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Abstract: Collatz conjecture is also known as 3X + 1 conjecture. For verifying the conjecture, we 
designed an algorithm that can output reduced dynamics (occurred 3 × x+1 or x/2 computations 
from a starting integer to the first integer smaller than the starting integer) and original dynamics 
of integers (from a starting integer to 1). Especially, the starting integer has no upper bound. That 
is, extremely large integers with length of about 100,000 bits, e.g., 2100000 − 1, can be verified for 
Collatz conjecture, which is much larger than current upper bound (about 260). We analyze the 
properties of those data (e.g., reduced dynamics) and discover the following laws; reduced 
dynamics is periodic and the period is the length of its reduced dynamics; the count of x/2 equals to 
minimal integer that is not less than the count of (3 × x + 1)/2 times ln(1.5)/ln(2). Besides, we observe 
that all integers are partitioned regularly in half and half iteratively along with the prolonging 
of reduced dynamics, thus given a reduced dynamics we can compute a residue class that 
presents this reduced dynamics by a proposed algorithm. It creates one-to-one mapping 
between a reduced dynamics and a residue class. These observations from data can reveal the 
properties of reduced dynamics, which are proved mathematically in our other papers (see 
references). If it can be proved that every integer has reduced dynamics, then every integer will 
have original dynamics (i.e., Collatz conjecture will be true). The data set includes reduced 
dynamics of all odd positive integers in [3, 99999999] whose remainder is 3 when dividing 4, 
original dynamics of some extremely large integers, and all computer source codes in C that 
implement our proposed algorithms for generating data (i.e., reduced or original dynamics). 

Dataset: Available in Supplementary Materials. 

Dataset License: CC-BY 

Keywords: Collatz conjecture; computational number theory; data analysis; discrete dynamics 

 

1. Background and Summary 

The Collatz conjecture is a mathematical conjecture that was first proposed by Lothar Collatz in 
1937. Collatz conjecture is also known as 3X + 1 problem, which states simply: Take any positive 
integer number x. If x is even, divide it by 2 to get x/2. If x is odd, multiply it by 3 and add 1 to get 3 × 
x + 1. Repeat the process again and again. The Collatz conjecture is that no matter what the starting 
number (i.e., x) is taken, the process will always eventually reach 1.  

Original dynamics is from the starting number to 1. In contrast, reduced dynamics is from the 
starting number to the first number that is less than the starting number. We propose studying 
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reduced dynamics [1] because it is more primitive—it is the component (building block) of original 
dynamics. Indeed, reduced dynamics presents inner regulations such as period that does not exist in 
original dynamics. We find that 3 × x + 1 is always even and is always followed by x/2. Thus, 3 × x + 1 
and x/2 can be combined together as (3 × x + 1)/2. Because the computation for Collatz conjecture is 
either 3 × x + 1 or x/2, we use “I” to denote (3 × x + 1)/2 and “O” to denote x/2. Intuitively, if all 
positive integers can return to an integer that smaller than it, then it will finally return 1. Indeed, we 
proposed the reduced Collatz conjecture and proved it is equivalent to Collatz conjecture formally in 
another paper [1]. We can prove that if reduced dynamics for all positive integers exist, then original 
dynamics for all positive integers exist. Inverse direction is also guaranteed. Here, we assume 
reduced dynamics for 1 is (3 × x + 1)/2 and x/2, i.e., “IO”.  

Reduced dynamics for some integers are trivial. For example, reduced dynamics for an even 
integer is “O”, as after x/2 the transformed number is less than the starting number. Besides, reduced 
dynamics for odd integers has the form 4k + 1 is “IO”. It can be proved as follows; suppose starting 
integer is x, and x is 4k + 1 (k is a natural number). Thus, (3 × x + 1)/2 occurs. After (3 × x + 1)/2, x is (12k 
+ 3 + 1)/2, which is 6k + 2. Thus, x/2 occurs. After x/2, transformed number is 3k + 1, which is less than 
4k + 1. Thus, reduced dynamics is obtained and is “IO”. Furthermore, for including special case 
when x equals 1, we intentionally assume the reduced dynamics for 1 is “IO”. In the following, we 
only concentrate on reduced dynamics for odd with 4k + 3.  

To prove the reduced Collatz conjecture, i.e., to prove all positive integers has reduced 
dynamics, we study the properties in reduced dynamics. We designed a computer program that can 
output reduced dynamics for odd integers with 4k + 3, e.g., [3, 99999999]. Outputting (reduced) 
dynamics for much larger integers are also possible. The source code in C is txpo9.c [2]. There are 
five options in arguments for more flexible output. Those data can reveal the properties of reduced 
dynamics. The most important are ratio and period. We observed and discovered that the ratio, 
which is the count of x/2 over the count of (3 × x + 1)/2, is bounded by a constant value, ln(1.5)/ln(2). 
We prove mathematically that the ratio of reduced dynamics is larger than λ = ln(1.5)/ln(2) ≈ 
0.58496250 formally in another paper [3]. Those data outputted by txpo9.c can be used to verify this 
bound. The data shows that our analysis on the bound of ratio is correct. Indeed, we also derive the 
equation on the count of x/2 and the count of (3 × x + 1)/2 for any reduced dynamics. That is, CntO(c) 
= ceil(CntI(c) × λ) where ceil(x) returns the minimal integer that is not less than x; λ equals ln(1.5)/ln(2); 
c is any reduced dynamics in terms of “I” and “O” with length larger than 1; CntO(c) is a function 
returns the count of “O” in inputting string denoted as c; and CntI(c) is a function returns the count 
of “I” in inputting string denoted as c. For example, “O” is a reduced dynamics for even, it is trivial 
and listed aside. “IO” is reduced dynamics for odd with 4k + 1, we can check the equation as follows 

CntO(IO) = 1, CntI(IO) = 1, CntO(c) = 1,  

ceil(CntI(c) × λ) = ceil(1 × λ)=ceil(1 × ln(1.5)/ln(2)) =ceil(0.58496250)=1. 
It is worth to note that the bound can help us generate all valid reduced dynamics by 

algorithm, instead of selecting a positive number to compute its reduced dynamics. Besides, we also 
discover that the period of reduced dynamics does exist. That is, if the reduced dynamics of x is a 
sequence consisting of “I” and “O” with length L, then the reduced dynamics of x+2L equals the 
reduced dynamics of x. We also prove it mathematically in another paper [4]. This period can also be 
observed and verified in the data file that is outputted by the program txpo9.c. Note that, for the 
better vision in computer program output, we use “-” to represent “I” (i.e., the computation of (3 × x 
+ 1)/2) and “0” to represent “O” (i.e., the computation of x/2) .  

Currently, the largest integer being verified for Collatz conjecture is ~260 [5,6]. To verify whether 
extremely large integers such as 2100000－1 can return 1, we designed a new algorithm [7] to compute 
3 × x + 1, which is O(lnx). This dedicated algorithm can change numerical computation into bit or 
Boolean computation, hence original dynamics for an extremely large integer without upper bound 
can be computed. By this algorithm, we thus design novel computer program that can output 
original dynamics for extremely large integers without upper-bound such as 2100000－1, which is the 
largest integer being verified until now. The source code in C is txpo15.c [8]. The bit length of 



Data 2019, 4, 89 3 of 13 

 

extremely large integer can be set up by “macro” (named MAXLEN) in source code. The program 
can output the original dynamics (called CODE) of a starting integer in terms of “-” presenting (3 × x 
+ 1)/2 and “0” presenting x/2. This data can be used for verifying whether an extremely large number 
can go to 1 finally. Note that, there is no upper bound for extremely large starting integer; all is a 
timing issue. We just use desktop PC (Intel Core i5-6500 3.2 GHz) to compute the results for ~15 
days.  

After we study the ratio for reduced dynamics, we continue to study the ratio for original 
dynamics, especially for extremely large integers asymptotically. We designed a computer program 
that can randomly generate extremely large integers and output their original dynamics. The source 
code is txpo10b.c [9]. The bit length of integers can be defined by “macro” (named MAXLEN) in 
source code. The number of randomly generated integers can be set by inputting argument. The 
program can output the original dynamics of a starting integer in terms of “-” presenting (3 × x + 1)/2 
and “0” presenting x/2. This data can be used for observing the relation between the count of “-” and 
the count of “0”. By analyzing outputting data, we discover that the ratio, which is the count of “-” 
over the count of “0”, is 1 asymptotically with the grow of starting integer. 

We further study a reverse problem: Given a reduced dynamics or partial dynamics, can we 
compute a residue class that presents those dynamics? We designed a dedicated algorithm that takes 
as input a dynamics with length t consists of “I” or “O” that can output a residue class who presents 
this dynamics in the first t transformations. We thus designed a computer program that can output a 
reside class by inputting a reduced dynamics or partial dynamics. That is, inputting c∈{I,O}L, 
CntO(s) ≤ ceil(CntI(s) × λ), λ = ln(1.5)/ln(2) = 0.58469250, s = Substr(c,1,i), I = 1, 2, ..., L, where CntO(s) 
returns the count of “O” in string denoted as s; CntI(s) returns the count of “I” in string denoted as s; 
ceil(x) returns the minimal integer that is not less than x; Substr(c,1,i) returns the first i characters in 
terms of “I” or “O” (i.e., substring) in string denoted as c. In other words, the dynamics is above of or 
cutting ratio line in our proposed Collatz graph (i.e., Figure 2). Note that the algorithm is quit 
lightweight and designed from our formal proof of Partition Theorem [10]; we prove that all natural 
numbers are partitioned regularly corresponding to ongoing dynamics. Given any natural number x 
that equals i module 2t (i is an odd integer), the first t transformations in terms of “I” or “O” can be 
determined and identical with the first t transformations of i. Once current value after t (t is greater 
or equal to 2) transformations of “I” or “O”, is less than x, then reduced dynamics of x is obtained. 
Otherwise, the residue class of x (namely, i module 2t) can be partitioned into two halves (namely, i 
module 2t + 1 and i + 2t module 2t + 1), and either half presents “I” or “O” in intermediately forthcoming 
(t+1)-th transformation. 

The Collatz conjecture seems to be extremely hard and advances are few although it is out for 
more than 80 years. L. Colussi [11] proposed Collatz function R(x) = (3 × x + 1)/2h where h is the 
highest power of 2 that divides 3 × x + 1. They explore some properties of convergence classes (i.e., 
the set of odd positive integers) denoted as Gk such that Rk(x) = 1. The longest progressions for 
initial starting numbers of less than 10 billion and 100 quadrillion are calculated by G.T. Leavens [12] 
and R.E. Crandall [13], respectively. I. Krasikov and J.C. Lagarias proved that the number of 
integers finally reaching one in the interval [1, x] is at least proportional to x 0.84 [14].  

2. Data Description  

2.1. Dataset I ([2,15]):  

The format of txpo9-c3-3-9999999 (with file size 140 MB) is listed in Table 1. More integers can 
be computed, e.g., txpo9-c3-3-99999999 (with file size 1.5 GB), by changing inputting arguments. 
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Table 1. Data columns in data file (e.g., txpo9-c3-3-9999999). 

Starting Integer 
Starting Integer 

in Binary 
The Count of “I” 

(“-”) 
The Count of 

“O” (“0”) 

Ratio =  
The Count of 
“O” (“0”)/The 
Count of “I” 

(“-”) 

For more examples in details, we illustrate some lines in the data files.  
3 11 2 2 1.0000000 --00 
7 111 4 3 0.7500000 ---0-00 
11 1011 3 2 0.6666667 --0-0 
15 1111 4 3 0.7500000 ----000 
19 10011 2 2 1.0000000 --00 
23 10111 3 2 0.6666667 ---00 
27 11011 37 22 0.5945946 --0-----0-0--0---0----0-00---0--0------00----000-0-0-000-00 
31 11111 35 21 0.6000000 -----0-0--0---0----0-00---0--0------00----000-0-0-000-00 
35 100011 2 2 1.0000000 --00 
39 100111 5 3 0.6000000 ---0--00 
43 101011 3 2 0.6666667 --0-0 
47 101111 34 20 0.5882353 ----0-0--0---0----0-00---0--0------00----000-0-0-000-0 
51 110011 2 2 1.0000000 --00 
55 110111 3 2 0.6666667 ---00 
59 111011 4 3 0.7500000 --0--00 
63 111111 34 20 0.5882353 ------000--0---0----0-00---0--0------00----000-0-0-000 
.... 
Those are reduced dynamics, but the source code can be changed to output original dynamics. 

The meaning of data column is identical.  

2.2. Dataset II ([8]) 

Table 2 lists data columns in file named CODE that is outputted by txpo15.exe for original 
dynamics of an extremely large integer. 

Table 2. Data columns. 

Original Dynamics in Term of “-” 
and “0” 

The Count of “I” 
(“-”) 

The Count of 
“O” (“0”) 

Ratio =  
The Count of 
“O” (“0”)/The 
Count of “I” 

(“-”) 

For example, the CODE file for starting integer that equals 2100－1 is as follows: 

----------------------------------------------------------------------------------------------------0000-00---00-000--0--000-

000--0000-0--00---00-0---00-0---0---0-00---0-0---0000--00-0-00---0-0000---00-----0-00-0000-000--000-000--

-0-00-00-0--00------0-----00---0-0-0000-0--000-0----0-00000---000-0-0000-0------00--00-00---0-0-00000-0-00

00-0----00-----00--0--0-000000--0--0000-00-00---00--0--0--000-0----0------0----00-0000---0---0-00--0---000-0

0000-00-----0--0--0-0---0--0------000-00---00-0-0-0---0-00-0000-00---0-0-0--00-00-00-0--0-00-0000------0---

00--0000-----0-0-0-0----00-0--0-0----0--000------0-00--0---00-00-0-00---0--00--0-000-000-0-----00-----0---0--

0-0-0-000--0--000000--000--0-0--0-0-0-00----0--00-0-0--0---000000---0000--0-00----0-0-0--000-0000-0--0---

---0--000-0--00-00-0-00-0---0-0-00-00-000-----00-----00---0-0-00000000----0000-0------0--0-0-0-0----0-0-0-0

0-0-0--0--00-00-0000-0--0--0-00-0--000000-0-00-00-0000---0000-000 
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528 409 0.7746212 
We can check whether extremely large integer can return 1 finally, as well as the count of “-”, 

the count of “0”, and the ratio between the count of “0” over the count of “-”. 

2.3. Dataset III ([9]) 

There is only one column in the data file that is ratio, which is the count of “0” over the count of 
“-” in original dynamics.  

For example, the first 20 lines in generated file txpo10b-len100-try5000 by txpo10b.exe is as 
follows. 

0.9958678 
1.0360360 
1.2907802 
1.1111112 
1.0516431 
0.9225589 
0.9426523 
1.0514019 
1.0042194 
0.9166667 
0.9918367 
0.9958848 
1.0041841 
1.0264317 
1.1396648 
1.0265486 
0.9456522 
1.0265486 
1.0084746 
0.8750000 
.... 
There are 5000 randomly generated starting integers, thus there are 5000 lines in this data file.  

Note that we can also output the details on original dynamics for each sample by turn on the 
printing option in source code, but as we need further compute average and variation so those 
details are omitted and option is commented. 

By using comp4.exe, the average and variation of those 5000 ratios can be computed.  
For example, just run comp4.exe with data file.  
comp4.exe txpo10b-len100-try5000 
The results of the above are as follows. 
1.0184816   0.0095717 
For another example,  
comp4.exe txpo10b-len1000-try40000 
1.0018520   0.0008443 
Note that as the starting integers (samples) are randomly generated, the results are usually not 

same. Here we use randomly generated integers because enumerating all such large integer is 
impossible and unnecessary in a proper short running time.  

2.4. Dataset IV ([16,17]) 

The major output of the program is a residue class whose reduced dynamics is inputting 
argument or the first t transforms are inputting argument with length t.  

For example,  
txpo25.exe IIOO > txpo25-IIOO  
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The last line of the file is as follows. 
“Main: final i = 3, module is 16, i.e., RD[x in [3]_{16}] = IIOO. “ 
txpo25.exe IIIIOOO > txpo25-IIIIOOO 
The last line of the file is as follows. 
“Main: final i = 15, module is 128, i.e., RD[x in [15]_{128}] = IIIIOOO.” 
txpo25.exe IIO > txpo25-IIO 
The last line of the file is as follows. 
“Main: final i = 3, module is 8, i.e., DYNM[x in [3]_{8},3] = IIO.” 
We also output the intermediate computation results for whole procedure, which can be as a 

reference, although the last line is of the most importance. 

3. Methods  

3.1. Dataset I: Exploring Properties in Reduced Dynamics ([2]) 

• Step 1: txpo9.c. It is source code in C that can be compiled into an executable program by any C 
compiler. It is ANSI C code, thus it can be complied for either Windows or Linux platform. 

• Step 2: Compile txpo9.c to generate txpo9.exe. txpo9.exe is an executable program, and can be 
executed in any DOS command shell in Windows (if compiled for Windows platform) and 
computing results (as generated files) will be obtained.  

• Step 3: Run txpo9.exe, which has five options (as the first argument).  

(1) Output reduced dynamics of a specific integer, which can be set in the source code 
before compiling, e.g., we can set the integer as 210000 − 1, which has a form like 11...11 where the 
bit length is 10000 and all bits are 1. The MAXLEN of bit length is 80,040 due to inner memory 
constraint. Note that, inner memory constraint can be broken by out file manipulation, which is 
provided in txpo15.c.  
E.g., txpo9.exe 1 > txpo9-c1                    //210000 − 1   c: choice   p: pow() 

(2) Output reduced dynamics of a specific decimal integer, which is inputted as an 
argument.  
E.g., txpo9.exe 2 703 > txpo9-c2-703            //703 
txpo9.exe 2 8088063 > txpo9-c2-8088063     //8088063 

(3) Output reduced dynamics of a specific decimal integers in a rang, which are inputted as 
two arguments.        
E.g., txpo9.exe 3 3 1000000 > txpo9-c3-3-1000000  //[3, 1000000] 

(4) Output reduced dynamics of large decimal integers in a range, which are inputted as 
two arguments for exponents. 
E.g., txpo9.exe 4 6 8 > txpo9-c4-p106-p108      //[106 + 3, 108] 
txpo9.exe 4 8 9 > txpo9-c4-p108-p109      //[108 + 3, 109] 

(5) Output reduced dynamics of extremely large decimal integer that is ~1018. Eighteen can 
be modified to others in source codes. If it is larger, then the waiting time will be more.  
E.g., txpo9.exe 5 > txpo9-c5                  //[1018 + 3, 16 × 1018] 

Note that the source code can be changed to output original dynamics easily by replacing main 
loop to as follows: “while (strlen(current_x)!=1)”, because the final integer in original dynamics is 1 
that is represented by a string with length 1.  

3.2. Dataset II: Verifying Whether Extremely Large Integer Guarantees Collatz Conjecture (Can Return to 1 
Finally) ([8]) 

• Step 1: Configuring following code in source code of txpo15.c, which is a “macro” in C as 
follows: 
#define MAXLEN 100//the maximal bit length, e.g., 100, 1000, 10000, 100000, and 1000000.  
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txpo15.c. It is source code in C that can be compiled into an executable program by any C 
compiler. It is ANSI C code, thus it can be complied for either Windows or Linux platform. 
• Step 2: Compile txpo15.c to generate txpo15.exe.  

txpo15.exe is an executable program, and can be executed in any DOS command shell in 
Windows (if compiled for Windows platform) and computing results (as generated files) will be 
obtained.  
• Step 3: Run txpo15.exe, generating following data. 

1. CODE. The file is generated by running the program (i.e., txpo15.exe), and it stores dynamics 
data in terms of ``-'' presenting (3X  + 1)/2 and ``0'' presenting x/2. The counts on the number of 
''-'' and ''0'' are also included in the file. 

2. input_start. The file is generated by running the program, and it stores tested starting integer 
that is determined by 2MAXLEN − 1, e.g., 2100000 − 1. 

3. DYNAMICS. The file is generated by running the program, which records all intermediate 
results (transformed integers), after occurring either (3X + 1)/2 or x/2, from the starting integer 
to 1. Note that, we suggest to stop outputting this file JUST for saving time; it can be used for 
check the results for small starting integers such as less then 230 − 1. 

3.3. Dataset III: Exploring the Ratio Between the Count of x/2 and the Count of (3 × x + 1)/2 in Original 
Dynamics for Extremely Large Starting Integers Asymptotically ([9]) 

• Step 1: Configuring following code in source code of txpo10b.c, which is a “macro” in C as 
follows. 
#define MAXLEN 100//the maximal bit length, e.g., 100, 1000, 80,000. 
txpo10b.c is source code in C that can be compiled into an executable program by any C 

compiler. It is ANSI C code, thus it can be complied for either Windows or Linux platform. 
• Step 2: Compile txpo10b.c, generate txpo10b.exe.  

txpo10b.exe is an executable program, and can be executed in any DOS command shell in 
Windows (if compiled for Windows platform) and computing results (as generated files) will be 
obtained. 
• Step 3: Run txpo10b.exe by inputting argument that specifying the number of randomly 

generated integers.  
For example, If MAXLEN is 2000 that specifies the bit length of randomly generated integers, 

and inputting argument is 4000 that specifies the number of randomly generated integers, then use 
following command:  

tpxo10b.exe 4000 > tpxo10b-len2000-try4000 
The data file named tpxo10b-len2000-try4000 will be generated.  

• Step 4: Compile comp4.c to generate comp4.exe.  
• Step 5: Run comp4.exe to compute the average and variation of ratios for samples. 

For example, to get the average and variation of ratios for 4000 samples in above data file, just 
do 

comp4.exe tpxo10b-len2000-try4000.  
Then, the average and variation of ratios that is count of ``-’’ over count of ``0’’ for 4000 samples 

will be displayed.  

3.4. Dataset IV: Exploring the Inverse Mapping from a Dynamics to a Residue Class—Inputting a Reduced 
Dynamics or Partial Dynamics and Outputting a Residue Class ([16]) 

• Step 1: txpo25.c is source code in C that can be compiled into an executable program by any C 
compiler. It is ANSI C code, thus it can be complied for either Windows or Linux platform. 

• Step 2: Compile txpo25.c, generate txpo25.exe.  
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txpo25.exe is an executable program, and can be executed in any DOS command shell in 
Windows (if compiled for Windows platform) and computing results (as generated files) will be 
obtained. 
• Step 3: Run txpo25.exe by inputting argument that specifying a reduced dynamics or a partial 

dynamics.  
tpxo25.exe IIOO > tpxo25-IIOO 
tpxo25.exe II > tpxo25-II  
tpxo25.exe O > tpxo25-O 

4. Code Availability 

1. txpo9.c ([2]). It is source code in C that can be compiled into an executable program by any C 
compiler. It is ANSI C code, thus it can be complied for either Windows or Linux platform.  
This code can output reduced dynamics for a range of integers such as [3, 99999999]. The range 

is inputted as two arguments.  
2. txpo15.c ([8]). It is source code in C that can be compiled into an executable program by any C 

compiler. It is ANSI C code, thus it can be complied for either Windows or Linux platform.  
This code generates original dynamics for extremely large integers without upper-bound, e.g., 

2100000 − 1. The bit length of integers can be specified by “macro” definition for MAXLEN in the source 
code. 
3. txpo10b.c ([9]). It is source code in C that can be compiled into an executable program by any C 

compiler. It is ANSI C code, thus it can be complied for either Windows or Linux platform.  
This code outputs original dynamics of many randomly generated integers (also call samples). 

The number of randomly samples is specified by inputting argument of the program. The bit length 
of randomly generated integers can be specified by Marco definition for MAXLEN in the source 
code.  
4. txpo25.c ([16]). It is source code in C that can be compiled into an executable program by any C 

compiler. It is ANSI C code, thus it can be complied for either Windows or Linux platform.  
This program can takes as input a reduced dynamic or partial dynamics consists of “I” or “O” 

with length L, and outputs a residue class whose first L transformations are inputting.  
It creates a one-to-one mapping between residue class and dynamics.  

5. Technical Validation 

5.1. Dataset I ([2]):  

The reduced dynamics in txpo9-c3-3-9999999 can be manually verified.  
For example, the 2nd line in the file is as follows 
7 111 4 3 0.7500000 ---0-00 
It can be manually computed by 7 -> 11 -> 17 -> 26 -> 13 -> 20 -> 10 -> 5. 5 is less than 7, thus ends. 

Here we combine 3 × x + 1 and x/2 together as it always occurs in both.  
We can also randomly choose one line in the data file to verify its soundness manually.  
Note that in source code txpo9.c we can see that if there is a ratio that is not larger λ = 

ln(1.5)/ln(2) = 0.58496250, the program will output an alert. More specifically, the source code in 
txpo9.c is as follows. 

if (ratio<=0.58496250) 

 { 

  printf("\n\n\n------Alert!------\n\n\n"); 

  exit(0); 

 } 
By searching “Alert” in txpo9-c3-3-99999999 (e.g., grep or any string search function in a text 

edit tool), we can find that there exists no “Alert” in the file, which means all ratios are larger than 
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0.58496250. It thus verified that in [3, 9999999] all odds with 4k + 3 guarantee this bound. The ratios 
for even and odd wit 4k + 1 are trivial, because the reduced dynamics for even is trivial, i.e., “O”, and 
the reduced for odds with 4k + 1 is also trivial, i.e., “IO”. Together with ratio = 1/0 for even and ratio = 
1/1 for 4k + 1.  

Indeed, we formally prove this observation in another paper.  
Besides, we prove the period of reduced dynamics in another paper, which can be observed in 

the reduced dynamics data file with the name such as txpo9-c3-3-99999999. The period is 2L, L is the 
length of reduced dynamics.  

For example, reduced dynamics for 7 is the 2nd line in the file as follows 

7 111 4 3 0.7500000 ---0-00. 
The length is 4 + 3 = 7. Thus, the period is 27 = 128. That is, reduced dynamics of 7 + 128 = 135 is 

identical with 7 and is ---0-00 too. It can be checked by the 34th line in the file as follows 

135 10000111 4 3 0.7500000 ---0-00. 
Similarly, reduced dynamics of 135+128 = 263 is the same as 135, which can be checked by the 

66th line in the file as follows 

263 100000111 4 3 0.7500000 ---0-00. 
Note that, L is also the total count of x/2 that includes the count of “0” presenting x/2 and the 

count of “-” presenting (3 × x +1)/2.  

5.2. Dataset II ([8]) 

We can choose 24 − 1=16 − 1=15 to verify the correctness of the program.  
The CODE file outputted by txpo15.exe is as follows 

----0000-000 

 5 7 1.4000000 
It can be manually verified by 15 -> 23 -> 35 -> 53 -> 80 -> 40 -> 20 -> 10 -> 5 -> 8 -> 4 -> 2 ->1. 
The original dynamics is right.  
The count of “-” is 5 and the count of “0” is 7. Thus, the ratio is 7/5 =1.4.  
By the program txpo15.exe, we can verify that even extremely large integers can also return to 1 

finally. For example, by outputted file CODE of txpo15.exe that includes “macro” definition for 
MAXLEN 100000, we can verify that 2100000 − 1 can return to 1 after 481603 times of “-” (i.e., (3 × x + 
1)/2) and 381720 times of “0” (i.e., x/2). The ratio, which is the count of x/2 over the count of (3 × x + 
1)/2, is 0.7926030.  

More results are listed in Table 3. In the table, U is the count of 3 × x + 1, which equals the count 
of “-”. D-U is D (i.e., the count of x/2) minus U (i.e., the count of 3 × x + 1), which indeed equals the 
count of “0”. MAXLEN is the bit length of starting integer, which is also Marco in C source code. 
Ratio is (D-U)/U that is the count of “0” over the count of “-”. 

Table 3. Original dynamics of extremely large integers. 

MAXLEN x (in binary) (U, D－U) ratio 
100 1100 = 

100

1...111  (528, 409) 0.7746212 

500 1500 = 
500

1...111  (2,417, 1,914) 0.7918908 

1000 11,000 = 
000,1

1...111  (4,316, 3,525) 0.8167285 

5000 15,000 = 
000,5

1...111  (24,131, 19,116) 0.7921761 

10000 110,000 = 
000,10

1...111  (48,126, 38,152) 0.7927524 
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50,000 150,000 = 
000,50

1...111  (239,020, 189,818) 0.7941511 

100,000 1100,000 = 
000,100

1...111  (481,603, 381,720) 0.7926030 

 

5.3. Dataset III ([9]) 

We can generate 10 samples by txpo10b.exe 10 > txpo10b-len100-try10.  
Then, manually compute the average and variance of these 10 ratios.  
For the verification of generated ratios, we can modify the source code to output the original 

dynamics, recompile the source code, execute the program, and verify the original dynamics 
manually.  

It would be better if the number of samples are larger. We observe that the ratio—the count of 
x/2 over the count of (3 × x + 1)/2 in original dynamics—asymptotically approaches 1, with the 
growth of starting integer. It can be observed that average of ratio approaches 1 and variance 
approaches to 0. More results are listed in Table 4. 

Table 4. Average and variance of the ratio with the growth of starting integer x. 

Bit Length 
of x 

The Number of 
Randomly Generated x Digits of x 

Average of 
Ratio 

Variance of 
Ratio 

500 5000 150 1.0034897 0.0017366 
500 10,000 150 1.0042674 0.0017188 
500 20,000 150 1.0040790 0.0017178 
500 40,000 150 1.0038885 0.0017010 
500 80,000 150 1.0037522 0.0016996 
500 160,000 150 1.0039997 0.0017286 
500 320,000 150 1.0040141 0.0017273 
1000 5000 300 1.0025468 0.0008620 
1000 10,000 300 1.0021506 0.0008277 
1000 20,000 300 1.0017902 0.0008353 
1000 40,000 300 1.0018520 0.0008443 
1000 80,000 300 1.0018142 0.0008382 
1000 160,000 300 1.0018796 0.0008404 
1000 320,000 300 1.0018988 0.0008436 
5000 5000 1500 1.0002556 0.0001674 
5000 10,000 1500 1.0004715 0.0001627 
5000 20,000 1500 1.0004982 0.0001694 

10,000 5000 3000 1.0001945 0.0000817 
10,000 10,000 3000 1.0003496 0.0000821 
10,000 20,000 3000 1.0003789 0.0000816 
40,000 2000 12,000 1.0000072 0.0000208 
40,000 4000 12,000 1.0000508 0.0000208 
40,000 8000 12,000 0.9999926 0.0000207 
80,000 500 24,000 0.9999365 0.0000095 
80,000 1000 24,000 0.9998791 0.0000099 
80,000 1500 24,000 0.9999615 0.0000098 
80,000 2000 24,000 0.9998852 0.0000105 
80,000 3000 24,000 1.0000138 0.0000105 

The results can also be depicted in Figure 1. 



Data 2019, 4, 89 11 of 13 

 

 
 

Figure 1. Average and variance of ratio with the growth of starting integer x. 

5.4. Dataset IV ([16]) 

The correctness of the outputted residue class can be verified manually or by data file 
txpo9-c3-3-99999999 that presents the reduced dynamics, and partial dynamics can also be verified 
in them.  

Indeed, we prove Partition Theorem in another paper [10]. The partition can be observed in the 
following reduced dynamics graph. Given any natural number x, that is, i module 2t (i is an odd 
integer), the first t transformations in terms of I or O can be determined and identical with the first t 
transformations of i. Once current value after t (t is greater or equal to 2) transformations of I or O, is 
less than x, then reduced dynamics of x is obtained. Otherwise, the residue class of x (namely, i 
module 2t) can be partitioned into two halves (namely, i module 2t + 1 and i + 2t module 2t + 1), and 
either half presents I or O in intermediately forthcoming (t + 1)-th transformation. 

Here we propose to present reduced dynamics as a graph (tree) for better understanding (see 
Figure 2), in which there are two types of edges such as I or O. I is represented by black right arrow 
and O is represented by blue down arrow. Squares represent the starting integer and triangles 
represent the first transformed integer that is less than starting integer. Thus, a path from square to 
triangle will be a reduced dynamics. Each edge has a label related to a residue class. RD[x] 
represents reduced dynamics of x. DYNM(x,t) represents the first t transforms of x, in terms of I or O. 
(p,q) is the count of “I” and the count of “O”, respectively. In all reduced dynamics, q = 1 when p = 0. q 
= ceil(λ × p) when p ≥ 1 where λ = ln(1.5)/ln(2). The slope of ratio line (in red) is λ = ln(1.5)/ln(2) = 
0.58496250. All reduced dynamics cuts ration line in the last edge. Above ration line is a partial 
dynamics. Given a reduced dynamics or a partial dynamics, a residue class can be computed by 
txpo25.exe. From this graph, we can also observe the partition is regular in half for each edge with 
the path prolonging. 
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Figure 2. The reduced dynamics graph with partition labels. 

By this graph, we can easily verify the outputting residue class of txpo25.exe.   
For example, txpo25.exe IIOO > txpo25-IIOO. The outputting residue is x in [3]16 (i.e., residue 

class that is 3 module 16). We can verify whether this reside class is correct or incorrect according to 
txpo9-c3-3-99999999. 

The first line of the file is as follows. 
3 11 2 2 1.0000000 --00 
3 + 16 = 19. The 5th line of the file is as follows. 
19 10011 2 2 1.0000000 --00 
Similarly, 35 100011 2 2 1.0000000 --00; 51 110011 2 2 1.0000000 --00.   

6. Conclusion 

In this paper, we describe the data for studying Collatz dynamics that may result in the final 
proof of Collatz conjecture. The data come from the output of computer programs, and the source 
code of the computer programs are also described. Some laws on Collatz reduced dynamics can be 
observed in the data, and those laws reveal critical properties in the computation such as ratio, 
period, and residue classes. The results in this paper may also providing heuristics for exploring 
other mathematical problems in multiple folders such as linear dynamics system, discrete dynamics 
system, and complexity system.  
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