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Abstract: Every year, academic institutions invest considerable effort and substantial resources to
influence, predict and understand the decision-making choices of applicants who have been offered
admission. In this study, we applied several supervised machine learning techniques to four years of
data on 11,001 students, each with 35 associated features, admitted to a small liberal arts college in
California to predict student college commitment decisions. By treating the question of whether a
student offered admission will accept it as a binary classification problem, we implemented a number
of different classifiers and then evaluated the performance of these algorithms using the metrics
of accuracy, precision, recall, F-measure and area under the receiver operator curve. The results
from this study indicate that the logistic regression classifier performed best in modeling the student
college commitment decision problem, i.e., predicting whether a student will accept an admission
offer, with an AUC score of 79.6%. The significance of this research is that it demonstrates that many
institutions could use machine learning algorithms to improve the accuracy of their estimates of
entering class sizes, thus allowing more optimal allocation of resources and better control over net
tuition revenue.

Keywords: educational data mining; supervised machine learning; binary classification; accuracy;
F-measure; class imbalance; college admission; mathematical modeling; applied mathematics

1. Introduction

The future and sustainability of the traditional higher education business model [1] is an
important topic of discussion. These issues are of course highly dependent on the type of academic
institution being considered, such as public colleges and universities, private non-profit colleges
and private for-profit colleges. Incoming students face multiple financial pressures: rising tuition
costs, concerns about incurred debt, unsure post-graduation job prospects and the availability of
cheaper alternatives such as massive open online courses (MOOCs) [2] and other online options.
The economic pressures felt by incoming students surely impacts their willingness to make the large
financial commitments required to enroll in many colleges and universities. To alleviate monetary
stresses caused by fluctuations in student enrollment, institutions of higher education often try to
operate at full capacity, which means increasing, or at the very least optimizing, their tuition income.
Our research was motivated by a desire to accurately predict incoming student class size and therefore
tuition-based income.

The published cost of attending a nationally ranked liberal arts college such as Occidental
College [3] is $70,182 for the 2018–2019 academic year [4]. If the college falls below its target enrollment
by as few as 10 students (which in the case of Occidental College would be less than 2% of the expected
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annual entering student enrollment of 550), this could result in a potential financial loss of $701,820 per
year for four years, amounting to a total estimated loss of more than $2.8 million. (The reader should
note that this estimate only represents the maximum potential financial loss due to an enrollment
shortfall of 10 students and that most students attending an institution such as Occidental College
effectively receive a discounted price due to financial aid [5].) It is very important for an academic
institution to know fairly accurately how many incoming students they can expect to enroll each year,
especially if they are dependent on the revenue generated by students [6]. The research presented
in this paper can be used by these institutions to achieve this by predicting which students are more
likely to accept admission offers.

The model we develop in this paper has broad significance, wide applicability and easy
replicability. We address an important question facing almost every institution of higher education:
“Which admitted students will actually accept their admission offers?” Being able to accurately predict
whether a student admitted to an academic institution will accept or reject their admissions offer
can help institutions of higher education manage their student enrollments. For many institutions,
enrollment management is an extremely important component of academic administration [7]. The data
required to develop our model are readily available to most institutions as a part of the admissions
process, which makes the research presented here widely applicable and easily replicated.

The goal of our research is to develop a model that can make an accurate prediction regarding
each student’s college commitment decision by classifying the student into one of two categories:
accepts admission offer and rejects admission offer. In other words, we characterize the student college
commitment decision problem as a binary classification problem [8] using supervised machine
learning [9,10]. We want to be able to classify new instances, i.e., when presented with a new admitted
student we would like our model to correctly predict whether that student will accept or reject the
admission offer. We use the term “model” [8–10] to refer to the specific algorithm we select after
implementing multiple machine learning techniques on our training data. We view the classification
problem we are working on as a supervised machine learning problem. Supervised machine learning
problems are a class of problems which can generalize and learn from labeled training data, i.e., a set
of data where the correct classification is known [11–13]. From 2014 to 2017, Occidental College
received an average of 6292 applications per year, with admission offered to approximately 44% of
these applicants, or 2768 students, of which 19.5% or 535 students actually enrolled [14]. (This whittling
process is depicted visually in Figure 1.) Using four years of detailed data provided by the college,
we are able to characterize and classify every student in the admitted pool of students.

START No. of Applicants: 25,166 No. of Admits: 11,001 No. of Commits: 2,138 STOP

Figure 1. Summary numbers for class of 2018 to class of 2021.

The rest of this paper is organized as follows. In Section 2, we provide a literature review of the
work that has been conducted on the applications of machine learning techniques in the context of
educational settings. We divide Section 3, our discussion of Materials and Methods, into two parts.
In Section 3.1, we provide details about the data, discuss the preprocessing steps required to clean the
raw dataset to make it suitable to be used in a machine learning algorithm, and explore the data. Next,
in Section 3.2, we describe the implementation steps, define multiple success metrics used to address
class imbalance in our data and then discuss feature selection. We present the results of our predictions
using various metrics of success in Section 4. Lastly, we summarize our results, mention other possible
techniques and provide avenues for future research in Section 5. In Appendix A, we provide brief
descriptions of the seven machine learning methods used in the research presented here.

2. Literature Review

There are many examples of the application of machine learning techniques to analyze data
and other information in the context of educational settings. This area of study is generally known
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as “educational data mining” (EDM) and it is a recently emergent field with its own journals [15],
conferences [16] and research community [17,18]. A subset of EDM research that focuses on analyzing
data in order to allow institutions of higher education better clarity and predictability on the size
of their student bodies is often known as enrollment management. Enrollment management is “an
organizational concept and systematic set of activities whose purpose is to exert influence over student
enrollment” [7].

Below, we provide multiple examples of research by others that combines aspects of enrollment
management with applications of data science techniques in various educational settings. These are
applications of machine learning to: college admission from the student perspective; supporting the
work of a graduate admission committee at a PhD granting institution; predicting student graduation
time and dropout; monitoring student progress and performance; evaluating effectiveness of teaching
methods by mining non-experimental data of student scores in learning activities; and classifying the
acceptance decisions of admitted students.

There are many websites which purport to predict college admission from the perspective of an
aspiring student. A few examples are go4ivy.com1, collegeai.com2, project.chanceme3, and niche.com 4.
Websites such as these claim to utilize artificial intelligence to predict a student’s likelihood of being
admitted to a college of their choice without providing specific details about software used and
techniques implemented. Our work differs in that we are predicting the likelihood of a student
accepting an admission offer from a college not providing an estimate of the chances of a student’s
admission to college. Unlike these websites, we provide a complete description of our materials and
methods below.

In the work of Waters and Miikkulainen [19], machine learning algorithms were used to predict
how likely an admission committee is to admit each of 588 PhD applicants based on the information
provided in their application file. Students whose likelihood of admission is high have their files fully
reviewed to verify the model’s predictions and increase the efficiency of the admissions process by
reducing the time spent on applications that are unlikely to be successful. Our research differs from
this work in multiple ways; our setting is at the undergraduate level, we classify decisions by the
students not decisions by the college; our dataset is an order of magnitude larger; and the feature being
optimized is incoming class size not time spent on decision making.

Yukselturk et al. [20] discussed using data mining methods to predict student dropout in an
online program of study. They used surveys to collect data from 189 students and, after analysis,
identified the most important features in predicting which students will complete their online program
of study. The only similarity between this work and ours is that it is an application of machine learning
in an educational setting. The data used for our analysis are not survey data; we are attempting to
predict whether a student will accept a college admission offer, not whether a student drops out of an
online program of study and the size of our dataset is an order of magnitude larger.

There are multiple authors who use data science techniques to describe and predict student
progress and performance in educational settings. Tampakas et al. [21] analyzed data from about
288 students and applied machine learning algorithms to classify students into one of two categories
“Graduate” or “Fail”. They then predicted which of the graduating students would take four, five or
six years to graduate. While this research, similar to ours, can be classified as educational data mining,
the focus and goals are very different. Our work is about predicting student college commitment
decisions, while their work is about modeling student academic behaviour in college. Using data from
2260 students, Livieris et al. [22,23] were able to predict with high accuracy which students are at risk
of failing and classified the passing students as “Good”, “Very Good” and “Excellent”. The authors

1 http://www.go4ivy.com
2 http://https://www.collegeai.com/chanceme
3 http://project.chanceme.info
4 https://www.niche.com/colleges/admissions-calculator/
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developed a decision support software program (available at https://thalis.math.upatras.gr/~livier
is/EducationalTool/) that implements their work and made it freely available for public use. Our
research presented below differs in that we are not trying to monitor or categorize student progress
and performance in school. Instead, our work tries to predict student college commitment decisions
using multiple machine learning techniques.

Duzhin and Gustafsson [24] used machine learning to control the effect of confounding variables
in “quasi-experiments” that seek to determine which teaching methods have the greatest effect on
student learning. The authors considered teaching methods such as clickers, handwritten homework
and online homework with immediate feedback and included the confounding variables of student
prior knowledge and various student characteristics such as diligence, talent and motivation. Our
work differs in that it tries to predict student college commitment decisions using multiple machine
learning techniques and its potential benefit is to the school’s finances, while the work in [24] seeks to
assist instructors in identifying teaching methods that work best for them.

The research presented in our paper and in Chang’s paper [25] both use educational data mining
to predict the percentage of admitted students who ultimately enroll at a particular college. This ratio
is known as the yield rate and it varies widely among different institutions [26]. While the central
goal of modeling yield rate is common to both works, there are also significant differences. Some of
these are the institutional setting, the number of algorithms applied and how characteristics of the
data are addressed. Our work is set at a small, liberal arts college of approximately 2000 students,
while Chang’s is set at a large public university. We utilize seven machine learning techniques while
Chang used three. Our work and Chang’s also differ in how we address the challenges that arise from
characteristics of the dataset.

We acknowledge that the specific educational context in which we apply several machine learning
algorithms to the analysis of “big data” obtained from the college admission process appears to be
relatively unexplored in the literature. However, we believe our work demonstrates this is a fruitful
area of research.

3. Materials and Methods

In this section, we provide numerous details about the data, discuss the preprocessing of the data,
perform data exploration, and summarize our methodology [8–10]. This includes both a flowchart
visualization (in Figure 2) and a narrative summary (in Section 3.2.1), of the materials and methods
used. Next, we define several success metrics to measure model performance and identify which ones
are appropriate to use with our data. Finally, we describe our feature selection process.

We explored and compared several supervised machine learning classification techniques to
develop a model which accurately predicts whether a student who has been admitted to a college will
accept that offer. The machine learning techniques utilized are:

1. Logistic Regression (LG)
2. Naive Bayes (NB)
3. Decision Trees (DT)
4. Support Vector Machine (SVM)
5. K-Nearest Neighbors (K-NN)
6. Random Forests (RF)
7. Gradient Boosting (GB)

One of the motivations for the research presented in this paper is a desire to demonstrate the utility
of the application of well-known machine learning algorithms to our specific problem in educational
data mining. The above supervised machine learning techniques constitute some of the most efficient
and frequently utilized algorithms [27].

https://thalis.math.upatras.gr/~livieris/EducationalTool/
https://thalis.math.upatras.gr/~livieris/EducationalTool/
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START

Step 1: Obtain, explore and preprocess the dataset.

Step 2: Eliminate features that are irrelevant, redundant or noisy.

Step 3: Partition preprocessed data into a training set (a random
selection of 80% of the preprocessed data) and a testing set (the
remaining 20% of the preprocessed data).

Step 4: Train each classifier using k-fold cross-validation with
k = 10 resulting in 7 different models to choose from.

Step 5: Select the best model based on the appropriate metric.

Step 6: Tune the best model obtained from Step 5 by using k-fold
cross validation while optimizing parameters using grid search.

Step 7: Run final model on the reserved test dataset and evaluate
performance.

STOP

Figure 2. Flowchart visualization of model implementation.

3.1. Data

Here, we describe and discuss the data we used in our student college commitment decision
problem. Our dataset was obtained from the Occidental College Admissions Aid Office [14].
The dataset covers admissions from 2014 to 2017 and consists of 11, 001 admitted applicants
(observations) along with 35 pieces of personal information associated with each student (variables).
There are twelve numerical variables present such as “GPA” (grade point average) and “HS Class
Size” (high school class size), with the remaining variables being categorical and binary in nature
such as “Scholarship” and “Gender”, respectively. Note that “SAT I Critical Reading”, “SAT I Math”,
“SAT I Writing”, “SAT I Superscore”, “SATR”, “SATR EBRW”, “SATR Math”, “SATR Total’ and “ACT
Composite Score” are various examples of scores associated with standardized tests taken by students
interested in applying to college. (SAT is “Scholastic Assessment Test’ and ACT is “American College
Test”.) Students pay to take these exams and then also pay to have their scores transmitted to colleges
to which they are applying. The list of all 35 variables with their variable type can be found in Table 1.
The target variable, i.e., the variable we wish to predict, “Gross Commit Indicator”, is in bold. Note
the variables are organized into columns corresponding to type, i.e., binary, categorical and numerical.

Figure 1 is a flowchart that visually represents the admission whittling process for the classes of
2018 to 2021 (students admitted in 2014 to 2017). The total number of applicants in these four years
was 25, 166. Among them, 11, 001 were admitted and 2138 students accepted their admission offers.

We use the term “admits” to represent students whom the college has extended an admission offer
to, “commits” to represent the students who have accepted the offer and “uncommits” for students
who decline or reject the admission offer. Note that international students and early decision students
have been omitted from our dataset and this reduced our dataset from 11,001 to 9626 admits.

In Table 2, we present counts of the applicants, admits, commits and uncommits by year for the
last four years starting from 2014 (Class of 2018) to 2017 (Class of 2021).
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Table 1. List of variables.

Binary Categorical Numerical

Gross Commit Indicator Application Term GPA
Net Commit Indicator Ethnic Background HS Class Rank

Final Decision Permanent State/Region HS Class Size
Financial Aid Intent Permanent Zip Code/Postal Code ACT Composite Score

Gender Permanent Country SAT I Critical Reading
Legacy Current/Most Recent School Geomarket SAT I Math

Direct Legacy First Source Date SAT I Writing
First Generation Indicator First Source Summary SAT I Superscore

Campus Visit Indicator Top Academic Interest SATR EBRW
Interview Extracurricular Interests SATR Math

Recruited Athlete Indicator Level of Financial Need SATR Total
Scholarship Reader Academic Rating

Table 2. Counts and percentages of first-year commit data (raw).

Application Year Class of 2018 Class of 2019 Class of 2020 Class of 2021 Total

Applicants 6071 5911 6409 6775 25,166
Admits 2549 2659 2948 2845 11,001

Admit Percentage 42% 45% 46% 42% 44%
Commits 547 518 502 571 2138

Commit Percentage 21% 19% 17% 20% 19%
Uncommits 2002 2141 2446 2274 8863

Uncommit Percentage 79% 81% 83% 80% 81%

In Table 2, we also present admit percentage (fraction of applicants who become admits) and
commit percentage (fraction of admits who become commits) for the last four years starting from 2014
(Class of 2018) to 2017 (Class of 2021). Our use of “commit percentage” is equivalent to what other
authors refer to as the yield or yield rate [26].

Each admitted applicant can be viewed as belonging to one of two categories: accepts admission
offer (commit) or rejects admission offer (uncommit). Over the four years of data that we used for
our study, only 19.5% of all students fall into the commit category and 80.5% of students fall in the
uncommit category. Note the ratio of uncommits to commits is approximately 4:1, which means that
there is an imbalance in the data for our binary classification problem. Generally, for a supervised
machine learning algorithm to be successful as a classifier, one wants the classes to be roughly equal in
size. The consequences of this “class imbalance” [28] is discussed in Section 3.2. Below, we discuss
the steps used to cleanse the raw data received from Occidental College so that it can be used in the
seven machine learning algorithms we decided to use. Then, we analyzed the data to help us better
understand the relationships the variables share with the purpose of being able to identify which
among the 34 features have the most power to predict the target variable “Gross Commit Indicator”.

3.1.1. Preprocessing

Preprocessing is an important step in any data science project; the aim is to cleanse the dataset
and prepare it to be further used in a prediction algorithm. The data received from Occidental College
had few missing entries and thus we only needed to make a few changes to make the data suitable for
our chosen machine learning algorithms.

A standard challenge in data cleaning is determining how to deal with missing data. It is
important to identify the features with missing entries, locate such entries and implement a treatment
based on the variable type that allows us to use the data in the model, since the feature in question
may be a strong predictor in determining the algorithms outcome.

Numerical variables required two different treatments: normalization and data imputation.
Numerical variables where there are no missing entries such as “Reader Academic Rating” were
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rescaled to a unitary range. For numerical variables with missing entries such as “GPA”, the median of
the available entries was computed and used to replace the missing entries. This process is called data
imputation [8].

Categorical variables required special treatment to prepare them for input into the machine
learning algorithms. Entries that had missing categorical features (“Gender”, “Ethnic Background”,
etc.) were dropped from the dataset. All categorical variables were processed using one-hot
encoding [8]. One-hot encoding is a method in which categorical variables are represented as binary
vectors with a label for which class the data belongs to by assigning 0 to all the dimensions and 1 for
the class the data belongs to. For example, the categorical variable “Level of Financial Need” has three
possible classes: High, Medium, and Low. One-hot encoding transforms a student with high level of
financial need into the vector [1, 0, 0], a student with medium level of financial need into the vector
[0, 1, 0] and an applicant with low level of financial need as [0, 0, 1].

After the pre-processing of the dataset was completed, the number of admits was 7976 with
1345 commits and 6631 uncommits. We have made the original dataset of 9626 admits publicly
available (https://github.com/kbasu2016/Occidental-College-Acceptance-Problem/).

3.1.2. Data Exploration

We explored the data to garner intuition and make observations regarding patterns and trends
in the data. Table 3 illustrates the significance of “GPA” as a variable in predicting student college
commitment decisions and indicates that the percentage of commits co-varies with the grade point
average (GPA).

Table 3. Significance of GPA.

GPA Bin Accept Percentage Reject Percentage Number of Students

2.0+ 100 0 1
2.2+ 33 67 3
2.4+ 100 0 4
2.6+ 43 57 14
2.8+ 53 47 34
3.0+ 71 29 152
3.2+ 77 23 586
3.4+ 79 21 1424
3.6+ 85 15 2577
3.8+ 87 13 3324
4.0 89 11 1412

Table 4 illustrates the effect of the campus visit on student college commitment decisions. From the
Occidental College Admission Office, we learned that they believe that whether an admitted student
visited the campus prior to accepting the admissions offer plays an important role in determining
student acceptance. The table clearly indicates a greater proportion of students who visit the campus
accept the admission offer (23% versus 7%). This is significant because it reaffirms the Admissions
Office belief that students who participate in campus visits are more likely to accept admission offers.

Table 4. Significance of campus visit.

Accept Percentage Reject Percentage Number of Students

Visited Campus 23 77 5122
Didn’t Visit Campus 7 93 4409

3.1.3. Prediction Techniques

To achieve the goal of predicting student college commitment decisions, we compared the
performance of several binary classification techniques and selected the best one. Our target variable

https://github.com/kbasu2016/Occidental-College-Acceptance-Problem/
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(the variable we wish to predict: “Gross Commit Indicator”) takes on the value 1 if the admitted
applicant accepts the offer, and 0 if the admitted applicant rejects the offer. Seven binary classifiers
were implemented to predict this target variable and we provide a brief explanation of each method in
Appendix A.

3.2. Methodology

Here, we discuss the methodology used to produce our predictive model of student college
commitment decisions. The steps implemented to identify the final optimized model are illustrated in
a flow chart given in Figure 2.

3.2.1. Implementation

Below, we provide a short narrative summary of the steps shown in Figure 2 to develop our model
of college student commitment decisions. The data were pre-processed and randomly separated into a
training set and a testing set. We chose our training set to be 80% of the 7976 entries in our dataset.

Before the training data were used to train each selected machine learning algorithm, we identified
a subset of features that have the most power in predicting the target variable “Gross Commit
Indicator”. This process of pruning irrelevant, redundant and noisy data is known as feature selection
or dimensionality reduction [29] and is discussed in detail in Section 3.2.3. Selecting relevant features
for input into a machine learning algorithm is important and can potentially improve the accuracy and
time efficiency of the model [8,10].

Next, we applied the k-fold cross validation technique with k = 10 on the training data. k-fold
cross validation is a model validation technique for assessing how the results of a machine learning
algorithm will generalize to an unseen dataset [30]. The k-fold cross validation splits the training
data into k equal sub-buckets. Each algorithm is then trained using (k− 1) sub-buckets of training
data, and the remaining kth bucket is used to validate the model by computing an accuracy metric.
We repeated this process k times, using all possible combinations of (k− 1) sub-buckets and one bucket
for validation. We then averaged out the accuracy metric of all the k different trial runs on each model.

The k-fold cross-validation process may limit problems like under-fitting and over-fitting [10].
Under-fitting occurs when the model has large error on both the training and testing sets. Over-fitting
occurs when the model has little error on the training set but high error on the testing set.

The model with the highest AUC score (see definition 4 below) on the training data was then
selected as the “best model” from amongst the selected classifiers [31]. That model’s performance on
the training set was optimized by parameter selection and evaluated on the unseen testing dataset.
The optimized algorithm produced reasonable results on the testing set.

3.2.2. Resolution of Class Imbalance: Different Success Metrics

Here, we present the resolution of the inherent class imbalance of our dataset that we first observed
and discussed in Section 3.1. Most binary classification machine learning algorithms work best when
the number of instances of each class is roughly equal. When the number of instances of one class far
exceeds the other, problems arise [29].

In the case of the Occidental College admissions dataset, one can observe in Table 2 that on
average only 19.5% of all students offered admission accept the offer extended by the college. In other
words, 80.5% of all admitted students in this dataset reject the admission offer. This is an example
of class imbalance in a dataset. In this situation, if a putative classification algorithm were to always
predict that a new student will reject the admission offer, the algorithm would be correct 80.5% of the
time. This would be considered highly successful for most machine learning algorithms, but in this
case is merely a result of the class imbalance. We resolve this issue by analyzing the performance of
our machine learning algorithms using multiple measures in addition to accuracy such as precision,
recall, F-measure, and AUC or ROC score.
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Given a set of labeled data and a predictive model, every prediction made will be in one of the
four categories:

• True positive: The admitted student accepted the offer and the model correctly predicted that the
student accepted the offer (correct classification).

• True negative: The admitted student rejected the offer and the model correctly predicted that the
student would reject the offer (correct classification).

• False positive (Type I Error): The admitted student rejected the offer, but the model incorrectly
predicted the student would accept the offer (incorrect classification).

• False negative (Type II Error): The admitted student accepted the offer, but the model incorrectly
predicted that the student would reject the offer (incorrect classification).

These categories can also be represented in a confusion matrix [10], as depicted in Table 5, that
allows us to visualize the performance of a supervised machine learning algorithm. A perfect predictive
model would have only true positives and true negatives, thus its confusion matrix would have nonzero
values only on its main diagonal. While a confusion matrix provides valuable information about a
model’s performance, it is often preferred to have a single metric to easily compare the performance of
multiple classifiers [8].

Table 5. Confusion matrix.

Predicted Accept Predicted Reject

Accepted True Positive False Negative
Rejected False Positive True Negative

Accuracy is usually the first measure used to determine whether a machine learning algorithm
is making enough correct predictions. Using accuracy as a metric to evaluate the performance of a
classifier can often be misleading, especially in the case of class imbalance [28].

Simply using the accuracy score could result in a false impression regarding the model
performance, since only 19.5% of all admits accept the admission offer, which indicates class imbalance
is present in our dataset. Instead, we used the more suitable metrics of precision, recall, Fβ score and
area under the receiver operator curve to overcome the challenges caused by this class imbalance [9].
Below, we provide the definition of the standard performance evaluation metric of accuracy, and also
include definitions of more appropriate measures of performance when class imbalance is present.

Definition 1. Accuracy
Accuracy measures how often the classifier makes the correct prediction. In other words, it is the ratio of the
number of correct predictions to the total number of predictions. Accuracy is defined as the fraction of correct
predictions.

accuracy =
true positive + true negative

true positive + false positive + false negative + true negative
(1)

Definition 2. Fβ score
The Fβ score is the weighted harmonic mean of precision and recall, reaching its optimal value at 1 and its worst
value at 0.

Fβ score = (1 + β2)× precision× recall
(β2 × precision) + recall

(2)

The β parameter determines the weight of precision in the combined score, i.e, β < 1 lends more weight
to precision, and β > 1 favors recall. When β = 1 the resulting F1 score is the harmonic mean of precision
and recall and thus must lie between them [8]. Further, β = 0 considers only precision and β→ ∞ considers
only recall.



Data 2019, 4, 65 10 of 18

Definition 3. ROC
The receiver operating characteristic (ROC) curve is another commonly used summary for assessing the diagnostic
ability of a binary classifier over all possible results as its class discrimination threshold is varied [8,30]. Class
discrimination is most often set to be 0.5. The ROC curve is a plot of the true-positive rate (also known as
sensitivity or recall) versus the false-positive rate.

Definition 4. AUC Score
The AUC score is defined as the area under the ROC curve. The AUC score measures the overall performance of
a classifier without having to take into consideration the class distribution or misclassification cost. The closer
the AUC score (the area under the ROC curve) is to 1 (the maximum possible value), the better the overall
performance of the binary classifier.

In the student college commitment decision problem, we prefer a model with high precision
(i.e., one that is more likely to correctly predict which students will actually accept admission offers).
It would be more harmful to the college if the algorithm incorrectly predicts a student will accept the
admission offer when in reality they reject it, compared to the tradeoff of having a student accept the
offer unexpectedly. Since our model requires high precision, we use the F0.5 score to evaluate model
performance, so that precision is more heavily weighted than recall. Figure 3 illustrates visually the
rationale for our selection of the F0.5 score as our chosen success metric.

Precision : F0 F0.5 F1 F2 Recall : F∞

Figure 3. Fβ score diagram.

We decided to use a metric to evaluate and compare classifiers and another metric to identify
the optimal one. We used the AUC scores to evaluate and compare the seven selected classifiers and
choose the best performing algorithm with respect to this metric. We then used the F0.5 score to confirm
our optimal selection. These results are presented in Section 4.

3.2.3. Feature Selection

The inclusion of irrelevant, redundant and noisy data can negatively impact a model’s
performance and prevent us from identifying any useful and noteworthy patterns. Additionally,
incorporating all existing features in a model is computationally expensive and leads to increased
training time [8,10,29]. Thus, we focused on reducing the 34 available features (note that “Gross
Commit Indicator” is the target variable) for the Occidental College admissions dataset given in
Table 1, a process known as feature selection or dimensionality reduction.

There were various reasons for the elimination of certain variables from consideration in the
model. For example, most variables that contain geographic location information such as “Permanent
Postal”, “Permanent Country” and “School Geomarket” were not used with any of the machine
learning classifiers. Due to the complexity of its implementation, we decided to postpone incorporating
geographic features in this model. Features that are logically irrelevant to the admission decision
making process of an applicant such as “Application Term”, “Net Commit Indicator”, etc. were also
dropped. In the case of redundant categorical variables such as “Legacy” and “Direct Legacy”, one
(“Legacy”) was eliminated.

Next, we eliminated redundant numerical variables. We began by computing the correlation
coefficient between all numerical variables. The correlation coefficient r is a numerical measure of the
direction and strength of a linear association and is denoted by r = ∑ zxzy

n−1 where (zx, zy) = ( x−x̄
sx

, y−ȳ
sy

).
Here, x̄ and sx are the mean and standard deviation respectively of the predictor variable x and
similar notations hold for the variable y. The purpose of this process is to ensure that our machine
learning algorithms do not incorporate features that are collinear, since collinearity deteriorates model
performance [32,33]. If two numerical variables x and y are highly correlated (|r| ≥ 0.7), then one of
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them is dropped. In [34], values of |r| > 0.5 are said to indicate strong correlation. The numerical
variable that has a higher correlation with the target variable remains in the model. Table 6 displays
the three numerical variables (“GPA”, “HS Class Size”, “Reader Academic Rating”) that remain for
incorporation into the machine learning algorithms. One can see from the correlation coefficients r in
the table that our model does not incorporate any collinear features, i.e., the features are not linearly
correlated since their values of |r| are substantially less than 0.7.

Table 6. Correlation coefficients of non-collinear numerical variables.

Numerical Variable GPA HS Class Size RAR

GPA 1.0000 0.0045 −0.6100
HS Class Size 0.0045 1.0000 −0.0820

Reader Academic Rating (RAR) −0.6100 −0.0820 1.0000

The goal of feature selection is to determine which features provide the most predictive power and
to eliminate those which do not contribute substantially to the performance of the model. The process
known as recursive feature elimination (RFE) results in the removal of features such as “Top Academic
Interest” and “Recruited Athlete Indicator”. We implemented RFE in Python (Scikit-Learn Feature
Selection5) to identify the least important features remaining and removed them from the list of
features under consideration found in Table 1 [35].

After completion of feature selection we were able to narrow down the 34 original variables to
the 15 variables listed below in Table 7 with their corresponding type and range.

We use only these 15 features when implementing the pre-selected supervised machine learning
algorithms given in Appendix A.

Table 7. Selected features.

Variable Name Description Range

Financial Aid Intent binary Y/N
Scholarship categorical type of scholarship program

Direct Legacy binary Y/N
Ethnic Background categorical e.g., Hispanic, White

First Generation Indicator binary Y/N
Permanent State/Region categorical e.g., NY, CA

GPA numerical 0–4
HS Class Size numerical 1–5000

Campus Visit Indicator binary Y/N
Interview binary Y/N

Top Academic Interest categorical Politics, Marine Biology
Extracurricular Interests categorical e.g., Dance, Yoga

Gender binary M/F
Level of Financial Need categorical High/Medium/Low

Reader Academic Rating (RAR) numerical 1–5

4. Results

4.1. Choosing the Final Model: Classifier Comparison and Hyperparameter Optimization

In this subsection, we discuss the results obtained from applying our selected classifiers on
the pre-processsed admissions dataset containing 7976 instances. All supervised machine learning
algorithms applied in this study have been developed using the open-source, object-oriented
programming language Python 3.0 and its many packages such as scikit-learn [35,36].

5 https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
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Table 8 presents the cross-validated accuracy score and cross-validated AUC scores for all the
binary classification algorithms we used on the Occidental College admissions data. However, the
reader should recall from Section 3.2.2 that, when class imbalance is present, the accuracy score can
cause misleading interpretations of the model’s performance. Hence, we based our choice of “best
model” solely on the cross-validated AUC score. Our key result is that the Logistic Regression model
had the highest AUC score of 77.79%. Table 8 also presents the run time required to compute the
cross-validated accuracy score as well as the cross-validated AUC score.

Table 8. Performance evaluation of supervised algorithms.

Classifier CV_Accuracy Run Time (s) CV_AUC Run Time (s)

Logistic Regression 85.53% 48.72 77.79% 47.60
Naive Bayes 85.13% 46.82 66.99% 47.14

Decision Trees 82.59% 199.80 59.47% 199.57
SVM 83.13% 2111.62 66.61% 2112.58

10-Nearest Neighbors 84.78% 856.00 69.45% 857.88
Random Forests 86.18% 245.08 72.85% 242.51

Gradient Boosting 84.96% 10,461.47 76.02% 10,308.31

Of the multiple algorithms we used and given the features of the data we have, there are multiple
reasons to conclude that the Logistic Regression classifier is the optimal machine learning algorithm
for predicting student college commitment decisions. The first reason to support this key result was
found by analyzing the training and testing F0.5 scores presented in Table 9. The reader may notice in
Table 9 that Decision Trees and Random Forests have very high training F0.5 scores but significantly
lower testing scores; this is a classic indication of undesirable over-fitting by these algorithms. Among
the remaining classifiers, the Logistic Regression classifier has the highest training F0.5 score and the
highest testing F0.5 score.

Another indication that Logistic Regression is the best algorithm for our problem is to see in
Table 8 how close its training and testing results are to the Gradient Boosting algorithm. In theory,
Gradient Boosting would be expected to outperform all the other machine learning algorithms we
selected [37]. However, note in Table 8 that the run time of Gradient Boosting was substantially greater
than any of the other algorithms.

Table 9. Performance evaluation of supervised algorithms based on F0.5-score.

Classifier Training F0.5 Score Testing F0.5 Score

Logistic Regression 0.8818 0.8283
Naive Bayes 0.8332 0.8264

Decision Trees 1.0000 0.8045
SVM 0.8326 0.8264

10-Nearest Neighbors 0.8415 0.8245
Random Forests 0.9959 0.8276

Gradient Boosting 0.8647 0.8264

After we chose the Logistic Regression classifier as the best model to implement on our binary
classification problem, we wished to optimize its performance. We implemented an example of
hyperparameter optimization called grid search [30,38] to find parameters to improve the performance
of the Logistic Regression classifier. In grid search, for each set of chosen parameter values, the
algorithm is run on the training data, k-fold cross-validated, and the associated evaluation scores
are calculated. The parameters that lead to optimal evaluation scores are then selected for use in the
final model.
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After we ran grid search, we obtained parameters used in our final model that slightly improved
the performance of the Logistic Regression classifier from an AUC score of 77.79% to 78.12% on the
training set. The specific optimized hyper-parameters are:

• penalty: L2
• Solver: Newton-cg
• maxiteration = 100 (default setting)
• tolerance factor = 10 (tolerance for stopping criteria)
• C = 102 (C =inverse of regularization strength)

This optimized Logistic Regression classifier, our final model, has an AUC score of 79.60% on the
testing set. This is the central result of the research presented in this paper.

4.2. Testing Statistical Significance of Important Features by Chi Squared Test

To confirm the optimal feature selection of the 15 variables that have the most predictive power,
we chose a scikit-learn classifier called ExtraTrees [8] that has a feature importance attribute, i.e.,
a function that ranks the relative importance of each feature when making predictions according to the
Decision Tree classifier. The ExtraTrees classifier determined the top 5 most important features for our
dataset: “GPA”, “Campus Visit Indicator”, “HS Class Size”, “Reader Academic Rating”, and “Gender”.
Table 10 displays what percentage each of the features contributes to the Decision Trees classifier.

Table 10. Feature importance.

Variable Importance in Percentage

GPA 4.0841
Campus Visit Indicator 4.0831

HS Class Size 3.6876
Reader Academic Rating 2.3227

Gender 1.5428

The purpose of this subsection is to re-emphasize and reconfirm with theoretical analysis that the
top 5 important features, namely “GPA”, “Campus Visit Indicator”, “HS Class Size”, “Reader Academic
Rating”, “Gender”, that were obtained through the ExtraTrees classifier are in fact instrumental in
predicting the target variable “Gross Commit Indicator”. To do this, we used the Chi-Squared test
for independence to determine whether there is a significant relationship between two categorical
variables. Numerical variables were converted to categorical variables using “bins”. A test of whether
two categorical variables are independent examines the distribution of counts for one group of
individuals classified according to both variables. The null hypothesis for this test assumes the two
categorical variables are independent. The alternative hypothesis is that there is a correlation between
the categories. In Table 11, we present the p-values of the Chi-Squared test for each of the top 5
features in comparison with the “Gross Commit Indicator”. We determined that we have evidence at
the 5% significance level to support the claim that only “GPA”, “Campus Visit Indicator”, “HS Class
Size”, and “Reader Academic Rating” are dependent on the target variable “Gross Commit Indicator”,
whereas the “Gender” attribute is not. This is not surprising since, as shown in Table 10, we observed
that “Gender” contributed only 1.5% in predicting the target variable for the Decision Trees classifier.
All Chi-Squared tests were performed at evanmiller.org/ab-testing/chi-squared.html.

evanmiller.org/ab-testing/chi-squared.html
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Table 11. Chi Square Test for Statistical Significance of Top 5 Features.

Variable p-Value

GPA 0.021
Campus Visit Indicator 0.028

HS Class Size 0.037
Reader Academic Rating 0.039

Gender 0.053

5. Discussion

In this section, we summarize our primary results and discuss their significance. This study
analyzed and compared the results of applying seven binary classifiers to a dataset containing
7976 samples representing information about admitted student applicants to Occidental College.
The central task was one of classification: assigning one of two class labels, accepts admission offer or
rejects admission offer, to new instances. We identified the Logistic Regression classifier as the best
machine learning algorithm to model our binary classification problem. We also identified the top
five features that have the highest predictive power in our model: “GPA”, “Campus Visit”, “HS Class
Size”, “RAR”, and “Gender”.

Each of the prediction techniques we used was trained on 80% of the entire cleansed dataset
through k-fold cross-validation [10,39] with k = 10, and performance was measured by calculating
the cross-validated accuracy and cross-validated AUC scores along with corresponding F0.5 scores
for verification purposes. The model with the highest AUC score (i.e., Logistic Regression) was then
selected and its parameters were optimized using grid search. After optimizing, the AUC score for the
Logistic Regression classifier improved slightly from 77.79% to 78.12% on the training set. The AUC
score on the test set was 79.60%. (Recall that the test set consisted of 20% of the Occidental College
admissions dataset that was reserved for this purpose.) Considering the complexity of our classification
problem, the dataset of roughly 8000 entries we were supplied is relatively small, thus a performance
score of nearly 80% must be regarded as an unqualified success.

We tried different techniques to address the class imbalance inherent in the Occidental College
admissions dataset. For example, we added copies of instances from the under-represented class,
a technique known as over-sampling [28]. We generated synthetic samples using SMOTE (synthetic
minority over-sampling technique) [40] as an over-sampling method but the AUC scores did not
substantially change. We also implemented a penalized modeling technique called penalized
SVM [8,10], which did not yield better results than the ones we had already obtained.

5.1. Conclusions

In this subsection, we highlight the differences between our work and previously published
research. In Section 2, we provide multiple examples of research conducted by others involving the
application of machine learning techniques in various educational settings [19–23]. These applications
can be broadly classified into the following categories:

• predicting a student’s likelihood of receiving admission to an institution of their choice;
• predicting how likely an admission committee is to admit an applicant based on the information

provided in their application file [19] (dataset size 588);
• predicting student dropouts in an online program of study [20] (dataset size 189); and
• predicting student progress and performance [21] (dataset size 288) [22,23] (dataset size 2260).

The context of our work differs from the above research; we are predicting whether a student will
accept an admission offer. In addition, the size of our dataset is significantly larger (7976) than those
used in the above studies.

Although the research by Chang [25] somewhat resembles ours, the work presented in this
paper differs from it in many ways. We programmed the machine learning algorithms in the open
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source language Python, while Chang used commercial software IBM SPSS Modeler [41] (originally
named Clementine) to analyze data. We provide our dataset and discussed details of preprocessing
the data, data imputation and one-hot encoding in Section 3.1, while Chang’s data are not publicly
available and no details on how the data were preprocessed were given. Both our dataset and Chang’s
exhibit class imbalance, however we discussed using alternate evaluation metrics to determine model
performance when class imbalance is present. Chang was able to use accuracy because the data were
filtered conveniently to eliminate the problem of “unbalanced data". To train each machine learning
algorithm, we implemented k-fold cross-validation to prevent over-fitting, whereas Chang did not
address concerns of model over-fitting. We also discussed ways in which model performance can
be improved through feature selection, as described in Section 3.2.3, while Chang did not. Chang
only used three machine learning algorithms, namely Logistic Regression, Decision Trees, and Neural
Networks, while we compared the performance of seven different classifiers. Another difference in
our work is that we identified the top five features that appeared to significantly contribute to the
student–college decision making, while Chang did not.

5.2. Future Work

We conclude this paper with some avenues for future research that could potentially improve the
predictive power of the model presented above.

• Feature Engineering. First, the adage “better data beat better algorithms” comes to mind. Feature
engineering is the process of using domain knowledge of the problem being modeled to create
features that increase the predictive power of the model [9]. This is often a difficult task that
requires deep knowledge of the problem domain. One way to engineer features for the accepted
student college commitment decision problem is by designing arrival surveys for incoming
students to better understand their reasons for committing to the college. Using knowledge
gained from these surveys would allow the creation of features to be added to the dataset
associated with future admits. These engineered features would likely improve model accuracy
with the caveat that including more input features may increase training time .

• Geocoding. Another avenue for exploration is to better understand the effects of incorporating
geographic location on the model, a process referred to as geocoding [42]. For example, we could
consider an applicant’s location relative to that of the institution they are applying to. One can
regard geocoding as a special example of feature engineering.

• Data Imputation. Instead of dropping categorical variables with missing or obviously inaccurate
entries, which results in the loss of potentially useful information, one could instead implement
data imputation [8]. Implementation of data imputation techniques could potentially improve
the accuracy of the model presented here.

• Ensemble Learning. Random Forest is an ensemble learning technique that was used in the study
presented here but did not outperform the Logistic Regression classifier. Ensemble learning is a
process by which a decision is made via the combination of multiple classification techniques [9].
For future work, one could consider other ensemble learning methods but we note that they
typically require an increased amount of storage and computation time.
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Appendix A

• Logistic Regression produces a probabilistic value using the logistic function that a given
applicant will fall into one of two classes: accepts admission offer or rejects admission offer [9,38].
The main objective of Logistic Regression is to find the best fitting model to describe the
relationship between the dependent variable and the set of independent variables. The parameters
of the logistic function are optimized using the method of maximum likelihood [43].

• Naive Bayes (NB) is a well-known algorithm based on Bayes’ Theorem [8,38] with the goal to
compute the conditional probability distribution of each feature. The conditional probability
of a vector to be classified into a class C is equal to the product of probabilities of each of the
vector’s features to be in class C. It is called “naive" because of its core assumptions of conditional
independence, i.e., all input features are assumed to be independent from one another. If the
conditional independence assumption actually holds, a Naive Bayes classifier will converge more
quickly than other models such as Logistic Regression.

• Decision trees (or ID3 Algorithm) use a tree-based structure to geometrically represent a number
of possible decision paths and an outcome for each path [39]. A typical decision tree starts at
a root node, and then branches out into a series of possible decision nodes by ranking features
to minimize entropy of the sub-dataset. Edges representing decision rules culminate in leaves
representing the outcome classes for the given study. Parameters that can be controlled in
Decision Trees include but are not limited to: maximum depth of the tree, the minimum number
of samples a node must have before it can be split and the minimum number of samples a leaf
node must have.

• Support Vector Machines (SVM) is an algorithm that separates binary classes with an optimal
hyperplane that maximizes the margin of the data, i.e., SVM searches for a decision surface that
is far away as possible from any data point dividing the two classes [9,10]. The margin of the
classifier is the distance from the decision surface to the closest data point and these points are
called the support vectors.

• K-Nearest Neighbors (K-NN) algorithm uses the notion of distance between data points and is
based on the assumption that data points that are “close” to each other are similar [8,39]. Given
an unseen observation, its unknown class is assigned upon investigating its K “nearest” labeled
data points and the class that those data points belong to. The unseen data point is assigned the
class with the majority prediction based on its nearest K neighbors. The choice of the parameter K
can be very crucial in this algorithm.

• Random Forest is a classifier based on a combination of tree predictors such that each tree is
independently constructed in the ensemble [8,38]. After some number of trees are generated,
each tree votes on how to classify a new data point and the majority prediction wins. Some of
the parameters that can be tuned in the Random Forest classifier are: the number of trees in the
ensemble, number of features to split in each node, and the minimum samples needed to make
the split.

• Gradient Boosting is a type of boosting method in which the weak prediction models are decision
trees (or stumps) and each weak predictor that is sequentially added tries to fit to the residual
error made by the previous weak predictor [8]. Boosting refers to any ensemble method that
produces a prediction model in the form of an ensemble of weak prediction models resulting in a
strong classifier.
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