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Abstract: As queues in supermarkets seem to be inevitable, researchers try to find solutions that
can improve and speed up the checkout process. This, however, requires access to real-world data
for developing and validating models. With this objective in mind, we have prepared and made
publicly available high-frequency datasets containing nearly six weeks of actual transactions and
cashier operations from a grocery supermarket belonging to one of the major European retail chains.
This dataset can provide insights on how the intensity and duration of checkout operations changes
throughout the day and week.

Dataset: Supplementary data to this article.

Dataset License: CC-BY-NC
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1. Summary

Retail store operations are an active and a relatively wide area of research. In a recent study,
Mou et al. [1] reviewed 255 publications from 32 operations research, retailing and management
journals over the period 2008–2016 and categorized works by distinguishing seven operational
decisions pertinent to store management. These included: (1) demand forecasting; (2) in store logistics;
(3) inventory management; (4) assortment and display; (5) product promotion; (6) checkout operations
and (7) employee management. Interestingly, the authors argue that in particular checkout operations
will attract more attention in the near future.

As of today, however, only a few studies related to checkout operations have been published [2–5].
The likely reason is the (un)availability of recent and representative point of sale (POS) data. Even if
such data is analyzed, it is often “proprietary and therefore not available to researchers at large”,
as in the case of the Mas and Moretti dataset [6]. With this in mind, we have prepared and made
publicly available high-frequency datasets containing nearly six weeks of actual transactions and
cashier operations from a grocery supermarket belonging to one of the major European retail chains.
This dataset can provide insights on how the intensity of checkout operations changes throughout the
day and throughout the week. Hence, it can be used as a starting point for building realistic agent-based
or forecasting models of customer behavior. In practice, such data—if available in real-time—can
augment detectors or video content analysis technologies (VCA) used to count customers inside a
store [7] and yield better predictions of the demand for opened checkouts. On the other hand, it can be
used to provide feedback, e.g., in the form of voice or visual messages, about the current or near-future
state of the checkout zone, with the ultimate objective of speeding up the checkout process and
increasing consumer satisfaction [8].
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2. Data Description

The data was retrieved from checkout/POS system logs stored in XML files, which contained
various low-level transactional data. Once extracted, it was aggregated into six CSV files with the most
important information about (i) transactions; and (ii) cashier operations, see Tables 1 and 2, respectively.
The data concerns retail operations in a grocery supermarket located in a large city in Southern Poland,
equipped with manned (service) and self-service checkouts. The checkout zone is composed of a single
waiting line for each service checkout and one waiting line for all self-service checkouts. The data
covers three nearly two-week periods: (i) 7 to 19 December 2017; (ii) 13 to 26 February 2019; and (iii) 28
March to 10 April 2019. Please note that the new regulations introduced in Poland in 2018 banned
shopping on some Sundays, generally two Sundays per month in 2018 and three Sundays per month
in 2019, disrupting the rather regular 7-day pattern observed until the end of 2017. Supermarkets have
reacted by extending the working hours on Fridays and Saturdays, while customers had to adapt to
the changes in opening hours. The two pairs of datasets from 2019 include one working (24 February,
31 March) and one non-working Sunday (17 February, 7 April) each.

Table 1. Transactions data (POS_transactions_*.csv files): fields, data types and descriptions.

Field Type Description

WorkstationGroupID Integer Type of checkout: 1—service, 8—self-service
TranID Numeric Transaction ID (date, store ID, checkout ID, sequence no.)

BeginDateTime Date/Time Date and time of transaction start
EndDateTime Date/Time Date and time of transaction end
OperatorID Integer Unique cashier ID
TranTime Integer Transaction time in seconds 1

BreakTime Integer Break (including idle) time in seconds 2

ArtNum Integer Number of items, i.e., basket size
TNcash True/False Cash payment flag (true when transaction paid in cash)
TNcard True/False Card payment flag (true when transaction paid by a card)
Amount Numeric Transaction value

1 Computed for the n-th transaction as: TranTime(n) = EndDateTime(n) − BeginDateTime(n). 2 Computed for the n-th
transaction as: BreakTime(n) = BeginDateTime(n) − EndDateTime(n − 1), i.e., the latter is from the previous transaction.

Table 2. Cashier operations data (POS_operator_logs_*.csv files): fields, data types and descriptions.

Field Type Description

WorkstationGroupID Integer Type of checkout: 1—service, 8—self-service
WorkstationID Integer Unique checkout ID

TranID Numeric Transaction ID (date, store ID, checkout ID, sequence no.)
BeginDateTime Date/Time Date and time of transaction start

OperatorID Integer Unique cashier ID
Items Text Operation identifier 1

1 Admissible values: OperatorSignOn—cashier log-in, OperatorSignOff —cashier log-off, OperatorLock—start of
cashier’s break, OperatorUnLock—end of cashier’s break.

3. Methods

The two datasets were extracted from checkout/POS system log files of a supermarket. The logs
are archived in XML files and contain various low-level transactional data, most of which is not
relevant for the analysis of transactions or cashier operations. A small fragment of a sample log file
is depicted in Figure 1. Note that the checkout service generally consists of three separate activities:
scanning (registration) of articles, payment and bagging (including idle time). POS logs include the
exact times of starting (registration of the first article in the basket; BeginDateTime) and end times of the
transactions (EndDateTime).

However, the data has its limitations. For instance, the registered end time is not exactly the
time when the payment is made and the operation is terminated. In particular, for cash payments
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EndDateTime does not cover the activity of giving back the change to the customer, while the time
between transactions (BreakTime) retrieved from POS data includes the idle time between two operations,
which actually is not part of the service activity. However, given that idle times are very rare during
peak hours, by analyzing only periods of high activity (particularly Thursdays 10 a.m. to 1 p.m., Fridays
and Saturdays 11 a.m. to 2 p.m.) we can essentially eliminate the impact of idle times and obtain
information about the service time itself. The timeline of the checkout service (scanning, payment and
bagging) and the times retrieved from POS logs are illustrated in Figure 2.

Regarding queue management/modeling, the data does not contain customer arrival information.
However, it is possible to extract an approximate arrival rate. For instance, one can combine a theoretical
model (e.g., a Non-Homogeneous Poisson Process, NHPP [9]) with transactional data, i.e., approximate
the arrival rate of a NHPP at a certain hour by the average number of transactions in a time window
(e.g., +/− 30 min) around this hour. Such an approach would yield an edge over completely theoretical
arrival process models typically used in publications concerning modeling queues in supermarkets.
Finally, despite the fact that balking and reneging unarguably take place, our own observations and
interviews with line workers suggest that they are so incidental, that they do not affect significantly the
queuing process.
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Figure 1. A small fragment of a sample XML log file for a single transaction. Only data for the first
item (‘LineItem’) is shown.
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Figure 2. Timeline of the checkout service (scanning, payment and bagging) and the times retrieved
from point of sale (POS) logs (transaction time—TranTime, break time—BreakTime; the latter includes
the idle time).
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