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Abstract: Dense 3D point clouds were generated from Structure-from-Motion Multiview Stereo
(SFM-MVS) photogrammetry for five representative freshwater fish habitats in the Xingu river basin,
Brazil. The models were constructed from Unmanned Aerial Vehicle (UAV) photographs collected
in 2016 and 2017. The Xingu River is one of the primary tributaries of the Amazon River. It is
known for its exceptionally high aquatic biodiversity. The dense 3D point clouds were generated
in the dry season when large areas of aquatic substrate are exposed due to the low water level.
The point clouds were generated at ground sampling distances of 1.20–2.38 cm. These data are
useful for studying the habitat characteristics and complexity of several fish species in a spatially
explicit manner, such as calculation of metrics including rugosity and the Minkowski–Bouligand
fractal dimension (3D complexity). From these dense 3D point clouds, substrate complexity can be
determined more comprehensively than from conventional arbitrary cross sections.

Dataset:
https://figshare.com/articles/3D_Point_Cloud_-_Cachoeira_Xada_Xingu_River_Brazil/7411907
https://figshare.com/articles/Iriri_HD_las/7411832
https://figshare.com/articles/3D_Point_Cloud_-_Retroculus_Island_Xingu_River_Brazil/7413314
https://figshare.com/articles/3D_Point_Cloud_Culuene_rapids_Xingu_River_Basin_Brazil/7413371
https://figshare.com/articles/3D_Point_Cloud_-_Jatoba_River_Xingu_River_Basin_Brazil/7413695

Dataset License: CC-BY 4.0.

Keywords: structure from motion; Iriri rapids; Jatoba river; Culuene rapids; Retroculus island;
unmanned aerial vehicle; freshwater fish; habitat complexity

1. Summary

The Unmanned Aerial Vehicle (UAV)-based photographs used to create the dense
three-dimensional (3D) point clouds described here were collected in August 2016 and August 2017,
at five locations in the Xingu river basin: Iriri rapids, Retroculus island, Xada rapids, Jatoba
river, and Culuene rapids (Figure 1). As described in [1], these sites represent a range of habitat
complexity and classes important for the Xingu’s fish diversity. The data described here were
used to calculate habitat complexity metrics such as rugosity, the autocorrelation of the surface
topographic variation [2,3], and the Minkowski–Bouligand fractal dimension as a measure of 3D
complexity [4]. These serve as indicators of the amount of available habitat and shelter for the benthic
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organisms, and the amount of brood care and foraging area for mobile species. Raster digital surface
models and metrics of texture interpolated from these dense 3D point clouds were further used in
a shallow neural network classification to determine the area of specific habitat classes important
for the Xingu fish species, such as sand and pebbles (grain size <0.5 cm) and large boulders (grain size
50–300 cm). The data were further used to compare the conventional estimation of habitat complexity
(i.e., chain-and-tape) [5,6] to the spatially explicit 3D reconstructions.

UAV-based photography and 3D reconstruction of terrestrial environments using Structure-from-
Motion (SfM) photogrammetry have become increasingly common [7–10]. The concepts have further
been applied underwater in marine ecosystems, predominantly to study coral reefs [5,11–13] and
deep-sea structures [14]. In a strict sense, our use of the term SfM refers to an analytical workflow
that combines both SfM and Multiview Stereo (MVS) photogrammetry, as such, we refer to the
methodology as SfM-MVS. In aquatic ecosystems, biodiversity is strongly related to a habitat’s structural
complexity [15–18]. In freshwater, mapping and distinguishing substrate types is of fundamental
importance to the ichthyofauna that either prefer or have obligate associations to certain habitat types
(e.g., large boulders vs. sand). Kalacska, M. et al. [1] showed for the first time the applicability of
UAV-based SfM-MVS for freshwater fish habitat complexity characterization; the data described herein
comprise those models.
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Figure 1. Locations within the Xingu river basin where the five datasets representing a range of
freshwater fish habitat complexity and diversity were collected. Background image illustrates the
extent of forest cover (green) in the region from 2017, overlaid on a satellite image mosaic from Landsat
8 OLI.
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2. Data Description

The data are available for download in .las format [19] with a separate point cloud for each
location (Table 1). The data are in a geographic projection (latitude/longitude) with WGS84 as the
horizontal datum and EGM96 for the geoid. All height values represent orthometric height in meters.
The six columns within the .las file are X,Y,Z positions and R,G,B color values.

Table 1. 3D point cloud files available for download.

File Location Size Interactive version

Jatoba.las Jatoba river 1.12 GB http://bit.ly/riojatoba
Culuene_HD.las Culuene rapids 801.59 MB http://bit.ly/culuene

Retroculus_island.las Retroculus island 714.93 MB http://bit.ly/retroculus
Xada_HD.las Xada rapids 459.31 MB http://bit.ly/xadarapids
Iriri_HD.las Iriri rapids 2.48 GB http://bit.ly/iriri3D

3. Methods

Two UAVs models were used to collect the photographs used for generating the 3D models: a DJI
Inspire 1 and DJI Inspire 2 (Table 2). The Inspire 1 is a 2.9 kg quadcopter with an X3 FC350 camera and
integrated 3-axis gimbal (±0.03◦). The X3 camera has a 1/2.3” CMOS sensor, a fixed 20 mm lens with
a 94◦ diagonal field of view, and a linear rolling shutter producing an image size of 4000 × 3000 pixels.
The Inspire 2 is a 3.4 kg quadcopter, it was used with an X5S camera which has a micro 4/3 sensor,
linear rolling shutter, integrated 3 axis ±0.01◦ gimbal, and a DJI MFT 15 mm/1.7 aspherical lens (72◦

diagonal field of view) producing an image size of 5280 × 3956 pixels. Flights were conducted in
a double grid pattern (orthogonal flight directions). All photographs were written to disk with the
geolocation of the center of the frame, and the altitude in the EXIF data. The photographs were
collected with Pix4D Capture as the flight planning application, and flight control software in “Fast
Picture Trigger” mode with speed category of “Slow+”. In this mode, the UAV does not stop at each
waypoint to take the photographs. Overlap and side-lap were set to 85%. All photographs were
collected in the dry season when the Xingu River and its tributaries are at the lowest water level,
exposing large areas of the substrate. In the wet season these areas serve as critical habitat for several
fish species.

Table 2. Summary of UAV photographs used for the generation of the 3D models as modified from [1].
Photographs were collected from 30 m AGL altitude.

Location UAV Camera Date GSD (cm) No. Photographs Area (ha)

Jatoba river Inspire 2 X5S 2 August 2017 1.20 375 2.80
Culuene rapids Inspire 2 X5S 1 August 2017 1.75 283 4.54

Retroculus island Inspire 1 X3 8 August 2016 1.43 208 0.52
Xada rapids Inspire 1 X3 11 August 2016 2.38 420 4.62
Iriri rapids Inspire 1 X3 6 August 2016 1.46 425 2.77

As described in [1], the SfM-MVS dense 3D point clouds were generated from UAV photographs
with Pix4D Mapper Pro [8,20,21], producing ground sampling distances (GSD) ranging from
1.20–2.38 cm (Table 2 and Figure 2). Pix4D Mapper utilizes a modification of the SIFT algorithm [22,23],
where local gradients rather than sample intensities are used to create descriptors of each key point [24].
Rolling shutter effects for the two cameras were corrected for in Pix4D Mapper (Table 3). The movement
of the camera positions were approximated by a linear interpolation between the camera positions
at the start and finish of the image readout [25]. Following the generation of the initial 3D point
cloud, multi-view stereo photogrammetry was implemented to increase the density of the point cloud
(Tables 4–8).

http://bit.ly/riojatoba
http://bit.ly/culuene
http://bit.ly/retroculus
http://bit.ly/xadarapids
http://bit.ly/iriri3D
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Table 3. Rolling shutter statistics as determined by Pix4D Mapper. All values represent the median.

Location Camera Speed (m/s) Displacement
During Readout (m)

Rolling Shutter
Readout Time (ms)

Jatoba river 2.1 0.13 60.63
Culuene rapids 3.4 0.27 80.06

Retroculus island 2.0 0.16 80.90
Xada rapids 2.4 0.15 63.58
Iriri rapids 2.0 0.14 72.29

Since there were no GNSS active control stations within 100 km of the study sites, and since
during data collection there was limited time available at each site, no post processing correction
was applied to the geolocations in the EXIF data, nor were any control points collected on site to
improve the absolute geo-positional accuracy of the point clouds. The unmodified geolocation was
expected to have an absolute positional error up to 3 m. As described in [1] relative positions and
distances (i.e., within model) are estimated to have errors within the ground sampling distance for
solid structures (e.g., rocks), as measured on the ground by tape measure. For the original application
of these data, the within-model accuracy of the features (e.g., size of rocks) was more important than
absolute GNSS positional accuracy.

Table 4. Summary of processing details for the SfM-MVS photogrammetry products. The total
processing time includes the initial sparse point cloud and generation of the dense point cloud.
The average point cloud density refers to the final densified product. The camera optimization
properties represent differences between the initial model of focal length/affine transformation
parameters of the camera’s sensor, and optics and optimized parameters calculated from the data;
values are expected to be less than 5%.

Location
Median

Matches per
Image

Avg Point
Cloud

Density (/m3)

Median
Keypoints
per Image

Camera
Optimization

(%)

Total Processing
Time

Total Number of
Points (Dense
Point Cloud)

Jatoba river 17,958.3 1044.0 72,446 0.33 8 h:49 min:58 s 35,432,692
Culuene rapids 23,869.7 620.6 70,893 1.96 6 h:16 min:04s 24,695,393
Retroculus Isl. 23,059.0 1782.1 5342 1.36 21 min:44 s 22,033,200
Xada rapids 18,118.6 469.3 41,835 3.42 1 h:57 min:08 s 14,129,408
Iriri rapids * 15,684.2 5863.4 42,048 0.12 25 h:58 min:06 s 78,332,198

* the Iriri rapids point cloud was processed at the highest image scale in Pix4D Mapper (Scale: 1) which is
substantially slower and requires additional hardware resources. All other models were processed at the default
of 1

2 image size for the scale. The workstation used for the processing the data from Jatoba, Culuene, and Iriri
consisted of an Intel Core i7-3930 K CPU @ 3.2GHz, 48GB DDR3 RAM @ 842 MHz with a 4095 MB NVIDIA GTX 670
GPU. The data from Retroculus island and Xada were processed with the Pix4D Cloud service (Intel Xeon Platinum
8124M CPU @ 3.00GHz with 69 GB RAM).

Table 5. Difference between the initial and computed image positions. These values do not correspond
to the positional accuracy of the 3D point cloud. Values reported in meters.

Location X: µ ± σ Y: µ ± σ Z: µ ± σ

Jatoba river 0.00 ± 0.99 0.00 ± 0.89 0.01 ± 0.32
Culuene rapids 0.00 ± 1.34 0.00 ± 1.86 0.00 ± 2.37

Retroculus Island 0.01 ± 0.52 0.00 ± 0.50 0.00 ± 1.01
Xada rapids 0.00 ± 0.89 0.00 ± 0.87 0.00 ± 0.69
Iriri rapids 0.00 ± 0.60 0.00 ± 0.60 0.00 ± 1.00
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Table 6. Relative camera position and orientation uncertainties. Values represent µ ± σ.

Location X (m) Y (m) Z (m) Omega (◦) Phi (◦) Kappa (◦)

Jatoba river 0.008 ± 0.003 0.007 ± 0.003 0.004 ± 0.001 0.012 ± 0.004 0.010 ± 0.004 0.003 ± 0.001
Culuene rapids 0.012 ± 0.009 0.012 ± 0.008 0.005 ± 0.003 0.012 ± 0.008 0.010 ± 0.007 0.004 ± 0.002
Retroculus Isl. 0.003 ± 0.001 0.003 ± 0.001 0.002 ± 0.001 0.006 ± 0.002 0.006 ± 0.002 0.003 ± 0.001
Xada rapids 0.004 ± 0.002 0.004 ± 0.002 0.003 ± 0.001 0.005 ± 0.002 0.005 ± 0.002 0.002 ± 0.001
Iriri rapids 0.054 ± 0.032 0.053 ± 0.026 0.022 ± 0.010 0.102 ± 0.048 0.097 ± 0.059 0.025 ± 0.008

Table 7. Block Adjustment Details.

Location No. 2D Keypoint Observations
for Bundle Block Adjustment

No. 3D pts for Bundle
Block Adjustment

Mean Reprojection
Error (pixels)

Jatoba river 7,021,320 2,165,893 0.205
Culuene rapids 6,436,758 1,293,024 0.198

Retroculus Island 1,353,973 270,069 0.212
Xada rapids 7,668,646 1,442,876 0.259
Iriri rapids 7,720,544 1,848,706 0.199

Table 8. Initial (I) and optimized (O) camera model parameters. Values reported in mm for focal length
and x, y principal points. Other parameters are unitless. Uncertainties reported as σ. T = Tangential
distortion, R = Radial distortion.

Location Focal
Length

Principal
Point x

Principal
Point y R1 R2 R3 T1 T2

Jatoba
river

I = 15.000
O = 15.065
σ = 0.006

I = 8.75
O = 8.824
σ = 0.000

I = 6.556
O = 6.635
σ = 0.002

I = 0.000
O = −0.005
σ = 0.000

I = 0.000
O = −0.004
σ = 0.000

I = −0.000
O = 0.010
σ = 0.001

I = 0.000
O = 0.001
σ = 0.000

I = 0.000
O = 0.002
σ = 0.000

Culuene
rapids

I = 15.000
O = 14.751
σ = 0.004

I = 8.75
O = 8.854
σ = 0.000

I = 6.556
O = 6.764
σ = 0.002

I = 0.000
O = −0.006
σ = 0.000

I = 0.000
O = −0.004
σ = 0.000

I = −0.000
O = 0.010
σ = 0.000

I = 0.000
O = 0.001
σ = 0.000

I = 0.000
O = 0.002
σ = 0.000

Retroculus
Island

I = 3.61
O = 3.659
σ = 0.002

I = 3.159
O = 3.157
σ = 0.000

I = 2.369
O = 2.356
σ = 0.000

I = −0.13
O = −0.131
σ = 0.000

I = 0.106
O = 0.108
σ = 0.000

I = −0.016
O = −0.014
σ = 0.000

I = 0.000
O = −0.001
σ = 0.000

I = 0.000
O = 0.000
σ = 0.000

Xada
rapids

I = 3.61
O = 3.486
σ = 0.001

I = 3.159
O = 3.156
σ = 0.000

I = 2.369
O = 2.352
σ = 0.000

I = −0.13
O = −0.119
σ = 0.000

I = 0.106
O = 0.087
σ = 0.000

I = −0.016
O = −0.009
σ = 0.000

I = 0.000
O = −0.001
σ = 0.000

I = 0.000
O = 0.000
σ = 0.000

Iriri
rapids

I = 3.551
O = 3.547
σ = 0.000

I = 3.085
O = 3.084
σ = 0.000

I = 2.314
O = 2.300
σ = 0.000

I = −0.13
O = −0.119
σ = 0.000

I = 0.106
O = 0.104
σ = 0.001

I = −0.016
O = −0.013
σ = 0.000

I = 0.000
O = −0.001
σ = 0.000

I = 0.000
O = 0.000
σ = 0.000
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Figure 2. Dense 3D point clouds of the five freshwater habitats in the Xingu river basin. (A) Jatoba
river; (B) Culuene rapids; (C) Retroculus island; (D) Iriri rapids; and (E) Xada rapids.

4. Limitations

The photographs were collected at nadir, therefore habitat elements such as caves, crevices,
the underside of overhangs, areas underneath the vegetation, or tunnels and cracks inside boulders,
or other structures underneath or between boulders are either only partially represented or remain data
deficient. Areas of fast-moving white water may also show as data deficient, as it was not possible to
reconstruct the model in those areas. In the analyses of these data for fish habitat complexity, due to the
low water levels, the areas of interest at the sites were comprised of dry exposed substrate everywhere
except Jatoba. At Jatoba, because the area of interest had shallow (<1.8 m) water, a refractive index
submerged digital surface model correction was applied as per [26–28] prior to the calculation of the
habitat complexity metrics.

5. Conclusions

These dense 3D point clouds are digital reconstructions encompassing the most common aquatic
habitat classes important for endemic Xingu fishes. The area is spatially explicit and provides a high
level of detail from which the habitats can be studied. As shown by [4,5,12,13], in marine environments,
and was also found by [1], the complexity metrics calculated from 3D surface reconstructions are
more robust than conventional measures. The photographs used to generate these point clouds were
collected from low altitude (30 m AGL) UAV flights. Small, light-weight UAVs can be successfully
used in remote areas to generate 3D reconstructions of freshwater aquatic habitats.
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