
data

Article

CaosDB—Research Data Management for Complex,
Changing, and Automated Research Workflows

Timm Fitschen 1,2,‡ , Alexander Schlemmer 1,3,*,‡ , Daniel Hornung 1,† ,
Henrik tom Wörden 1,2,† , Ulrich Parlitz 1,2,3 and Stefan Luther 1,2,3,4

1 Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany;
timm.fitschen@ds.mpg.de (T.F.); d.hornung@indiscale.com (D.H.); h.tomwoerden@indiscale.com (H.t.W.);
ulrich.parlitz@ds.mpg.de (U.P.); stefan.luther@ds.mpg.de (S.L.)

2 Institute for the Dynamics of Complex Systems, Georg-August-Universität, 37077 Göttingen, Germany
3 German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany
4 Institute of Pharmacology and Toxicology, University Medical Center Göttingen, 37075 Göttingen, Germany
* Correspondence: alexander.schlemmer@ds.mpg.de
† Current address: Indiscale GmbH i.G., 37075 Göttingen, Germany.
‡ These authors contributed equally to this work.

Received: 29 April 2019; Accepted: 6 June 2019; Published: 10 June 2019
����������
�������

Abstract: We present CaosDB, a Research Data Management System (RDMS) designed to ensure
seamless integration of inhomogeneous data sources and repositories of legacy data in a FAIR way.
Its primary purpose is the management of data from biomedical sciences, both from simulations and
experiments during the complete research data lifecycle. An RDMS for this domain faces particular
challenges: research data arise in huge amounts, from a wide variety of sources, and traverse a highly
branched path of further processing. To be accepted by its users, an RDMS must be built around
workflows of the scientists and practices and thus support changes in workflow and data structure.
Nevertheless, it should encourage and support the development and observation of standards and
furthermore facilitate the automation of data acquisition and processing with specialized software.
The storage data model of an RDMS must reflect these complexities with appropriate semantics and
ontologies while offering simple methods for finding, retrieving, and understanding relevant data.
We show how CaosDB responds to these challenges and give an overview of its data model, the
CaosDB Server and its easy-to-learn CaosDB Query Language. We briefly discuss the status of the
implementation, how we currently use CaosDB, and how we plan to use and extend it.

Keywords: RDMS; research data management; FAIR; database; ACID

1. Introduction

Despite the technological advances over the last decades, the scientific community still faces
the problem of storing and accessing scientific data in a structured and future-proof manner [1–4].
Although principles for good scientific data management have since been formulated under the
acronym FAIR [5] and are now widely recognized in the community, real-life obstacles tend to prevent
their wide-spread adoption. Especially in cross-disciplinary environments, the interaction between
different user groups, e.g., numerical scientists conducting simulation studies and experimenters
working in the laboratory, often leads to highly inhomogeneous approaches to data management.
For such heterogeneous data, inefficiencies become inevitable when different kinds of data have to
be combined in a joint research project or when data has to be accessed by scientists who were not
involved in the recording and storage procedure. In the worst case, this can lead to data being de facto
inaccessible after their creators can no longer be reached.

Data 2019, 4, 83; doi:10.3390/data4020083 www.mdpi.com/journal/data

http://www.mdpi.com/journal/data
http://www.mdpi.com
https://orcid.org/0000-0002-4022-432X
https://orcid.org/0000-0003-4124-9649
https://orcid.org/0000-0002-7846-6375
https://orcid.org/0000-0002-5549-578X
https://orcid.org/0000-0003-3058-1435
https://orcid.org/0000-0001-7214-8125
http://www.mdpi.com/2306-5729/4/2/83?type=check_update&version=1
http://dx.doi.org/10.3390/data4020083
http://www.mdpi.com/journal/data


Data 2019, 4, 83 2 of 11

The ongoing issues are rooted in some ubiquitous properties of scientific environments
themselves [6,7].

• Scientists use specific or customized tools, software and data formats with good reason. A research
data management system (RDMS) must be built around their workflows and practices and be open
for change. It furthermore should assist in integrating data, even if stored in propriertary formats.
Enforcing one of the individual systems cannot work in a heterogeneous scientific environment.

• If the system imposes too many restrictions on individual scientists they are likely to be unwilling
or even unable to use it. Additionally, the required time and financial cost for a RDMS must be
adequate for possibly small research groups [2,7].

• If the RDMS requires too much extra work for learning and understanding, it is likely that the
individual scientist will be unable to use it efficiently or just be unwilling to use it at all. This holds
in particular for the construction of queries which should retrieve data according to powerful
criteria while being simple and intuitive at the same time. For this reason it is unlikely that
a scientist without computer science background will be able to use Structured Query Language
(SQL) or SPARQL efficiently [8–10].

• The system should strongly encourage to develop and use standards for workflows and data
models without being overly restrictive. Users of the database can only profit from the system
when data is organized sufficiently structured to enable everyone to search and retrieve data
easily and to understand the structure of the data intuitively. At the same time the database has to
be prepared for constantly evolving data models and standards [2].

• File systems and other types of storage usually organize data into some kind of hierarchy which
can be folders or projects. In scientific environments this can raise issues, especially when data
belongs to multiple projects or is part of cooperations.

Our open source software CaosDB is a research data management system built on top of robust
data management technologies (MySQL, HTTP, XML, file storages) that is specifically suited for
scientific research. Our approach is guided by two central principles:

• Simple and intuitive access to complex and changing data models
• Reuse and integration of existing workflows and technologies

2. Results

2.1. Requirements

Based on the considerations described in the previous section, we define the following
requirements for a data management system to address the mentioned issues. For reference, we use
the abbreviations from the original FAIR publication [5] to link our statements to the four principles:

• Findable (F1–F4)
• Accessible (A1–A2)
• Interoperable (I1–I3)
• Reusable (R1–R1.3)

Architecture. The system must be built in a client/server architecture for separating
the high-performance workload on the database and filesystem from the lightweight clients.
Create/Read/Update/Delete (CRUD) transactions on the server side must be ACID1 compliant
in order to keep the structure consistent at any time. The communication Application Programming

1 Atomicity, Consistency, Isolation, Durability.



Data 2019, 4, 83 3 of 11

Interface (API) must be built around a transparent human-readable protocol with RESTful2

identifiers [11]. This API can then be used by libraries and clients that can be integrated into
existing data management workflows. These requirements are needed to comply with A1–A1.2
of the FAIR principles.

Access control, file system. Heterogenous scientific environments require fine-grained
access-control on object level (A1.2). In order to seamlessly integrate into existing data acquisition
and data analysis workflows the system must be able to incorporate an existing file system with its
grown folder structure. Separation between file system storage and (meta)data storage factilitates data
management in compliance with A2.

Query language. One of the most important requirements is the query language which has to
fulfill several properties that guarantee that heterogenous data in big amounts can be searched and
retrieved easily. The logic behind the query language can also have a major impact on the data models
used. To spell this out more precisely, the data model (for implementing F1–F3) and the query language
(F4) must support:

• Entities with subtyping
• User-defined n-ary relationships and properties
• Integration of files and directories as entities
• Native support for primitive data types which include several numeric data types with their

physical units and uncertainties, standard compliant date and time values, booleans, strings, and
undefined values

• Compound data types for lists, sets, tuples, and dictionaries

This general nature of the data model enables data management in compliance with I1–I3, R1,
R1.2, and R1.3.

Extensibility. The system must be able to adapt to new software and hardware requirements.
Furthermore, the system must be flexible enough to adapt to continously changing scientific workflows.
The simplest way to ensure this extensibility is to implement a server-side API for extensions
and plug-ins.

Although we highlighted, that our requirements are feasible for implementing data management
in accordance with the FAIR guiding principles, we acknowledge that data management standards
might evolve in the future. Our requirements therefore have a strong focus on extensibility.

2.2. Implementation

CaosDB [12] is our in-house solution for fulfilling these conditions, to our knowledge it is currently
the only existing software to satisfy the mentioned requirements. CaosDB is an object-oriented database
with a powerful query language based on English natural language and a flexible and adaptive data
model. For example, a typical query could look like this:

SELECT flavour , rating , ingredients FROM Experiment
WHICH HAS A room_temperature > 26C AND
WHICH IS REFERENCED BY ExperimentSeries
WHICH HAS A name LIKE *ice cream testing*

It also integrates efficient management of large data files directly into the core functionality to
accomodate specific requirements by the scientific users:

• offers a flexible data model
• can be seamlessly integrated into existing workflows

2 Representational State Transfer.



Data 2019, 4, 83 4 of 11

• allows search for values of specific fields (not just full text search), with automatic unit conversion
and search for (back)references of linked objects.

2.3. Architecture

The software design follows a server/client architecture. The CaosDB server handles all CRUD
requests, implements consistency checks, and translates the requests into SQL commands which are
redirected to the MySQL backend. It furthermore provides a transparent layer for interactions with the
file system. The server frontend is written entirely in Java and is accessed using a RESTful API over
HTTP with XML messages. The frontend also serves a web user interface (WebUI, shown in Figure 1)
written in XSLT, HTML, and JavaScript that can be used for browsing data and maintenance operations.

Figure 1. Screenshot of the WebUI (graphical web user interface) of CaosDB showing a search query
that returned a fictitious experiment.

The server is complemented by client libraries for Python and C++ that encapsulate the XML
API for usage in scripting, data acquisition (manual and automated via file system crawlers) and data
analysis tools. Figure 2 gives a schematic overview of the software architecture.



Data 2019, 4, 83 5 of 11

CRUD transactions,
file upload/download,
query search
 

Analysis

Plug-ins

Scripts
for R, 

Python, 
...

Data
Aquisition

SimulationInhouse 
software

DropOffBox Drop files

Pick up
filesMySQL File System

HeartDB Server

Protocol API

HeartDB Server

Http/xml

CaosDB Server

Protocol APIWebUI
Http/XML CppCaosDB

PyCaosDB

ClientLib API

cp, scp, 
drag'n'drop

File system 
tools

Lab Software

Third-party
software

*.wav

*.dat

*.hdf5

*.tiff

+
Meta-data

CaosDB SoftwareManual data exchange Automatable data exchange

Figure 2. An overview of the components of the CaosDB project and its relations to contexts of
application. The CaosDB server encapsulates access to the MySQL back end and the local file system.
It implements the protocol Application Programming Interface (API) for CRUD transactions (creation,
retrieval, update, deletion), file exchange, and query search. The client libraries (ClientLib API) can
communicate with the server via the protocol API and provide interfaces in several programming
languages for automatable data exchange with data acquisition software and analysis tools. Data files
can be imported into CaosDB using the filesystem-based DropOffBox. The WebUI for convenient
database access is directly integrated into the core application. These also facilitate the manual data
exchange with non-customizable third-party tools and data sources.

2.4. Data Model

CaosDB has a general purpose object-oriented data model, depicted in Figure 3, which is not
tied to any particular scientific field or structure of data. It has a base object called ENTITY. ENTITIES

are either RECORD TYPES, RECORDS, or ABSTRACT PROPERTIES and every ENTITY has a unique,
server-generated ID.

Entity

can contain Properties

RecordType

can have parents of type RecordType

Record

can have parents of type RecordType

Property

can have parents of type Property

File

is a is a
is a

is a

Figure 3. An overview over the generic data model in CaosDB.

RECORD TYPES and ABSTRACT PROPERTIES are used to define the ontology for a particular
domain in which the RDMS is used. RECORDS are used to store the actual data and therefore represent
individuals or particular things, e.g., a particular experiment, a particular time series, etc. RECORD

TYPES define classes or types of things, e.g., persons, experiments, time series, etc. RECORDS can be
viewed as members of the class defined by its RECORD TYPE. These classes can contain ABSTRACT

PROPERTIES which define key-value relationships for properties of the things along with the expected
data type and possibly the default unit, a default value, or a range of permitted values. As files on the
back-end file system are a major focus of this database management system, there is a special entity



Data 2019, 4, 83 6 of 11

FILE that encapsulates typical file properties like path, size and checksum. ENTITIES can be related via
binary, directed, transitive IS-A relations which model both subtyping and instantiation, depending on
the relata. These relations construct a directed graph of the ENTITIES. If A IS-A B we call A the child of
B and B the parent of A. No adamant restrictions are imposed on the relate of the IS-A relation and
thus, ENTITIES can be children of multiple ENTITIES.

Each ENTITY has a list of ENTITY PROPERTIES, or in short just PROPERTIES. An ENTITY PROPERTY

is not an ENTITY of its own, but a triple of an ABSTRACT PROPERTY, a value or NULL, and an
IMPORTANCE. The values can be numericals, strings, dates, any other valid value that fits into one of
several built-in data types, or, most notably, references to other ENTITIES. The IMPORTANCE is either
OBLIGATORY, RECOMMENDED, SUGGESTED, or FIX. A valid child of an ENTITY implicitly inherits its
parent’s PROPERTIES according to their IMPORTANCE, which means that it is obliged, recommended,
or only suggested to have a PROPERTY with the same ABSTRACT PROPERTY (or any subtype thereof).
As opposed to PROPERTIES with other priorities, FIXED PROPERTIES have no effect on the ENTITY’s
children. During the creation or update of ENTITIES, the IMPORTANCES of the parents are being
checked by the Server. Missing OBLIGATORY PROPERTIES invalidate the transaction and result in an
error, by default. Missing PROPERTIES, when they are RECOMMENDED, result in a warning, but the
transaction is considered valid. Entities with missing SUGGESTED PROPERTIES are silently accepted
as valid.

This novel approach to ontology standardization is inspired by the operators from deontic logics,
the logics of obligation and permission [13]. It is designed to guide the users without restricting them
too heavily and ensures that they do not insert their data wrongly by accident. Furthermore, it helps
them to find the most relevant or best fitting PROPERTIES for their ENTITY based on the supertype(s).

CaosDB thus facilitates the definition and observation of standards for data storage.

2.5. Query Language

Existing data management technologies already provide very comprensive and expressive query
languages. Two prominent examples are SQL and SPARQL. SPARQL is a language for querying RDF
triple stores and therefore also suited for complex queries of semantic data models.

However, SPARQL statements for simple requests often result in long and complex
statements [8–10] which motivated the need for a simpler but similarly expressive query language
also suited for scientists without computer science background.

We would like to illustrate this with the following example:
Suppose we would like to retrieve all datasets from experiments that were conducted in 2017

at a room temperature of 293.15 K. This simple request would result in a highly complex SPARQL
statement. The filter for the dates alone would read as:

(?date >= xsd:date("2017-01-01") && ?date < xsd:date("2018-01-01"))

The implementation of a temperature filter covering unit conversion would even rely on external unit
conversion extensions.

In contrast to SPARQL, the CaosDB Query Language (CQL) which we implemented in CaosDB
allows for a much simpler expression for the whole request:

Find Experiment with date in 2017 and room temperature=293.15K

CQL is translated into SQL statements by the CaosDB server. These statements are then passed
on to the MySQL backend which carries out the actual request.

CQL is designed to express simple questions with simple queries resembling English. Its syntax
is illustrated in Figure 4 using EBNF3. The language is case-insensitive, but for clarity some terms are
explicitly spelled in upper or mixed case here.

3 Extended Backus-Naur Form.



Data 2019, 4, 83 7 of 11
Data 2019, 4, 83 7 of 11

cql = query prefix , [entity type], entity name ,
[filter separator , filter] ;

query prefix = "FIND" | "COUNT" | select clause ;
select clause = "SELECT", field , {",", field}, "FROM" ;
entity type = "ENTITY" | "RECORDTYPE" | "RECORD"

| "PROPERTY" | "FILE" ;
entity name = ? any string ? ;
filter separator = "WHICH", ["HAS A"] | "WITH" ;
filter = conjunction | disjunction | negation

| propery name , operator , value
| back -reference | ...

...

Figure 4. The first levels of the CaosDB Query Language (CQL) syntax in Extended Backus-Naur Form
(EBNF). This is only a schematic overview and does not include the syntactic sugar or white spaces.
However, it should be noted that the top level of this syntax is not too complex and has only very few
keywords. Yet even simple queries are very powerful, mainly due to the transitivity of the IS-A relation.
In case of errors, the server responds with a detailed listing of syntactical errors which the clients then
use to inform the user.

The first term (QUERY PREFIX in Figure 4) in a CQL expression is the desired return type of
the query:

• A query starting with COUNT returns a non-negative integer.
• A query starting with FIND returns a list of entities.
• A query starting with SELECT returns a table containing the values of selected PROPERTIES.

This is optionally followed by an ENTITY TYPE which restricts the query to specific entities.
The most important information searched for is probably the ENTITY NAME which specifies the actual
“thing” searched for. This term makes use of the object-oriented structure of the database and—in
addition to searching for all entities having a specific name—also returns subtypes and RECORDS being
of that type. In a CQL expression, ENTITY NAME is followed by a list of filters which are connected by
filter separators. Filters can address any possible PROPERTY of an ENTITY and restrict the values to
ranges or particular values, use a range of comparison operators, and even search with wildcards or
regular expressions. Furthermore, relations between ENTITIES can be expressed precisely. Filters can
be combined with logical operators like AND, OR, and NOT. The query processor is able to interpret
and convert physical units. This unique feature simplifies working with scientific data and sets CQL
apart from SQL and various modern query languages for RDF(S), OWL or graph data.

We will illustrate the basic concepts by giving some typical examples:

COUNT Experiment with date in 2017

will return the number of experiments from 2017. In this query, Experiment is typically the name of
a RECORD TYPE with a possibly large number of subtypes and instances. All ENTITIES which have
the name Experiment or have a parent with this name are filtered for those which have a PROPERTY

with the name date and a date value in the year 2017. CQL filters can also express the equivalence of
complex SQL joins in an easily understandable syntax:

FIND Person which is referenced as an Author by an Article which has a
Title like *terminating ventricular fibrillation*

In this example, Person is a RECORD TYPE. Article is another RECORD TYPE having an Author
and a Title as PROPERTIES. The statement would therefore return all RECORDS, if they are a
Person, that are assigned as values of an Author PROPERTY of a RECORD of type Article with a
specific title. Since the returned objects are themselves RECORDS of RECORD TYPE Person, they have
PROPERTIES, presumably a name, affiliation(s), possibly an ORCiD, an email-address or some other
contact information.

Figure 4. The first levels of the CaosDB Query Language (CQL) syntax in Extended Backus-Naur Form
(EBNF). This is only a schematic overview and does not include the syntactic sugar or white spaces.
However, it should be noted that the top level of this syntax is not too complex and has only very few
keywords. Yet even simple queries are very powerful, mainly due to the transitivity of the IS-A relation.
In case of errors, the server responds with a detailed listing of syntactical errors which the clients then
use to inform the user.

The first term (QUERY PREFIX in Figure 4) in a CQL expression is the desired return type of
the query:

• A query starting with COUNT returns a non-negative integer.
• A query starting with FIND returns a list of entities.
• A query starting with SELECT returns a table containing the values of selected PROPERTIES.

This is optionally followed by an ENTITY TYPE which restricts the query to specific entities.
The most important information searched for is probably the ENTITY NAME which specifies the actual
“thing” searched for. This term makes use of the object-oriented structure of the database and—in
addition to searching for all entities having a specific name—also returns subtypes and RECORDS being
of that type. In a CQL expression, ENTITY NAME is followed by a list of filters which are connected by
filter separators. Filters can address any possible PROPERTY of an ENTITY and restrict the values to
ranges or particular values, use a range of comparison operators, and even search with wildcards or
regular expressions. Furthermore, relations between ENTITIES can be expressed precisely. Filters can
be combined with logical operators like AND, OR, and NOT. The query processor is able to interpret
and convert physical units. This unique feature simplifies working with scientific data and sets CQL
apart from SQL and various modern query languages for RDF(S), OWL or graph data.

We will illustrate the basic concepts by giving some typical examples:

COUNT Experiment with date in 2017

will return the number of experiments from 2017. In this query, Experiment is typically the name of
a RECORD TYPE with a possibly large number of subtypes and instances. All ENTITIES which have
the name Experiment or have a parent with this name are filtered for those which have a PROPERTY

with the name date and a date value in the year 2017. CQL filters can also express the equivalence of
complex SQL joins in an easily understandable syntax:

FIND Person which is referenced as an Author by an Article which has a
Title like *terminating ventricular fibrillation*

In this example, Person is a RECORD TYPE. Article is another RECORD TYPE having an Author
and a Title as PROPERTIES. The statement would therefore return all RECORDS, if they are a
Person, that are assigned as values of an Author PROPERTY of a RECORD of type Article with a
specific title. Since the returned objects are themselves RECORDS of RECORD TYPE Person, they have
PROPERTIES, presumably a name, affiliation(s), possibly an ORCiD, an email-address or some other
contact information.



Data 2019, 4, 83 8 of 11

Another special feature are SELECT queries which follow an SQL-like syntax and represent their
results as a table, e.g., the result of

SELECT first name , family name from person with date of birth > 2000

will appear as an HTML table in the WebUI (downloadable as a tsv table), with three columns—id,
first name, and family name. This feature is intended to provide one of the interfaces between CaosDB
and existing scientific workflows.

CQL is inspired by SQL and therefore probably feels familiar to users with knowledge of prevalent
database management systems. It should be clear from the aforementioned examples that the query
language is structured, precise and powerful, but nevertheless resembles English sentences. This
makes it easier to learn for users without SQL experience.

2.6. User Management and Access Control

CaosDB provides a fine-grained role-based access control system with access control lists. It is
possible to define the permissions for insertion, update, retrieval and deletion of ENTITIES, single
PROPERTIES, and IS-A relations, as well as the access to the transaction log and the user management.

CaosDB has a built-in user database where users can sign up or be registered by administrators.
Furthermore, users can login with the credentials of their user accounts from PAM (Pluggable
Authentication Modules). Access roles—which are relevant for the authorization—can be assigned to
clients based on various criteria including their authentication status, the Unix groups of the user—if
PAM is used—and connection details, like IP address and others. This makes it possible to share
subsets of the data base with collaborators and even a greater audience of anonymous users.

3. Discussion

CaosDB is currently in productive use and handles around 40TiB of experimental data from
biomedical physics in 250,000 FILES along with detailed meta data contained in about 320 RECORD

TYPES and 95,000 RECORDS. Data file types include video recordings from optical imaging,
electrophysiological time series, scanned lab notes, and image files. A small excerpt of the data
model of this instance can be seen in Figure 5. Furthermore, data and parameters from simulations
and information about source code is stored along with analysis results of experimental and numerical
data. The analysis results are thereby linked to the data from which they stem. Many file types
are automatically parsed and integrated as parts of RECORDS into our data model. The hash sums
computed and stored for every file allow for comprehensive consistency checks. One advantage of our
strict separation between file system and data model is that the system can be directly used on top of
the established file system structure without the need to move or modify any existing file.

For data analysis mainly the CaosDB Python client is used, which can directly query and retrieve
the relevant data and use it for more specific analyses. The Python client can also be used in more
complex data analysis scenarios: for example, data can be retrieved from within a Jupyter notebook
using the Python client library. During this interactive data analysis, results and figures are created
which can be directly sent back to the CaosDB server and connected with their source data. Finally,
the whole Jupyter notebook can be committed as a file object to CaosDB for documenting the data
analysis workflow.

The power of CQL leads to much more complex SQL queries in the background than what
users would typically enter manually, and subsequently to perceived slower responses. Nevertheless,
it already proves to be faster than using simple file operations for finding specific data.



Data 2019, 4, 83 9 of 11

Figure 5. A Unified Modeling Language (UML) diagram of a small excerpt of the data model we
currently use for experimental data. Experiment is a RECORD TYPE with PROPERTIES date, LabNotes,
Audio and Photo. date is a simple PROPERTY of data type DATETIME. The other PROPERTIES reference
the corresponding RECORD TYPES LabNotes, Audio and Photo respectively. TranscribedLabNote is
a RECORD TYPE with parent LabNotes with a PROPERTY named revisionOf that has the data type
LabNoteScan. LabNoteScan is as well a RECORD TYPE with parent LabNotes.

Our current efforts to improve the data model focus on connecting experimental data to
intermediate and final results of data analysis, and the integration of data from cardiac simulations.

The software is publicly available at https://gitlab.gwdg.de/bmp-caosdb under the GNU Affero
General Public License [14]. A snapshot of the software version described here can be accessed at
http://dx.doi.org/10.17617/3.1s [12]. For setting up the system from scratch, a typical Linux server
setup (e.g., Debian or Ubuntu with MySQL/MariaDB) is required. The server software is written
in Java, some components need compilation with a C++ compiler (e.g., gcc). Detailed installation
instructions are provided along with the sources. Packages for typical Linux distributions will be
available soon to ease the installation process. Creating an own data model is straightforward and
can be done using the WebUI or the Python client. Challenges in designing a data model can differ
among workgroups.

Future Work

The evaluation of CaosDB in different scientific environements is currently ongoing, specifically
in the fields of geosciences and medical research. The flexibility of the data model allowed for an
effortless integration of data from these different scientific areas. Of special interest during these
evaluations is the adoption of CQL by people without computer science background, as well as an
overall feedback on usability.

One focus of the future development is in query language processing which is still subject to
algorithmic optimizations. Here, two specific projects are the improvement of caching facilities and
the optimization of the execution order of sub queries.

https://gitlab.gwdg.de/bmp-caosdb
http://dx.doi.org/10.17617/3.1s


Data 2019, 4, 83 10 of 11

4. Conclusions

In this article we presented our approach to improve research data management in heterogeneous
scientific environments. We presented our perspective on the current situation and proposed a list of
requirements an RDMS must fulfill and further described how our research data management system
lives up to these requirements.

The most important differences to existing solutions include a smart data model framework
which enforces the development of standards while allowing for enough flexibility to adapt to rapidly
changing scientific workflows. Furthermore, the powerful and intuitive query language enables quick
access to data and simplifies data retrieval and data analysis.

We conclude that our database management system could provide a solution for ongoing issues
with research data management in heterogeneous environments and promote the development
of standards of data storage and retrieval. It will thereby improve the FAIRness of research
data management.

Author Contributions: Conceptualization, T.F., A.S., D.H., H.t.W., U.P. and S.L.; Funding acquisition, U.P. and
S.L.; Software, T.F., A.S., D.H. and H.t.W.; Writing—original draft, T.F., A.S., D.H., H.t.W. and U.P.; Writing—review
& editing, A.S., D.H., U.P. and S.L.

Funding: We acknowledge support from the German Federal Ministry of Education and Research (BMBF)
(project FKZ 031A147, GO-Bio), the German Research Foundation (DFG) (Collaborative Research Centers SFB
1002 Project C3 and SFB 937 Project A18) and the German Center for Cardiovascular Research (DZHK e.V.).

Acknowledgments: We would like to thank the contributors to the software listed in the file caosdb/HUMANS.md
and especially Philip Bittihn and Johannes Schröder-Schetelig for their valuable ideas on the design of CaosDB.

Conflicts of Interest: A company for providing commercial support (IndiScale GmbH i.G.) for CaosDB was
founded by T.F., D.H., A.S., H.t.W.

Abbreviations

The following abbreviations are used in this manuscript:

RDMS Research Data Management System
FAIR Findable, Accessible, Interoperable and Reusable
REST Representational State Transfer
CRUD Create/Read/Update/Delete
ACID Atomicity, Consistency, Isolation, Durability
API Application Programming Interface
XML Extensible Markup Language
HTTP Hypertext Transfer Protocol
XSLT Extensible Stylesheet Language Transformations
HTML Hypertext Markup Language
SQL Structured Query Language
UI User Interface
CQL CaosDB Query Language
GNU GNU’s not Unix
PAM Pluggable Authentication Modules
IP Internet Protocol
EBNF Extended Backus-Naur Form
RDF Resource Description Framework
OWL Web Ontology Language
UML Unified Modeling Language
SPARQL SPARQL Protocol and RDF Query Language



Data 2019, 4, 83 11 of 11

References

1. Nelson, E.K.; Piehler, B.; Eckels, J.; Rauch, A.; Bellew, M.; Hussey, P.; Ramsay, S.; Nathe, C.; Lum, K.;
Krouse, K.; et al. LabKey Server: An open source platform for scientific data integration, analysis and
collaboration. BMC Bioinform. 2011, 12, 71. [CrossRef] [PubMed]

2. Anderson, N.R.; Lee, E.S.; Brockenbrough, J.S.; Minie, M.E.; Fuller, S.; Brinkley, J.; Tarczy-Hornoch, P. Issues
in Biomedical Research Data Management and Analysis: Needs and Barriers. J. Am. Med. Inform. Assoc.
2007, 14, 478–488. [CrossRef] [PubMed]

3. Wruck, W.; Peuker, M.; Regenbrecht, C.R. Data management strategies for multinational large-scale systems
biology projects. Brief. Bioinform. 2014, 15, 65–78. [CrossRef] [PubMed]

4. Rocha da Silva, J.; Aguiar Castro, J.; Ribeiro, C.; Correia Lopes, J. Dendro: Collaborative Research Data
Management Built on Linked Open Data. In The Semantic Web: ESWC 2014 Satellite Events; Presutti, V.,
Blomqvist, E., Troncy, R., Sack, H., Papadakis, I., Tordai, A., Eds.; Springer International Publishing: Cham,
Switzerland, 2014; pp. 483–487.

5. Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.;
Boiten, J.W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data
management and stewardship. Sci. Data 2016, 3, 160018. [CrossRef] [PubMed]

6. Marcus, D.S.; Olsen, T.; Ramaratnam, M.; Buckner, R.L. XNAT: A software framework for managing
neuroimaging laboratory data. In Proceedings of the 12th Annual Meeting of the Organization for Human
Brain Mapping, Florence, Italy, 11–15 June 2006.

7. Kanza, S.; Willoughby, C.; Gibbins, N.; Whitby, R.; Frey, J.G.; Erjavec, J.; Zupančič, K.; Hren, M.; Kovač, K.
Electronic lab notebooks: Can they replace paper? J. Cheminform. 2017, 9, 31. [CrossRef] [PubMed]

8. Schweiger, D.; Trajanoski, Z.; Pabinger, S. SPARQLGraph: A web-based platform for graphically querying
biological Semantic Web databases. BMC Bioinform. 2014, 15, 279. [CrossRef] [PubMed]

9. Haag, F.; Lohmann, S.; Siek, S.; Ertl, T. QueryVOWL: A Visual Query Notation for Linked Data. In The
Semantic Web: ESWC 2015 Satellite Events; Gandon, F., Guéret, C., Villata, S., Breslin, J., Faron-Zucker, C.,
Zimmermann, A., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 387–402.

10. Chochiang, K.; Grabmann, B.; Betbeder, M.L.; Lapayre, J.C.; Sa-ngiamsak, C. OntoQuer: A Tool for Building
SPARQL Query Automatically Applying with Our Ontologies. J. Softw. 2017, 12, 145–152.

11. Fielding, R.T. Architectural Styles and the Design of Network-Based Software Architectures. Ph.D. Thesis,
University of California, Irvine, CA, USA, 2000.

12. Fitschen, T.; Hornung, D.; Schlemmer, A.; tom Wörden, H. CaosDB. 2018. Available online: http://dx.doi.
org/10.17617/3.1s (accessed on 12 October 2018).

13. Føllesdal, D.; Hilpinen, R. Deontic Logic: An Introduction. In Deontic Logic: Introductory and Systematic
Readings; Hilpinen, R., Ed.; Springer: Dordrecht, The Netherlands, 1971; pp. 1–35.

14. Free Software Foundation. GNU Affero General Public License; Free Software Foundation, Inc.: Boston, MA,
USA, 2018.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/1471-2105-12-71
http://www.ncbi.nlm.nih.gov/pubmed/21385461
http://dx.doi.org/10.1197/jamia.M2114
http://www.ncbi.nlm.nih.gov/pubmed/17460139
http://dx.doi.org/10.1093/bib/bbs064
http://www.ncbi.nlm.nih.gov/pubmed/23047157
http://dx.doi.org/10.1038/sdata.2016.18
http://www.ncbi.nlm.nih.gov/pubmed/26978244
http://dx.doi.org/10.1186/s13321-017-0221-3
http://www.ncbi.nlm.nih.gov/pubmed/29086051
http://dx.doi.org/10.1186/1471-2105-15-279
http://www.ncbi.nlm.nih.gov/pubmed/25127889
http://dx.doi.org/10.17617/3.1s
http://dx.doi.org/10.17617/3.1s
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Results
	Requirements
	Implementation
	Architecture
	Data Model
	Query Language
	User Management and Access Control

	Discussion
	Conclusions
	References

