The four classifications are available for download in Geotiff format (30 m pixel size) (Figure 1).
Each classification is in a geographic projection (latitude/longitude) with WGS84 datum. Pixels represent
one of three classes: forest (1), water (2), or non-forest (3). Our definition of forest is “areas with
approximately greater than 30% tree canopy cover”, which is consistent with the Brazilian definition [19].
The implementation of this definition was based on approximately 3000 field photographs (see Section 3).
The non-forest class encompasses all land covers and land uses that are not considered forest or open
water. The water class represents exposed surface water.
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Figure 1. Four classifications of forest cover for the Xingu river basin for (a) circa 1989, (b) circa 2000, 
(c) circa 2010, and (d) circa 2018 from Landsat TM5 and OLI 8 imagery. Boundaries of states, larger 
rivers, and landmarks including cities and the Jericoá rapids are shown for reference. 
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through Google Earth Engine (Table 1). Clouds and cloud shadows were masked using the pixel QA 
bands to create a cloud free composite of the median surface reflectance for each reference period. In 
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and an unnamed settlement near the river’s natural diversion to the west, above the entrance to the 
Volta Grande, where the river drains from the Brazilian shield to the Amazonian lowlands. In the 
south, photographs were taken along primary roads and rivers (Culuene, Suiá Missu, Darro, Curuá) 
in an area bounded by Canarana (SE), Sorriso (SW), Castelo do Sonhos (NW), and halfway 
downstream the Suiá Missu towards its confluence with the Xingu River (NE). The photographs 
allowed for an understanding of the landscape from the satellite imagery in order to improve 

Figure 1. Four classifications of forest cover for the Xingu river basin for (a) circa 1989, (b) circa 2000,
(c) circa 2010, and (d) circa 2018 from Landsat TM5 and OLI 8 imagery. Boundaries of states, larger
rivers, and landmarks including cities and the Jericoá rapids are shown for reference.

3. Methods

The forest cover classifications were created for a 1.3M km2 area encompassing the Xingu River
basin, Brazil, representing circa 1989, 2000, 2010, and 2018 from Landsat imagery (TM5 and OLI 8)
(Table 1). The area crosses the borders of five states: Pará, Mato Grosso, Amazonas, Tocantins, and Goiás
(Figure 1). The USGS Landsat Surface Reflectance Tier 1 imagery collection was queried through
Google Earth Engine (Table 1). Clouds and cloud shadows were masked using the pixel QA bands to
create a cloud free composite of the median surface reflectance for each reference period. In order to
achieve cloud free composites for such a large area in the tropics which is prone to persistent cloud
cover, the composites represent periods spanning 1985–1989, 1995–2000, 2005–2010, and 2017–2018.
A classification and regression tree (CART) [20] was trained in Google Earth Engine for each mosaic,
based on user-generated points split 70/30 for training and validation.

For the most recent mosaic, the training and validations points were selected based on photographs
taken during four field expeditions in 2015–2018. The photographs were taken along the Xingu River
(by boat) from Vitória do Xingu, north of São Félix do Xingu (400 km straight line distance to the
south) (Figure 2). Additional photographs were taken along the PA-415 road between Altamira and
Vitória do Xingu and along the BR 230 (Transamazônica) highway between Altamira and an unnamed
settlement near the river’s natural diversion to the west, above the entrance to the Volta Grande,
where the river drains from the Brazilian shield to the Amazonian lowlands. In the south, photographs
were taken along primary roads and rivers (Culuene, Suiá Missu, Darro, Curuá) in an area bounded
by Canarana (SE), Sorriso (SW), Castelo do Sonhos (NW), and halfway downstream the Suiá Missu
towards its confluence with the Xingu River (NE). The photographs allowed for an understanding of
the landscape from the satellite imagery in order to improve differentiation between the forest and
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non-forest classes. Based on the landscape in the most recent imagery, these photographs were also
used to visualize interpretations of the previous years’ mosaics for the manual selection of training
points and validation points.

Table 1. Landsat image collections used for the classifications through Google Earth Engine.

Period Image Collection

1985–1989 LANDSAT/LT05/C01/T1_SR
1995–2000 LANDSAT/LT05/C01/T1_SR
2005–2010 LANDSAT/LT05/C01/T1_SR
2017–2018 LANDSAT/LC08/C01/T1_SR

After classification, a minimum mapping unit (MMU) of 90 m × 90 m (0.8 ha) was applied.
Based on the field expeditions, this MMU is reasonable for capturing the majority of the forest
fragments in the region. First, a standard sieve routine was applied in ENVI 5.2 to remove isolated
pixels. Only pixel groupings of six or more were retained, followed by a clump routine to improve
the spatial coherence (e.g., fill in the holes left by the sieve operation). With a kernel of 3 × 3 pixels,
the routine first performs a dilation, followed by an erosion. The end result is a clumping of adjacent
similarly classified pixels.

Confusion matrices for the four datasets (Tables 2–5) indicate a high accuracy for all three classes.
The ground truth data allowed for selecting training points that represent the expected variability
of the classes (Figure 2). Nevertheless, these confusion matrices represent the maximum accuracy,
and with additional ground truth data, classification errors may be found in areas with rapid land
cover change (e.g., secondary growth in abandoned clearings).

Table 2. Confusion matrix for the forest cover classification (around 1989). Sample size for training = 413.

Classification
Reference

Forest Non-forest Water

Forest 56 2 0
Non-forest 0 66 0

Water 0 1 52

Table 3. Confusion matrix for the forest cover classification (around 2000). Sample size for training = 390.

Classification
Reference

Forest Non-forest Water

Forest 53 0 0
Non-forest 2 60 0

Water 0 0 52

Table 4. Confusion matrix for the forest cover classification (around 2010). Sample size for training = 415.

Classification
Reference

Forest Non-forest Water

Forest 57 1 0
Non-forest 4 63 0

Water 0 1 52

Table 5. Confusion matrix for the forest cover classification (around 2018). Sample size for training = 583.

Classification
Reference

Forest Non-forest Water

Forest 62 5 0
Non-forest 0 81 0

Water 0 0 58
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Southern sector (south of Castelo do Sonhos). 1: clearing of Arapujá Island across from Altamira*, 2: 
partially deciduous forest, sandy beach, and rocks*, 3: large patch of cleared forest*, 4: intact forest*, 
5: homestead in Amazonia lowlands*, 6: small settlement*, 7: small household*, 8: larger settlement*, 
9: large-scale deforestation*, 10: deforestation with secondary growth*, 11: large-scale deforestation*, 
12: burned land prior to deforestation*, 13: homestead*, 14: large-scale deforestation*, 15: large-scale 
deforestation*, 16: aerial view north from the Jericoá rapids*, 17: aerial view from the Xadá rapids 
with deforestation on the unprotected side*, 18: aerial view of intact forest in protected area*, 19: aerial 
view of intact forest at the Iriri rapids*, 20: small-scale clearing at the Jericoá rapids*, 21: intact forest 
along the Culuene river**, 22: exposed soil for agriculture**, 23: cattle herd**, 24: Belo Monte dam*, 
25: isolated forest patch in corn field**, 26: large corn field**, 27: plantation**, 28: extensive pasture 

Figure 2. Examples of field photographs used to train the visual interpretation of the imagery
for selecting classification and regression tree (CART) classification training and validation points.
* indicates the Northern zone between Vitória do Xingu and Sao Felix do Xingu, ** indicates the
Southern sector (south of Castelo do Sonhos). 1: clearing of Arapujá Island across from Altamira*,
2: partially deciduous forest, sandy beach, and rocks*, 3: large patch of cleared forest*, 4: intact forest*,
5: homestead in Amazonia lowlands*, 6: small settlement*, 7: small household*, 8: larger settlement*,
9: large-scale deforestation*, 10: deforestation with secondary growth*, 11: large-scale deforestation*,
12: burned land prior to deforestation*, 13: homestead*, 14: large-scale deforestation*, 15: large-scale
deforestation*, 16: aerial view north from the Jericoá rapids*, 17: aerial view from the Xadá rapids with
deforestation on the unprotected side*, 18: aerial view of intact forest in protected area*, 19: aerial
view of intact forest at the Iriri rapids*, 20: small-scale clearing at the Jericoá rapids*, 21: intact forest
along the Culuene river**, 22: exposed soil for agriculture**, 23: cattle herd**, 24: Belo Monte dam*,
25: isolated forest patch in corn field**, 26: large corn field**, 27: plantation**, 28: extensive pasture
land**, 29: extensive cotton field**, 30: recently cut forest**, 31: pasture with forest patch **, 32: pasture
with isolated trees**, 33: cornfield with forest patch**.
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4. Limitations

Users must be aware that due to the pixel size of the satellite imagery, smaller bodies of water
and narrow rivers/streams could not be classified (Figure 3). The smaller tributaries where the water
is often narrower than a single pixel and may have extensive vegetation covering the banks are not
included in the classifications. The MMU of ~1 ha also means that very small forest and non-forest
patches will have been sieved out of the classifications. Furthermore, because each classification is
representative of the median reflectance for the time period, small temporal scale changes in land cover
may not be represented.Data 2019, 4, x FOR PEER REVIEW 8 of 9 
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