

Data 2019, 4, 89; doi:10.3390/data4020089 www.mdpi.com/journal/data

Data Descriptor

Reduced Collatz Dynamics Data Reveals Properties
for the Future Proof of Collatz Conjecture
Wei Ren 1,2,3

1 School of Computer Science, China University of Geosciences, Wuhan 430079, China; weirencs@cug.edu.cn
2 Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences,

Wuhan 430079, China
3 Guizhou Provincial Key Laboratory of Public Big Data, GuiZhou University, Guiyang 550025, China

Received: 8 May 2019; Accepted: 19 June 2019; Published: 21 June 2019

Abstract: Collatz conjecture is also known as 3X + 1 conjecture. For verifying the conjecture, we
designed an algorithm that can output reduced dynamics (occurred 3 × x+1 or x/2 computations
from a starting integer to the first integer smaller than the starting integer) and original dynamics
of integers (from a starting integer to 1). Especially, the starting integer has no upper bound. That
is, extremely large integers with length of about 100,000 bits, e.g., 2100000 − 1, can be verified for
Collatz conjecture, which is much larger than current upper bound (about 260). We analyze the
properties of those data (e.g., reduced dynamics) and discover the following laws; reduced
dynamics is periodic and the period is the length of its reduced dynamics; the count of x/2 equals to
minimal integer that is not less than the count of (3 × x + 1)/2 times ln(1.5)/ln(2). Besides, we observe
that all integers are partitioned regularly in half and half iteratively along with the prolonging
of reduced dynamics, thus given a reduced dynamics we can compute a residue class that
presents this reduced dynamics by a proposed algorithm. It creates one-to-one mapping
between a reduced dynamics and a residue class. These observations from data can reveal the
properties of reduced dynamics, which are proved mathematically in our other papers (see
references). If it can be proved that every integer has reduced dynamics, then every integer will
have original dynamics (i.e., Collatz conjecture will be true). The data set includes reduced
dynamics of all odd positive integers in [3, 99999999] whose remainder is 3 when dividing 4,
original dynamics of some extremely large integers, and all computer source codes in C that
implement our proposed algorithms for generating data (i.e., reduced or original dynamics).

Dataset: Available in Supplementary Materials.

Dataset License: CC-BY

Keywords: Collatz conjecture; computational number theory; data analysis; discrete dynamics

1. Background and Summary

The Collatz conjecture is a mathematical conjecture that was first proposed by Lothar Collatz in
1937. Collatz conjecture is also known as 3X + 1 problem, which states simply: Take any positive
integer number x. If x is even, divide it by 2 to get x/2. If x is odd, multiply it by 3 and add 1 to get 3 ×
x + 1. Repeat the process again and again. The Collatz conjecture is that no matter what the starting
number (i.e., x) is taken, the process will always eventually reach 1.

Original dynamics is from the starting number to 1. In contrast, reduced dynamics is from the
starting number to the first number that is less than the starting number. We propose studying

Data 2019, 4, 89 2 of 13

reduced dynamics [1] because it is more primitive—it is the component (building block) of original
dynamics. Indeed, reduced dynamics presents inner regulations such as period that does not exist in
original dynamics. We find that 3 × x + 1 is always even and is always followed by x/2. Thus, 3 × x + 1
and x/2 can be combined together as (3 × x + 1)/2. Because the computation for Collatz conjecture is
either 3 × x + 1 or x/2, we use “I” to denote (3 × x + 1)/2 and “O” to denote x/2. Intuitively, if all
positive integers can return to an integer that smaller than it, then it will finally return 1. Indeed, we
proposed the reduced Collatz conjecture and proved it is equivalent to Collatz conjecture formally in
another paper [1]. We can prove that if reduced dynamics for all positive integers exist, then original
dynamics for all positive integers exist. Inverse direction is also guaranteed. Here, we assume
reduced dynamics for 1 is (3 × x + 1)/2 and x/2, i.e., “IO”.

Reduced dynamics for some integers are trivial. For example, reduced dynamics for an even
integer is “O”, as after x/2 the transformed number is less than the starting number. Besides, reduced
dynamics for odd integers has the form 4k + 1 is “IO”. It can be proved as follows; suppose starting
integer is x, and x is 4k + 1 (k is a natural number). Thus, (3 × x + 1)/2 occurs. After (3 × x + 1)/2, x is (12k
+ 3 + 1)/2, which is 6k + 2. Thus, x/2 occurs. After x/2, transformed number is 3k + 1, which is less than
4k + 1. Thus, reduced dynamics is obtained and is “IO”. Furthermore, for including special case
when x equals 1, we intentionally assume the reduced dynamics for 1 is “IO”. In the following, we
only concentrate on reduced dynamics for odd with 4k + 3.

To prove the reduced Collatz conjecture, i.e., to prove all positive integers has reduced
dynamics, we study the properties in reduced dynamics. We designed a computer program that can
output reduced dynamics for odd integers with 4k + 3, e.g., [3, 99999999]. Outputting (reduced)
dynamics for much larger integers are also possible. The source code in C is txpo9.c [2]. There are
five options in arguments for more flexible output. Those data can reveal the properties of reduced
dynamics. The most important are ratio and period. We observed and discovered that the ratio,
which is the count of x/2 over the count of (3 × x + 1)/2, is bounded by a constant value, ln(1.5)/ln(2).
We prove mathematically that the ratio of reduced dynamics is larger than λ = ln(1.5)/ln(2) ≈
0.58496250 formally in another paper [3]. Those data outputted by txpo9.c can be used to verify this
bound. The data shows that our analysis on the bound of ratio is correct. Indeed, we also derive the
equation on the count of x/2 and the count of (3 × x + 1)/2 for any reduced dynamics. That is, CntO(c)
= ceil(CntI(c) × λ) where ceil(x) returns the minimal integer that is not less than x; λ equals ln(1.5)/ln(2);
c is any reduced dynamics in terms of “I” and “O” with length larger than 1; CntO(c) is a function
returns the count of “O” in inputting string denoted as c; and CntI(c) is a function returns the count
of “I” in inputting string denoted as c. For example, “O” is a reduced dynamics for even, it is trivial
and listed aside. “IO” is reduced dynamics for odd with 4k + 1, we can check the equation as follows

CntO(IO) = 1, CntI(IO) = 1, CntO(c) = 1,

ceil(CntI(c) × λ) = ceil(1 × λ)=ceil(1 × ln(1.5)/ln(2)) =ceil(0.58496250)=1.
It is worth to note that the bound can help us generate all valid reduced dynamics by

algorithm, instead of selecting a positive number to compute its reduced dynamics. Besides, we also
discover that the period of reduced dynamics does exist. That is, if the reduced dynamics of x is a
sequence consisting of “I” and “O” with length L, then the reduced dynamics of x+2L equals the
reduced dynamics of x. We also prove it mathematically in another paper [4]. This period can also be
observed and verified in the data file that is outputted by the program txpo9.c. Note that, for the
better vision in computer program output, we use “-” to represent “I” (i.e., the computation of (3 × x
+ 1)/2) and “0” to represent “O” (i.e., the computation of x/2) .

Currently, the largest integer being verified for Collatz conjecture is ~260 [5,6]. To verify whether
extremely large integers such as 2100000－1 can return 1, we designed a new algorithm [7] to compute
3 × x + 1, which is O(lnx). This dedicated algorithm can change numerical computation into bit or
Boolean computation, hence original dynamics for an extremely large integer without upper bound
can be computed. By this algorithm, we thus design novel computer program that can output
original dynamics for extremely large integers without upper-bound such as 2100000－1, which is the
largest integer being verified until now. The source code in C is txpo15.c [8]. The bit length of

Data 2019, 4, 89 3 of 13

extremely large integer can be set up by “macro” (named MAXLEN) in source code. The program
can output the original dynamics (called CODE) of a starting integer in terms of “-” presenting (3 × x
+ 1)/2 and “0” presenting x/2. This data can be used for verifying whether an extremely large number
can go to 1 finally. Note that, there is no upper bound for extremely large starting integer; all is a
timing issue. We just use desktop PC (Intel Core i5-6500 3.2 GHz) to compute the results for ~15
days.

After we study the ratio for reduced dynamics, we continue to study the ratio for original
dynamics, especially for extremely large integers asymptotically. We designed a computer program
that can randomly generate extremely large integers and output their original dynamics. The source
code is txpo10b.c [9]. The bit length of integers can be defined by “macro” (named MAXLEN) in
source code. The number of randomly generated integers can be set by inputting argument. The
program can output the original dynamics of a starting integer in terms of “-” presenting (3 × x + 1)/2
and “0” presenting x/2. This data can be used for observing the relation between the count of “-” and
the count of “0”. By analyzing outputting data, we discover that the ratio, which is the count of “-”
over the count of “0”, is 1 asymptotically with the grow of starting integer.

We further study a reverse problem: Given a reduced dynamics or partial dynamics, can we
compute a residue class that presents those dynamics? We designed a dedicated algorithm that takes
as input a dynamics with length t consists of “I” or “O” that can output a residue class who presents
this dynamics in the first t transformations. We thus designed a computer program that can output a
reside class by inputting a reduced dynamics or partial dynamics. That is, inputting c∈{I,O}L,
CntO(s) ≤ ceil(CntI(s) × λ), λ = ln(1.5)/ln(2) = 0.58469250, s = Substr(c,1,i), I = 1, 2, ..., L, where CntO(s)
returns the count of “O” in string denoted as s; CntI(s) returns the count of “I” in string denoted as s;
ceil(x) returns the minimal integer that is not less than x; Substr(c,1,i) returns the first i characters in
terms of “I” or “O” (i.e., substring) in string denoted as c. In other words, the dynamics is above of or
cutting ratio line in our proposed Collatz graph (i.e., Figure 2). Note that the algorithm is quit
lightweight and designed from our formal proof of Partition Theorem [10]; we prove that all natural
numbers are partitioned regularly corresponding to ongoing dynamics. Given any natural number x
that equals i module 2t (i is an odd integer), the first t transformations in terms of “I” or “O” can be
determined and identical with the first t transformations of i. Once current value after t (t is greater
or equal to 2) transformations of “I” or “O”, is less than x, then reduced dynamics of x is obtained.
Otherwise, the residue class of x (namely, i module 2t) can be partitioned into two halves (namely, i
module 2t + 1 and i + 2t module 2t + 1), and either half presents “I” or “O” in intermediately forthcoming
(t+1)-th transformation.

The Collatz conjecture seems to be extremely hard and advances are few although it is out for
more than 80 years. L. Colussi [11] proposed Collatz function R(x) = (3 × x + 1)/2h where h is the
highest power of 2 that divides 3 × x + 1. They explore some properties of convergence classes (i.e.,
the set of odd positive integers) denoted as Gk such that Rk(x) = 1. The longest progressions for
initial starting numbers of less than 10 billion and 100 quadrillion are calculated by G.T. Leavens [12]
and R.E. Crandall [13], respectively. I. Krasikov and J.C. Lagarias proved that the number of
integers finally reaching one in the interval [1, x] is at least proportional to x 0.84 [14].

2. Data Description

2.1. Dataset I ([2,15]):

The format of txpo9-c3-3-9999999 (with file size 140 MB) is listed in Table 1. More integers can
be computed, e.g., txpo9-c3-3-99999999 (with file size 1.5 GB), by changing inputting arguments.

Data 2019, 4, 89 4 of 13

Table 1. Data columns in data file (e.g., txpo9-c3-3-9999999).

Starting Integer
Starting Integer

in Binary
The Count of “I”

(“-”)
The Count of

“O” (“0”)

Ratio =
The Count of
“O” (“0”)/The
Count of “I”

(“-”)

For more examples in details, we illustrate some lines in the data files.
3 11 2 2 1.0000000 --00
7 111 4 3 0.7500000 ---0-00
11 1011 3 2 0.6666667 --0-0
15 1111 4 3 0.7500000 ----000
19 10011 2 2 1.0000000 --00
23 10111 3 2 0.6666667 ---00
27 11011 37 22 0.5945946 --0-----0-0--0---0----0-00---0--0------00----000-0-0-000-00
31 11111 35 21 0.6000000 -----0-0--0---0----0-00---0--0------00----000-0-0-000-00
35 100011 2 2 1.0000000 --00
39 100111 5 3 0.6000000 ---0--00
43 101011 3 2 0.6666667 --0-0
47 101111 34 20 0.5882353 ----0-0--0---0----0-00---0--0------00----000-0-0-000-0
51 110011 2 2 1.0000000 --00
55 110111 3 2 0.6666667 ---00
59 111011 4 3 0.7500000 --0--00
63 111111 34 20 0.5882353 ------000--0---0----0-00---0--0------00----000-0-0-000
....
Those are reduced dynamics, but the source code can be changed to output original dynamics.

The meaning of data column is identical.

2.2. Dataset II ([8])

Table 2 lists data columns in file named CODE that is outputted by txpo15.exe for original
dynamics of an extremely large integer.

Table 2. Data columns.

Original Dynamics in Term of “-”
and “0”

The Count of “I”
(“-”)

The Count of
“O” (“0”)

Ratio =
The Count of
“O” (“0”)/The
Count of “I”

(“-”)

For example, the CODE file for starting integer that equals 2100－1 is as follows:

--0000-00---00-000--0--000-

000--0000-0--00---00-0---00-0---0---0-00---0-0---0000--00-0-00---0-0000---00-----0-00-0000-000--000-000--

-0-00-00-0--00------0-----00---0-0-0000-0--000-0----0-00000---000-0-0000-0------00--00-00---0-0-00000-0-00

00-0----00-----00--0--0-000000--0--0000-00-00---00--0--0--000-0----0------0----00-0000---0---0-00--0---000-0

0000-00-----0--0--0-0---0--0------000-00---00-0-0-0---0-00-0000-00---0-0-0--00-00-00-0--0-00-0000------0---

00--0000-----0-0-0-0----00-0--0-0----0--000------0-00--0---00-00-0-00---0--00--0-000-000-0-----00-----0---0--

0-0-0-000--0--000000--000--0-0--0-0-0-00----0--00-0-0--0---000000---0000--0-00----0-0-0--000-0000-0--0---

---0--000-0--00-00-0-00-0---0-0-00-00-000-----00-----00---0-0-00000000----0000-0------0--0-0-0-0----0-0-0-0

0-0-0--0--00-00-0000-0--0--0-00-0--000000-0-00-00-0000---0000-000

Data 2019, 4, 89 5 of 13

528 409 0.7746212
We can check whether extremely large integer can return 1 finally, as well as the count of “-”,

the count of “0”, and the ratio between the count of “0” over the count of “-”.

2.3. Dataset III ([9])

There is only one column in the data file that is ratio, which is the count of “0” over the count of
“-” in original dynamics.

For example, the first 20 lines in generated file txpo10b-len100-try5000 by txpo10b.exe is as
follows.

0.9958678
1.0360360
1.2907802
1.1111112
1.0516431
0.9225589
0.9426523
1.0514019
1.0042194
0.9166667
0.9918367
0.9958848
1.0041841
1.0264317
1.1396648
1.0265486
0.9456522
1.0265486
1.0084746
0.8750000
....
There are 5000 randomly generated starting integers, thus there are 5000 lines in this data file.

Note that we can also output the details on original dynamics for each sample by turn on the
printing option in source code, but as we need further compute average and variation so those
details are omitted and option is commented.

By using comp4.exe, the average and variation of those 5000 ratios can be computed.
For example, just run comp4.exe with data file.
comp4.exe txpo10b-len100-try5000
The results of the above are as follows.
1.0184816 0.0095717
For another example,
comp4.exe txpo10b-len1000-try40000
1.0018520 0.0008443
Note that as the starting integers (samples) are randomly generated, the results are usually not

same. Here we use randomly generated integers because enumerating all such large integer is
impossible and unnecessary in a proper short running time.

2.4. Dataset IV ([16,17])

The major output of the program is a residue class whose reduced dynamics is inputting
argument or the first t transforms are inputting argument with length t.

For example,
txpo25.exe IIOO > txpo25-IIOO

Data 2019, 4, 89 6 of 13

The last line of the file is as follows.
“Main: final i = 3, module is 16, i.e., RD[x in [3]_{16}] = IIOO. “
txpo25.exe IIIIOOO > txpo25-IIIIOOO
The last line of the file is as follows.
“Main: final i = 15, module is 128, i.e., RD[x in [15]_{128}] = IIIIOOO.”
txpo25.exe IIO > txpo25-IIO
The last line of the file is as follows.
“Main: final i = 3, module is 8, i.e., DYNM[x in [3]_{8},3] = IIO.”
We also output the intermediate computation results for whole procedure, which can be as a

reference, although the last line is of the most importance.

3. Methods

3.1. Dataset I: Exploring Properties in Reduced Dynamics ([2])

• Step 1: txpo9.c. It is source code in C that can be compiled into an executable program by any C
compiler. It is ANSI C code, thus it can be complied for either Windows or Linux platform.

• Step 2: Compile txpo9.c to generate txpo9.exe. txpo9.exe is an executable program, and can be
executed in any DOS command shell in Windows (if compiled for Windows platform) and
computing results (as generated files) will be obtained.

• Step 3: Run txpo9.exe, which has five options (as the first argument).

(1) Output reduced dynamics of a specific integer, which can be set in the source code
before compiling, e.g., we can set the integer as 210000 − 1, which has a form like 11...11 where the
bit length is 10000 and all bits are 1. The MAXLEN of bit length is 80,040 due to inner memory
constraint. Note that, inner memory constraint can be broken by out file manipulation, which is
provided in txpo15.c.
E.g., txpo9.exe 1 > txpo9-c1 //210000 − 1 c: choice p: pow()

(2) Output reduced dynamics of a specific decimal integer, which is inputted as an
argument.
E.g., txpo9.exe 2 703 > txpo9-c2-703 //703
txpo9.exe 2 8088063 > txpo9-c2-8088063 //8088063

(3) Output reduced dynamics of a specific decimal integers in a rang, which are inputted as
two arguments.
E.g., txpo9.exe 3 3 1000000 > txpo9-c3-3-1000000 //[3, 1000000]

(4) Output reduced dynamics of large decimal integers in a range, which are inputted as
two arguments for exponents.
E.g., txpo9.exe 4 6 8 > txpo9-c4-p106-p108 //[106 + 3, 108]
txpo9.exe 4 8 9 > txpo9-c4-p108-p109 //[108 + 3, 109]

(5) Output reduced dynamics of extremely large decimal integer that is ~1018. Eighteen can
be modified to others in source codes. If it is larger, then the waiting time will be more.
E.g., txpo9.exe 5 > txpo9-c5 //[1018 + 3, 16 × 1018]

Note that the source code can be changed to output original dynamics easily by replacing main
loop to as follows: “while (strlen(current_x)!=1)”, because the final integer in original dynamics is 1
that is represented by a string with length 1.

3.2. Dataset II: Verifying Whether Extremely Large Integer Guarantees Collatz Conjecture (Can Return to 1
Finally) ([8])

• Step 1: Configuring following code in source code of txpo15.c, which is a “macro” in C as
follows:
#define MAXLEN 100//the maximal bit length, e.g., 100, 1000, 10000, 100000, and 1000000.

Data 2019, 4, 89 7 of 13

txpo15.c. It is source code in C that can be compiled into an executable program by any C
compiler. It is ANSI C code, thus it can be complied for either Windows or Linux platform.
• Step 2: Compile txpo15.c to generate txpo15.exe.

txpo15.exe is an executable program, and can be executed in any DOS command shell in
Windows (if compiled for Windows platform) and computing results (as generated files) will be
obtained.
• Step 3: Run txpo15.exe, generating following data.

1. CODE. The file is generated by running the program (i.e., txpo15.exe), and it stores dynamics
data in terms of ``-'' presenting (3X + 1)/2 and ``0'' presenting x/2. The counts on the number of
''-'' and ''0'' are also included in the file.

2. input_start. The file is generated by running the program, and it stores tested starting integer
that is determined by 2MAXLEN − 1, e.g., 2100000 − 1.

3. DYNAMICS. The file is generated by running the program, which records all intermediate
results (transformed integers), after occurring either (3X + 1)/2 or x/2, from the starting integer
to 1. Note that, we suggest to stop outputting this file JUST for saving time; it can be used for
check the results for small starting integers such as less then 230 − 1.

3.3. Dataset III: Exploring the Ratio Between the Count of x/2 and the Count of (3 × x + 1)/2 in Original
Dynamics for Extremely Large Starting Integers Asymptotically ([9])

• Step 1: Configuring following code in source code of txpo10b.c, which is a “macro” in C as
follows.
#define MAXLEN 100//the maximal bit length, e.g., 100, 1000, 80,000.
txpo10b.c is source code in C that can be compiled into an executable program by any C

compiler. It is ANSI C code, thus it can be complied for either Windows or Linux platform.
• Step 2: Compile txpo10b.c, generate txpo10b.exe.

txpo10b.exe is an executable program, and can be executed in any DOS command shell in
Windows (if compiled for Windows platform) and computing results (as generated files) will be
obtained.
• Step 3: Run txpo10b.exe by inputting argument that specifying the number of randomly

generated integers.
For example, If MAXLEN is 2000 that specifies the bit length of randomly generated integers,

and inputting argument is 4000 that specifies the number of randomly generated integers, then use
following command:

tpxo10b.exe 4000 > tpxo10b-len2000-try4000
The data file named tpxo10b-len2000-try4000 will be generated.

• Step 4: Compile comp4.c to generate comp4.exe.
• Step 5: Run comp4.exe to compute the average and variation of ratios for samples.

For example, to get the average and variation of ratios for 4000 samples in above data file, just
do

comp4.exe tpxo10b-len2000-try4000.
Then, the average and variation of ratios that is count of ``-’’ over count of ``0’’ for 4000 samples

will be displayed.

3.4. Dataset IV: Exploring the Inverse Mapping from a Dynamics to a Residue Class—Inputting a Reduced
Dynamics or Partial Dynamics and Outputting a Residue Class ([16])

• Step 1: txpo25.c is source code in C that can be compiled into an executable program by any C
compiler. It is ANSI C code, thus it can be complied for either Windows or Linux platform.

• Step 2: Compile txpo25.c, generate txpo25.exe.

Data 2019, 4, 89 8 of 13

txpo25.exe is an executable program, and can be executed in any DOS command shell in
Windows (if compiled for Windows platform) and computing results (as generated files) will be
obtained.
• Step 3: Run txpo25.exe by inputting argument that specifying a reduced dynamics or a partial

dynamics.
tpxo25.exe IIOO > tpxo25-IIOO
tpxo25.exe II > tpxo25-II
tpxo25.exe O > tpxo25-O

4. Code Availability

1. txpo9.c ([2]). It is source code in C that can be compiled into an executable program by any C
compiler. It is ANSI C code, thus it can be complied for either Windows or Linux platform.
This code can output reduced dynamics for a range of integers such as [3, 99999999]. The range

is inputted as two arguments.
2. txpo15.c ([8]). It is source code in C that can be compiled into an executable program by any C

compiler. It is ANSI C code, thus it can be complied for either Windows or Linux platform.
This code generates original dynamics for extremely large integers without upper-bound, e.g.,

2100000 − 1. The bit length of integers can be specified by “macro” definition for MAXLEN in the source
code.
3. txpo10b.c ([9]). It is source code in C that can be compiled into an executable program by any C

compiler. It is ANSI C code, thus it can be complied for either Windows or Linux platform.
This code outputs original dynamics of many randomly generated integers (also call samples).

The number of randomly samples is specified by inputting argument of the program. The bit length
of randomly generated integers can be specified by Marco definition for MAXLEN in the source
code.
4. txpo25.c ([16]). It is source code in C that can be compiled into an executable program by any C

compiler. It is ANSI C code, thus it can be complied for either Windows or Linux platform.
This program can takes as input a reduced dynamic or partial dynamics consists of “I” or “O”

with length L, and outputs a residue class whose first L transformations are inputting.
It creates a one-to-one mapping between residue class and dynamics.

5. Technical Validation

5.1. Dataset I ([2]):

The reduced dynamics in txpo9-c3-3-9999999 can be manually verified.
For example, the 2nd line in the file is as follows
7 111 4 3 0.7500000 ---0-00
It can be manually computed by 7 -> 11 -> 17 -> 26 -> 13 -> 20 -> 10 -> 5. 5 is less than 7, thus ends.

Here we combine 3 × x + 1 and x/2 together as it always occurs in both.
We can also randomly choose one line in the data file to verify its soundness manually.
Note that in source code txpo9.c we can see that if there is a ratio that is not larger λ =

ln(1.5)/ln(2) = 0.58496250, the program will output an alert. More specifically, the source code in
txpo9.c is as follows.

if (ratio<=0.58496250)

 {

 printf("\n\n\n------Alert!------\n\n\n");

 exit(0);

 }
By searching “Alert” in txpo9-c3-3-99999999 (e.g., grep or any string search function in a text

edit tool), we can find that there exists no “Alert” in the file, which means all ratios are larger than

Data 2019, 4, 89 9 of 13

0.58496250. It thus verified that in [3, 9999999] all odds with 4k + 3 guarantee this bound. The ratios
for even and odd wit 4k + 1 are trivial, because the reduced dynamics for even is trivial, i.e., “O”, and
the reduced for odds with 4k + 1 is also trivial, i.e., “IO”. Together with ratio = 1/0 for even and ratio =
1/1 for 4k + 1.

Indeed, we formally prove this observation in another paper.
Besides, we prove the period of reduced dynamics in another paper, which can be observed in

the reduced dynamics data file with the name such as txpo9-c3-3-99999999. The period is 2L, L is the
length of reduced dynamics.

For example, reduced dynamics for 7 is the 2nd line in the file as follows

7 111 4 3 0.7500000 ---0-00.
The length is 4 + 3 = 7. Thus, the period is 27 = 128. That is, reduced dynamics of 7 + 128 = 135 is

identical with 7 and is ---0-00 too. It can be checked by the 34th line in the file as follows

135 10000111 4 3 0.7500000 ---0-00.
Similarly, reduced dynamics of 135+128 = 263 is the same as 135, which can be checked by the

66th line in the file as follows

263 100000111 4 3 0.7500000 ---0-00.
Note that, L is also the total count of x/2 that includes the count of “0” presenting x/2 and the

count of “-” presenting (3 × x +1)/2.

5.2. Dataset II ([8])

We can choose 24 − 1=16 − 1=15 to verify the correctness of the program.
The CODE file outputted by txpo15.exe is as follows

----0000-000

 5 7 1.4000000
It can be manually verified by 15 -> 23 -> 35 -> 53 -> 80 -> 40 -> 20 -> 10 -> 5 -> 8 -> 4 -> 2 ->1.
The original dynamics is right.
The count of “-” is 5 and the count of “0” is 7. Thus, the ratio is 7/5 =1.4.
By the program txpo15.exe, we can verify that even extremely large integers can also return to 1

finally. For example, by outputted file CODE of txpo15.exe that includes “macro” definition for
MAXLEN 100000, we can verify that 2100000 − 1 can return to 1 after 481603 times of “-” (i.e., (3 × x +
1)/2) and 381720 times of “0” (i.e., x/2). The ratio, which is the count of x/2 over the count of (3 × x +
1)/2, is 0.7926030.

More results are listed in Table 3. In the table, U is the count of 3 × x + 1, which equals the count
of “-”. D-U is D (i.e., the count of x/2) minus U (i.e., the count of 3 × x + 1), which indeed equals the
count of “0”. MAXLEN is the bit length of starting integer, which is also Marco in C source code.
Ratio is (D-U)/U that is the count of “0” over the count of “-”.

Table 3. Original dynamics of extremely large integers.

MAXLEN x (in binary) (U, D－U) ratio
100 1100 =

100

1...111 (528, 409) 0.7746212

500 1500 =
500

1...111 (2,417, 1,914) 0.7918908

1000 11,000 =
000,1

1...111 (4,316, 3,525) 0.8167285

5000 15,000 =
000,5

1...111 (24,131, 19,116) 0.7921761

10000 110,000 =
000,10

1...111 (48,126, 38,152) 0.7927524

Data 2019, 4, 89 10 of 13

50,000 150,000 =
000,50

1...111 (239,020, 189,818) 0.7941511

100,000 1100,000 =
000,100

1...111 (481,603, 381,720) 0.7926030

5.3. Dataset III ([9])

We can generate 10 samples by txpo10b.exe 10 > txpo10b-len100-try10.
Then, manually compute the average and variance of these 10 ratios.
For the verification of generated ratios, we can modify the source code to output the original

dynamics, recompile the source code, execute the program, and verify the original dynamics
manually.

It would be better if the number of samples are larger. We observe that the ratio—the count of
x/2 over the count of (3 × x + 1)/2 in original dynamics—asymptotically approaches 1, with the
growth of starting integer. It can be observed that average of ratio approaches 1 and variance
approaches to 0. More results are listed in Table 4.

Table 4. Average and variance of the ratio with the growth of starting integer x.

Bit Length
of x

The Number of
Randomly Generated x Digits of x

Average of
Ratio

Variance of
Ratio

500 5000 150 1.0034897 0.0017366
500 10,000 150 1.0042674 0.0017188
500 20,000 150 1.0040790 0.0017178
500 40,000 150 1.0038885 0.0017010
500 80,000 150 1.0037522 0.0016996
500 160,000 150 1.0039997 0.0017286
500 320,000 150 1.0040141 0.0017273
1000 5000 300 1.0025468 0.0008620
1000 10,000 300 1.0021506 0.0008277
1000 20,000 300 1.0017902 0.0008353
1000 40,000 300 1.0018520 0.0008443
1000 80,000 300 1.0018142 0.0008382
1000 160,000 300 1.0018796 0.0008404
1000 320,000 300 1.0018988 0.0008436
5000 5000 1500 1.0002556 0.0001674
5000 10,000 1500 1.0004715 0.0001627
5000 20,000 1500 1.0004982 0.0001694

10,000 5000 3000 1.0001945 0.0000817
10,000 10,000 3000 1.0003496 0.0000821
10,000 20,000 3000 1.0003789 0.0000816
40,000 2000 12,000 1.0000072 0.0000208
40,000 4000 12,000 1.0000508 0.0000208
40,000 8000 12,000 0.9999926 0.0000207
80,000 500 24,000 0.9999365 0.0000095
80,000 1000 24,000 0.9998791 0.0000099
80,000 1500 24,000 0.9999615 0.0000098
80,000 2000 24,000 0.9998852 0.0000105
80,000 3000 24,000 1.0000138 0.0000105

The results can also be depicted in Figure 1.

Data 2019, 4, 89 11 of 13

Figure 1. Average and variance of ratio with the growth of starting integer x.

5.4. Dataset IV ([16])

The correctness of the outputted residue class can be verified manually or by data file
txpo9-c3-3-99999999 that presents the reduced dynamics, and partial dynamics can also be verified
in them.

Indeed, we prove Partition Theorem in another paper [10]. The partition can be observed in the
following reduced dynamics graph. Given any natural number x, that is, i module 2t (i is an odd
integer), the first t transformations in terms of I or O can be determined and identical with the first t
transformations of i. Once current value after t (t is greater or equal to 2) transformations of I or O, is
less than x, then reduced dynamics of x is obtained. Otherwise, the residue class of x (namely, i
module 2t) can be partitioned into two halves (namely, i module 2t + 1 and i + 2t module 2t + 1), and
either half presents I or O in intermediately forthcoming (t + 1)-th transformation.

Here we propose to present reduced dynamics as a graph (tree) for better understanding (see
Figure 2), in which there are two types of edges such as I or O. I is represented by black right arrow
and O is represented by blue down arrow. Squares represent the starting integer and triangles
represent the first transformed integer that is less than starting integer. Thus, a path from square to
triangle will be a reduced dynamics. Each edge has a label related to a residue class. RD[x]
represents reduced dynamics of x. DYNM(x,t) represents the first t transforms of x, in terms of I or O.
(p,q) is the count of “I” and the count of “O”, respectively. In all reduced dynamics, q = 1 when p = 0. q
= ceil(λ × p) when p ≥ 1 where λ = ln(1.5)/ln(2). The slope of ratio line (in red) is λ = ln(1.5)/ln(2) =
0.58496250. All reduced dynamics cuts ration line in the last edge. Above ration line is a partial
dynamics. Given a reduced dynamics or a partial dynamics, a residue class can be computed by
txpo25.exe. From this graph, we can also observe the partition is regular in half for each edge with
the path prolonging.

Data 2019, 4, 89 12 of 13

O

1 2 3 4 5 6

O

O

O

I

O

O

O

O

O

O

O

O
I

I

I I

I

I

I

7 8

O O

(1,1)

(2,2) (3,2)

(4,3) (5,3)

(6,4)

(7,5) (8,5)

I

(0,1)

[0]2 [1]4

[1]2 [3]4

[3]8

[7]8

[3]16

[11]16

[15]16

[7]16

[11,23]32

[7,27]32

[31]32

[15]32

[7,15,59]64

[7,15,59]128

[71,79,123]128

[27,39,47]64

[63]64

[31]64

[39,79,95,123,175,
199,219]256

[39,47,91,95]128

[27,31,103,111]128

[47,71,91,167,207,
223,251]256

CntO(fL) = log21.5*CntI(fL) , CntI(fL) 1

RD[x [0]2] = O
DYNM(x [1]2, 1) = I
RD[x [1]4] = IO
DYNM(x [3]4, 2) = II
DYNM(x [3]8, 3) = IIO
DYNM(x [7]8, 3) = III
RD[x [3]16] = IIOO
DYNM(x [11]16, 4) = IIOI
DYNM(x [7]16, 4) = IIIO
DYNM(x [15]16, 4) = IIII
RD[x [11]32] = IIOIO
DYNM(x [27]32, 5) = IIOII
RD[x [23]32] = IIIOO
DYNM(x [7]32, 5) = IIIOI
DYNM(x [15]32, 5) = IIIIO
DYNM(x [31]32, 5) = IIIII
DYNM(x [63]64, 6) = IIIIII
DYNM(x [31]64, 6) = IIIIIO

CntO(fL) = 1, CntI(fL) = 0

(p, q) (p = CntI(fL), q = CntO(fL))
Starting number

ratio = CntO(fL)/CntI(fL) = log21.5 = 0.58496250

O
I

Figure 2. The reduced dynamics graph with partition labels.

By this graph, we can easily verify the outputting residue class of txpo25.exe.
For example, txpo25.exe IIOO > txpo25-IIOO. The outputting residue is x in [3]16 (i.e., residue

class that is 3 module 16). We can verify whether this reside class is correct or incorrect according to
txpo9-c3-3-99999999.

The first line of the file is as follows.
3 11 2 2 1.0000000 --00
3 + 16 = 19. The 5th line of the file is as follows.
19 10011 2 2 1.0000000 --00
Similarly, 35 100011 2 2 1.0000000 --00; 51 110011 2 2 1.0000000 --00.

6. Conclusion

In this paper, we describe the data for studying Collatz dynamics that may result in the final
proof of Collatz conjecture. The data come from the output of computer programs, and the source
code of the computer programs are also described. Some laws on Collatz reduced dynamics can be
observed in the data, and those laws reveal critical properties in the computation such as ratio,
period, and residue classes. The results in this paper may also providing heuristics for exploring
other mathematical problems in multiple folders such as linear dynamics system, discrete dynamics
system, and complexity system.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1.

Funding: This research was funded by the Major Scientific and Technological Special Project of Guizhou
Province under grant number 20183001, Open Funding of Guizhou Provincial Key Laboratory of Public Big
Data under grant numbers 2018BDKFJJ009 and 2017BDKFJJ006, and Open Funding of Hubei Provincial Key
Laboratory of Intelligent Geo-Information Processing under grant number KLIGIP2016A05.

Acknowledgments: The author thanks the assistance of the student named Xiaohan Hao.

Conflicts of Interest: The author declares no conflicts of interest.

Data 2019, 4, 89 13 of 13

References

1. Ren, W. A New Approach on Proving Collatz Conjecture. J. Math. 2019, 2019, 6129836.
2. Ren, W. Exploring Properties in Reduced Collatz Dynamics, IEEE Dataport, 2018. Available online:

http://dx.doi.org/10.21227/ge9h-8a77 (accessed on 1 May 2019).
3. Ren, W. A Reduced Collatz Dynamics Maps to a Residue Class, and its Count of x/2 over Count of 3*x+1 is

larger than ln3/ln2. Math. Rep. 2019, submitted.
4. Ren, W. Reduced Collatz Dynamics is Periodical and the Period Equals 2 to the Power of the Count of x/2.

J. Math. 2019, submitted.
5. Tomas Oliveira e Silva. Computational Verification of the 3x+1 Conjecture. Available online:

http://sweet.ua.pt/tos/3x+1.html (accessed on 28 January 2018).
6. Oliveira e Silva, T. Empirical Verification of the 3x+1 and Related Conjectures. In The Ultimate Challenge:

The 3x+1 Problem; Lagarias, J.C., Ed.; American Mathematical Society: Providence, RI, USA, 2010; pp. 189–
207.

7. Ren, W.; Li, S.; Xiao, R.; Bi, W. Collatz Conjecture for 2^100000-1 is True—Algorithms for Verifying
Extremely Large Numbers. In Proceedings of the 2018 IEEE SmartWorld, Ubiquitous Intelligence &
Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data
Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Guangzhou, China, 8–12 October 2018; pp. 411–
416. Available online: https://ieeexplore.ieee.org/document/8560077 (accessed on 1 May 2019).

8. Ren, W. Verifying Whether Extremely Large Integer Guarantees Collatz Conjecture (Can Return to 1
Finally), IEEE Dataport, 2018. Available online: http://dx.doi.org/10.21227/fs3z-vc10 (accessed on 1 May
2019).

9. Ren, W. Exploring the Ratio between the Count of x/2 and the Count of (3*x+1)/2 in original dynamics for
extremely large starting integers asymptotically, IEEE Dataport, 2018. Available online:
http://dx.doi.org/10.21227/rxx6-8322 (accessed on 1 May 2019).

10. Ren, W. Collatz Dynamics is Partitioned by Residue Class Regularly. Inf. Comput. 2019, submitted.
11. Colussi, L. The convergence classes of Collatz function. Theor. Comput. Sci. 2011, 412, 5409–5419.
12. Leavens, G.T.; Vermeulen, M. 3x + 1 Search Programs. Comput. Math. Appl. 1992, 24, 79–99.
13. Crandall, R.E. On the 3x + 100 problem. Math. Comput. 1978, 32, 1281–1292.
14. Krasikov, I.; Lagarias, J.C. Bounds for the 3x + 1 problem using difference inequalities. Acta Arith. 2003,

109, 237–258.
15. Ren, W. Reduced Collatz Dynamics for Integers from 3 to 999999, IEEE Dataport, 2018. Available online:

http://dx.doi.org/10.21227/hq8c-x340 (accessed on 1 May 2019).
16. Ren, W. Exploring the Inverse Mapping from a Dynamics to a Residue Class—Inputting a Reduced

Dynamics or Partial Dynamics and Outputting a Residue Class, IEEE Dataport, 2018. Available online:
http://dx.doi.org/10.21227/qmzw-gn71 (accessed on 1 May 2019).

17. Ren, W. Collatz Automata and Compute Residue Class from Reduced Dynamics by Formula, IEEE
Dataport. Available online: http://dx.doi.org/10.21227/7z84-ms87 (accessed on 1 May 2019).

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

