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Abstract: Mostly, diagnosis at a system level intends to identify only permanently faulty units. In the
paper, we consider the case when both permanently and intermittently faulty units can occur in the
system. Identification of intermittently faulty units has some specifics which we have considered in
this paper. We also suggest the method which allows for distinguishing among different types of
intermittent faults. A diagnosis procedure was suggested for each type of intermittent fault.
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1. Introduction

Recent advances in semiconductor technology allow the designing of powerful single-chip
microprocessors. Since the cost of microprocessor systems has considerably reduced, we are able to
build more and more sophisticated microprocessor systems with up to thousands of microprocessors.

Developing many-core processors with novel architectures enables the increasing of the processor
performance [1]. To achieve such an effect, a novel architecture should provide interactions among
processor cores and the execution of many tasks simultaneously.

Increasing possibilities of emerged many-core processors result in their broad deployment
in different areas. It, in its turn, imposes the high requirements of dependability of many-core
processors [2].

To provide processor fault-tolerance, different methods can be applied. All of them have some
mutual features. First of all, error detection should be performed. Usually, error detection results in a
signal or message indicating the erroneous state of the processor. After that, a recovery of the processor
state is performed (error handling). Error handling can be carried out either by way of backward
error recovery or forward error recovery or masking. Masking requires different types of redundancy.
Hardware redundancy implies redundant processor cores. Information redundancy exploits different
coding techniques. Time redundancy consists of repeating some computation on the same hardware.

After error handling, fault handling can be performed. It is worth noting that fault handling can
be omitted. It depends on the chosen way of error handling. The main steps of fault handling are as
follows: fault diagnosis; fault isolation; processor reconfiguration; and reinitialization.

For providing fault handling, built-in testing capabilities (so-called built-in-self-test schemes)
are often used. Built-in testing allows the efficient performance of fault handling [3]. Unfortunately,
the wide applicability of built-in testing is undermined by the need to have some part of the processor
(called the hard-core) operational even in the presence of a fault.

Self-diagnosis, which uses the ability of processor cores to test each other, is now actively studied
as a promising technique for providing processor core checking and diagnosis [4–7].
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The basis for the diagnosis of intermittent faults at a system level was developed by Mallela and
Masson [8]. They determined the condition (in this paper, denoted as RΣ ∈ R0) which should be used
in the diagnosis algorithms, taking into account intermittent faults.

It worth noting that the authors did not consider the problem of implementation of the suggested
method. In this paper, we present an efficient algorithm allowing us to perform verification of
above-mentioned condition. Moreover, we have also determined what should be done when the
condition is not satisfied.

We assume that the suggested method in the paper begins to diagnose intermittent faults that
can be used not only for many-core processors but also for a wide range of complex systems, which
employ self-diagnosis.

It is worth noting that diagnosis of system units at a system level considers a fault in the system
as a failure of a system unit. We do not consider the details of what was wrong with the failed unit as
it was done, for example, in the fault diagnosis described in [9–11]. In view of this, we do not classify
the faults as it was done, for example, in [12,13]. In essence, we consider each system unit as either
failed or correct (which is denoted as “1” or “0”). Failure of the system occurs when the total number
of failed units exceed the maximum value determined in advance.

The paper is organized as follows. Section 2 presents the model and classification of intermittent
faults in the context of self-diagnosis. Section 3 describes the problems of developing diagnosis
algorithms when intermittent faults can take place. In Section 4, it is shown how intermittently faulty
units can be diagnosed on the basis of the obtained syndrome. Section 5 presents our approach to
formation of all potential syndromes and to verifying the main condition. Section 6 shows what could
be done if the main condition is not met. Conclusions are given in the final section.

2. Related Work

Diagnosis of intermittent faults in electric mechanical and electronic devises is well studied and
presented in a number of papers (e.g., [14,15]). Normally, such diagnosis employs external facilities for
providing testing and analysis. As distinct from these researches we consider the systems which units
are capable of performing both testing and diagnosis algorithms.

Recently, a comparisons based approach is widely used to detect both permanent and intermittent
faults in the networks [16]. Application of comparison-based model in sensor networks allows a
sensor node to identify its own status based on the information received from the neighbors [17–19].
As another possibility, the state of a node can be diagnosed by the other system nodes [20,21]. It is
worth noting that these researches mostly deal with homogeneous systems and/or use very much
simplified local diagnosis in relation to intermittent faults.

The advances achieved in modern electronics made it possible to better handle the obtained
diagnosis syndromes. Particularly, now it is possible to present the algorithms at high level of
abstraction with generation of code that exploits the inherent parallelism of current CPU (including
the vectorization) [22]. Namely, this was done by us in the paper.

3. Classification of Intermittent Faults in the Context of Self-Diagnosis

Intermittent fault of a system unit can be defined as a fault, which randomly transfers from a latent
state to an active state and vice versa. There exist several models, which describe the behavior of an
intermittent fault [8,23]. We use the model proposed in [8]. In this model, the behavior of intermittent
fault is expressed by continuous Markov chain, where the time during which an intermittent fault
stays in active, respectively passive state, is random value with exponential distribution (see Figure 1).

In Figure 1, λ and µ denote the rates of transition from passive to active state and vice versa.
When an intermittent fault is in active state it can course an error in a system unit and affect the

tests related to the erroneous unit.
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System level self-diagnosis deals with the mutual testing. In this case, one of the system units
performs tests on the other units. Convenient form for representing a mutual testing is graph model
(testing graph). Example of testing graph is shown in Figure 2.Data 2018, 3, x FOR PEER REVIEW  3 of 16 
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Figure 2. Example of testing graph.

In the given case, diagnosable system consists of four units U = {u1, u2, u3, u4}. Each unit ui, ui ∈ U,
is assigned a particular subset of units in U to test.

Generally, a unit can test itself. Although, we assume that a unit doesn’t do this. In the
corresponding testing graph, it means the absence of loops (i.e., testing graph doesn’t contain the
edges that connect a vertex to itself).

A test, which invokes two units, is represented in the testing graph by the edge between two
vertices which correspond to testing and tested units. In Figure 2, there are six edges. These edges
correspond to tests τ12, τ23, τ34, τ41, τ31 and τ42. Subscripts point to the units that are involved in the
test. The complete collection of tests is called a testing assignment. Test result is represented by binary
variable rij which can take values 0 or 1. Variable rij is equal to 0 if unit ui evaluates unit uj as fault-free.
Otherwise, rij = 1.

In Figure 2, test results are shown next to the corresponding edges. The set of test results is called
a syndrome. Identification of faulty units using a syndrome is called diagnosis.

Generally, for providing diagnosis at system level some assumptions are made, such as:

• tests can be performed only in the periods of time when system units do not perform their proper
system functions (i.e., when they are in idle state). That is, a system unit is not tested continuously,
and, therefore, there exists a probability of not detecting the failed unit;

• even if a unit is failed, a test not always detects this event. It depends on test coverage;
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• result of a test is expressed as 0 or 1 depending on the evaluation of the testing unit about the
state of the tested unit;

• tests in a system can be performed either according to a predefined testing assignment
or randomly.

In this paper, we consider that test coverage is equal to 100%. We also assume that tests among
system units are performed according to predefined testing assignment. It means that the total time of
testing is known beforehand. Consequently, the periods of time when each unit is involved in tests are
also known in advance.

In the given case, it is possible to consider parameters of intermittent fault model (i.e., λ and µ) in
relation to the total time of testing, ttesting. Table 1 presents possible evaluations of values 1/ λ and 1/µ
as compared to the value of ttesting. This comparison bears some resemblance to the techniques based
on fuzzy logic. We evaluate the values of 1/ λ and 1/µ as “large” and “small” depending on the ratios
of values 1/λ (1/µ) and ttesting.

Table 1. Various types of intermittent faults.

Ratio ttesting/A A = 1/λ A = 1/µ

case 1 (class 1) large large

case 2 (class 2) large small

case 3 (class 3) small large

case 4 (class 4) small small

As a result of this consideration, it is possible to divide the considered intermittent faults into
several classes.

Intermittent faults related to class 1 and class 2 can be detected with high probability during testing
procedure. Detection of intermittent faults in case 3 is very improbable (problematic). Probability of
detecting such faults is low. As concerns case 4, there exist two options— a) and b) (see Figure 3).
In the given case, probability of intermittent fault detection can be estimated as 0.5 when 1/λ ≈ 1/µ.Data 2018, 3, x FOR PEER REVIEW  5 of 16 
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Generally, system level self-diagnosis is aimed at detecting permanently faulty system units.
Nevertheless, there exist the possibility to detect also intermittently faulty units when intermittent
faults are related to classes 1,2 and 4 [24].

4. Problems with Developing Diagnosis Algorithms When Intermittent Faults are Allowed

Diagnosis is performed on the basis of obtained syndrome. A syndrome is a set of test results.
The result of test τij is denoted as rij and can take the values 0 or 1 depending on the fact of how unit
ui evaluates the state of unit uj.

In the paper, we accept the evaluation proposed by Preparata [25].

rij =


0 if units ui and uj are fault-free
1 if units ui is faul-free and uj is faulty
X (0, 1), where unit ui is faulty

(1)

We also assume that if an intermittent fault is in an active state, then the unit with this fault
behaves as permanently faulty unit.

To explain the problems with diagnosis made on the basis of the obtained syndrome, let us
consider a simple example with code in Julia programming language. We have implemented our
solution in this programming language for illustration of how bitwise operations can effectively
represent the operations on the syndrome.

Let the system consist of five units and tests are performed according to a predefined schedule.
This system is represented by the graph shown in Figure 4.Data 2018, 3, x FOR PEER REVIEW  6 of 16 
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The obtained syndrome is

Rd = {r12= 0, r13= 0, r23= 1, r24 = 0, r34 = 1, r35 = 0, r45 = 1, r41 = 0, r51 = 0, r52 = 0}

There exist several methods for diagnosis of permanently faulty units. Most of them make the
assumption about the maximum possible number of faulty units in the system. In [22], it was proven
that correct system diagnosis is possible if the total number of faulty units do not exceed the value
t, where

t =
⌊

N − 1
2

⌋
(2)

It is easy to verify that no system state (i.e., no combination of permanently faulty and fault-free
units in which the total number of permanently faulty units does not exceed the value t) can lead to
obtaining such syndrome Rd.
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For example, if units u3 and u5 are permanently faulty, result r13 should be equal to 1, whereas in
syndrome Rd this result is equal to 0.

Thus, direct application of algorithms developed for diagnosis only permanently faulty units is
not possible.

Such situation can be explained by specific behavior of some faulty units. Particularly, a unit
can be intermittently faulty. It means that at one moment it behaves like a permanently faulty unit,
whereas at other moments like a fault-free unit.

Thus, new methods for diagnosis intermittently faulty units at system level should be developed.

5. Diagnosis of System with Intermittently Faulty Units

Let’s consider example when system consists of three units (as shown in Figure 5).
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Such system can be correctly diagnosed if not more than one permanently faulty unit is allowed
(i.e., t = 1). The table of potential syndromes that can be obtained when only permanently faulty units
can take place looks as follows:

For the considered example the following syndromes can be obtained:

R1 = {0, 0, 0}, R2 = {0, 0, 1}, R3 = {1, 0, 1}, R4 = {1, 0, 0}, R5 = {1, 1, 0}, R6 = {0, 1, 0}, R7 = {0, 1, 1}.

These syndromes form the set R0, that is R0 = {R1, R2, . . . , R7}.
Generally, for the systems with N units and with testing graphs of type Dδ,t the cardinality of set

R0 is equal to

1 +
t

∑
i=1

2iCN
i (3)

Structure Dδ,t is the structure in which unit ui tests unit uj if and only if

j− i = δm(mod N), (4)

where m = 1, 2, . . . , t.
Now let’s consider the case when unit ui has intermittent fault which during test τ31 is in passive

state and during test τ12 is in active state. In the given case, the following syndrome can be obtained
RD = {r12 = 1, r23 = 0, r31 = 0} Application of any diagnosis algorithm developed for diagnosis of
systems with only permanently faulty units gives the result indicating that unit u2 is faulty. This result
is incorrect.



Data 2019, 4, 44 7 of 15

Hence, we cannot apply these diagnosis algorithms directly for diagnosis systems when
intermittent faults are allowed. For this case Mallela and Masson [8] suggested to repeat the tests
several times in order to form the summary syndrome RΣ.

Summary syndrome RΣ is obtained after performing m rounds of test routine (i.e., m repetition of
tests). Summary syndrome RΣ is computed as follows

RΣ =
{

r∗ij
}

, r∗ij = ∪l
r l

ij (5)

where rl
ij ∈ Rl , Rl-syndrome obtained in l-th round of repetition of test routine.

When summary syndrome RΣ is a subset of set R0 (i.e., RΣ ∈ R0), the algorithms developed for
diagnosing permanently faulty units can be also used for considered faulty situation. R0 is a set of
syndromes that can be obtained when only permanently faulty units can take place (considering that
number of faulty units do not exceed the maximum number of faulty units which is allowable for
diagnosable system).

Getting back to the considered example, let’s assume that tests are repeated only once. Let’s also
assume that intermittent fault of unit u1 during repeated test τ31 will be in active state (i.e., τ2

31 = 1).
In the given case, summary syndrome RΣ takes the form

RΣ = {r∗12, r∗23, r∗31} = {1, 0, 1}, where r∗12 = r1
12 ∪ r2

12, r∗23 = r1
23 ∪ r2

23 and r∗31 = r1
31 ∪ r2

31.

Diagnosis performed on the basis of RΣ gives the result indicating that unit u1 is faulty. This result
is correct (see Table 2).

Table 2. Table of potential syndromes.

System State Syndrome

r12 r23 r31

S0: all units are fault-free 0 0 0
S1: unit u1 is faulty either 0 or 1 0 1
S2: unit u2 is faulty 1 either 0 or 1 0
S3: unit u3 is faulty 0 1 either 0 or 1

To verify if the main condition RΣ ∈ R0 is met, several methods can be used. For example,
syndrome RΣ can be sequentially compared with every potential syndrome from set R0. Another
method consists in the following. First element of RΣ is compared with the first elements of each
syndrome from set R0. After this step most of syndromes can be deleted from set R0, particularly those
in which the first element is distinct from the first element of RΣ. Then the second element of RΣ is
compared with the second elements of the syndromes which remain in set R0. After this step further
syndromes can be deleted from set R0, as it was done at previous step. This procedure proceeds until
set R0 contains only one syndrome which is similar to RΣ (i.e., main condition is met). Otherwise,
when there is no match, the main condition is not met.

Next method assumes that set R0 can be formed in advance and for each element of R0 whole
number can be associated. For example, in the considered example potential syndrome R7 = {0, 1, 1}
is associated with 3, since 0× 22 + 1× 21 + 1× 20 = 3. Whole number is also computed for RΣ. Then,
this number is sequentially compared with the numbers of syndromes from R0. As soon as the match
is found, the procedure of comparing is ended (i.e., main condition is met). If match is not found,
main condition is not met.

For arbitrary testing graphs that are formed dynamically (when tests are performed randomly) it
is not possible to perform analysis of potential syndromes in advance. For this case we propose the
approach that allows solving both the task of formation of all potential syndromes and the task of
verifying the main condition.
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6. Formation of Potential Syndromes and Verifying the Main Condition

We consider system self-diagnosis when system units perform both system tasks and diagnosis.
Diagnosis includes performing of the tests and executing of diagnosis algorithm. Since system units are
restricted in resources (memory, time), it is important to simplify and reduce the number of operations
performed by each system unit.

Recently some new programming languages were developed that can be used to provide
implementation of system self-diagnosis. We have chosen Julia language for pilot implementation of
the proposed algorithm and data structures. Julia is a high-level programming language very suitable
for the presentation of ideas in the form which is relatively close to mathematical notation. On the
other hand Julia supports low level constructs and hardware optimization (in reality it can the product
code which is more efficient than code in C language and comparable to performance of HPC Fortran
compilers). Julia is now a stable language with a growing community.

6.1. Data Representation

We suggest to performing basic operations on syndromes and on the sets of syndromes by way of
utilization of bit arrays and vectorized the version of bitwise operations.

This brings two main benefits:

• Compact representation of diagnosis graphs and syndromes (allows the decrease of the memory
consumption by a factor 4); and

• Full utilization of several types of hardware parallelism (including concurrency of bitwise
operators).

The implementation in Julia uses high level constructs but it is available only for systems based
on x86 and ARM platforms (32 bit and 64 bit). Moreover, for systems with fixed and limited numbers
of units there exists the simple and effective implementation in native machine code (only basic bitwise
operations are used). In the given case, application of the suggested approach for resource-restricted
embedded systems is also possible and efficient (e.g., for IoT agents and their swarms). Table 3
summarizes the main characteristics of the suggested implementations.

Table 3. Characteristics of code implementation.

Implementation Target Platform Paralellism

Maximal
Number of

Units in
System

Memory
Consumption

Count of Arithmetic
Instruction for

Testing the
Condition

RΣ∈R0

classical array
implementation

(in C or
Fortran)

desktop and some
embedded system

only on compilers
with vectorization

support (e.g.,
OpenMP 3.0 with

SIMD)

unlimited n2 bytes 2n2

Julia bit arrays ARM, x86 (32 and
64 bits)

SIMD (SSE, NEON)
bit operation unlimited

2n2 bites = n2/4
bytes + rounded up
to machine word +
alignment (critical
for SIMD systems)

n2/ 128 (for x86
AVX) + better locality

of CPU caches

assembler code
embedded system
microcontrollers

(8–32 bits)
bit operation

width of
universal

registers (8–32)

2n2 bites = n2/4
bytes

n2/ 8 (for 16 bit
systems)

+ better locality of
CPU caches

Testing graphs of the system can be represented by the square adjacency matrix of dimension n ×
n, where n is the total number of units in the system. Elements of this matrix are Boolean values. (If unit
ui performs a test on unit uj, the item on the i-th row and j-th column takes the value true, otherwise
false). The matrix of Boolean values can be represented in packed form. In the given case, matrix items
are represented by single bits and the matrix of Boolean values is represented by bit arrays.
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Julia language supports bit arrays with arbitrary dimensions using standard library of data
structures. Therefore, the definition of new data type for data of the adjacency matrix is straightforward.

struct TestingGraph
tests: BitArray{2} # adjacency matrix as 2D bit array
end

The system global state (vector of states of units) is represented in an external data structure
(it can be modified independently from the testing graph) by means of an alias of 1D bit array (alias
does not create a nominally new type but only a new identifier for an existing one). In this bit array,
zero represents the faulty unit.

SystemState = BitArray{1}

Usually a syndrome is depicted in testing graph as weights of edges. In the given case, weights
are results of tests. A result can take values either 0 or 1. In Figure 6, example of syndrome for the
system with five units is shown.Data 2018, 3, x FOR PEER REVIEW  10 of 16 
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These types of weighted graphs can be represented by a pair of Boolean matrices (in packed bit
array representation). The first matrix (denoted as mask) is identical to the adjacency matrix of the
testing graph as it defines the positions of valid results (i.e., the results equal to 0). The second matrix
codes results of tests (true represents results equal to 0, false represents result equal to 1). Only results
with true bit in the mask matrix are valid.

This somewhat counterintuitive representation of the results’ value makes some operations
(e.g., membership function) more efficient.

For example the syndrome depicted in Figure 6 can be created by the following call of
the constructor:

Syndrome(5, [((1,2), 0), ((1,3),0), ((2,3), 0),((3,4), 1), ((3,5), 0), ((5,1), 0), ((5,4), 1)])
struct Syndrome
mask:: BitArray{2}
results:: BitArray{2}
end

The Julia makes possible definition of auxiliary constructing functions (constructors) for
initialization of complex data structures. The syndrome can be initialized from array of tuples
((checkingUnit, checkedUnit), result).

function Syndrome(n::Int, results::Vector{Tuple{Tuple{Int, Int}, Int}})
# both matrices are inicialized by falses
s = Syndrome(falses(n,n), falses(n,n))
for ((checking, checked), result) in results # for every results
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s.results[checking, checked] = (result = 0) # set bit in results
s.mask[checking, checked] = true # and mask
end
returns
end

In this representation, the summary syndrome RΣ is computed by reducing (folding) the list of
syndromes by binary operation of syndrome union (denoted as ∪). This operation is implemented by
bitwise AND between results matrix of syndromes

function ∪(s1::Syndrome, s2::Syndrome)
if s1.mask! = s2.mask
throw(ArgumentError(“Incompatible syndromes”))
end
return Syndrome(s1.mask, s1.results & s2.results)
end

R_∑(syndromes::Vector{Syndrome}) = reduce(∪, syndromes)

The set of syndromes is expressed by the same internal structure as syndrome with slightly
alternative meaning of bit mask. In the given case, true bit in mask is interpreted as unambiguous
result of test. False bit is interpreted as ambiguous result of test (in set R, it is denoted as ‘X’) or
non-existent test. The new type is defined for better static type checking (Julia has nominal optional
static type system).

struct SyndromeSet
mask:: BitArray{2}
results::BitArray{2}
end

6.2. Testing of Membership RΣ of R0

The implementation of membership function which checks if a syndrome is element of some
syndrome set is possible using only basic bitwise operation AND, OR and XOR (denoted as &, | and Y
or . & .|, . Y in vectorized form in Julia).

function ∈ (s::Syndrome, s_set::SyndromeSet)
if s_set.mask & s.mask! = s_set.mask
throw(ArgumentError(“Incompatible syndrome”))
end
cover = (s_set.results v s.results) & s_set.mask
return! reduce(|, cover)
end

The implementation exploits the map-reduce approach. Here, XOR is applied between bit array
of results of obtained syndrome and bit array of expected results of syndrome. Operation is performed
only on valid bits of set R0 (see mask operation by AND). Reduce step is performed by bitwise OR
(any true bit leads to denial of membership).

The second step is construction of set of possible syndrome for a testing graph and a
permanent global state (designed as constructor of SyndromSet structure). This code uses only
AND bitwise operation and matrix transposition (denoted by ′ operator which performs matrix
conjugate transformation)

SyndromeSet(tg::TestingGraph, state::SystemState)=SyndromeSet(tg.tests & state, tg.tests & state’)
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The mask array of set R0 is constructed by vector application of bitwise AND between adjacency
matrix of testing graph and column vector of unit’s states. That is, operation AND is applied on rows
(because validity of testing is determined by testing unit). The result array of set R0 is outcome of
application of transposed vector of unit’s states and adjacency matrix (operation AND is applied on
columns because results of testing are determined by tested unit).

The set R0 is constructible by mean of iteration over each possible diagnosable state of system,
which can be generated from binary form of numbers between 0 an 2n − 1 with maximum of t zeros
(where t is maximal t-diagnosability).

function R_0(tg::TestingGraph)
n = size(tg)
t = (n − 1) ÷ 2
return [SyndromeSet(tg, state)
for state
in (SystemState(digits(i, base = 2, pad = n)) for i = 2ˆn − 1:−1:0)
if n-count(state) ≤ t]
end

The function uses array comprehensions which iterate over bit arrays constructed from binary
digits (the better iterators over required bit permutations can be used, but are much more complicated).
The count function returns numbers of 1 s in bit array.

With this preparation the trivial implementation of checking, if syndrome RΣ is a member of set
R0 is straightforward.

Any (R_∑(list_of_syndromes) ∈ set in R_0(dg))

The more optimal checking can use partial order between sets in R0 and exclude some syndromes
from R0.

7. The Case When the Main Condition is Not Met

For diagnosis of intermittent faults it is important to determine the number of test routine
repetitions, l. It is also needed to determine what should be done if after l repetitions the condition
RΣ ∈ R0 is not satisfied.

To solve these tasks, we suggest the following decision. It is suggested to repeat the test routine
several times, l. Concrete number of repetitions of test routine depends on the total number of units in
the system N, on the classes of intermittent faults, which are going to be detected, and on the required
credibility of diagnosis. If an intermittent fault belongs to class 4, the value of l does not influence the
test results. If an intermittent fault belongs to class 3, a unit with such fault behaves either as fault-free
or as faulty only during one test. Any next test will show that this unit behaves as fault-free. Thus,
two tests are sufficient to form rij which make condition RΣ ∈ R0 true. It also concerns an intermittent
fault of class l. In case 2, a unit with such intermittent fault with high probability will behave as
permanently faulty. There is low probability that one of the tests will show that this unit is fault-free.
Although, any other test will show that this unit is faulty. Thus, two tests are enough to form syndrome
, which satisfies the condition mentioned above.

If after several rounds of tests repetitions the condition RΣ ∈ R0 is not true, then it is needed to
determine a consistent set of units, Ku. Set Ku contains all of the units that, according to the summary
syndrome, are diagnosed as fault-free. Units that belong to the set Ku evaluate each other as fault-free.
In order to determine the set Ku, it is needed to remove from summary syndrome RΣ all test results
which are equal to 1. Remaining results allow to form a Z-graph.

Z-graph is formed as follows. If rij in RΣ is equal to 0, then there is an edge between vertices vi
and vj in Z-graph directed from vi to vj.
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Credibility of diagnosis result will be greater when Z-graph is connected [26]. In Figure 7,
examples for connected and disconnected Z-graphs are shown.
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Connection of Z-graphs depend considerably on the testing assignment and on the allowed
number of faulty units (i.e., on the maximum number of faulty units that still allow the obtaining of
the correct result of diagnosis).

We consider the case when tests among system units are performed in accordance with a pre-set
schedule (i.e., defined a priori). Having the testing graph, it is possible to investigate if Z-graph is
connected under the condition whereby the maximum number of faulty units does not exceed value t.

Since each edge of the graph involves two vertices, the minimal number of edges which still
allows for the providing of system t-diagnosability [26], Lmin, is equal to

Lmin =

⌊
N(t + 1)

2

⌋
(6)

Next, we can examine if the value Lmin is sufficient in order that the Z-graph be connected.
Given Lmin, we can determine the minimal number of edges in the Z-graph, Kmin, that ensures

connection among its vertices. Kmin can be determined as follows

Kmin =

⌊
(t + 1)

2

⌋
(7)

The Z-graph is connected if

Kmin >
t(t− 1)

2
or 2t + 1 > t2 (8)

This inequality is true for t < 3 (that is, when the total number of system units is less than seven).
In the case when N ≥ 7, value Lmin is not sufficient in order for Z-graph be connected. In the

given case, we can determine the number of additional edges that must be added to the Z-graph in
order that for graph to become connected.

Using results presented in [18], it is possible to conclude that the Z-graph maximally may have

π =

⌊
(N + 1)

2

⌋
(9)

components each of which consists either of two vertices for N = 3 + 4a, a = 0, 1, 2, . . ., or of two
vertices except the one consisting of three vertices for N = 5 + 4a, a = 0, 1, 2, . . ..

In order to connect these π components (π − 1) additional edges are necessary. The choice of the
pair of units for performing a test that corresponds to the additional edge in Z-graph can be carried
out according to existing algorithms [26].
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For Z-graph it is possible to form the matrix MR. Matrix MR is square matrix presentation of
the subset of RΣ which has only zero results. If result rij is an element of the resulting subset of RΣ,
then element mij of matrix MR has value of 0. Otherwise, element mij is denoted as dash.

There could be used the diagnosis algorithm presented in. This algorithm is based on the matrix
which is similar to matrix MR and can identify all faulty units (on the condition that total number of
faulty units does not exceed the value t). Handling matrices like MR is also presented in.

In the given case, it is needed to calculate the total number of 0 in each column. Then, obtained
numbers Si, i = 1 . . . , N, should be compared with value t. If Si ≥ t, then unit ui is diagnosed as
fault-free. If condition Si ≥ t is not true for all i ∈ {1, . . . , N} then it is needed to find in Z-graph a
simple directed cycle of length t + 1. Such cycle can be determined from matrix MR. All units, which
are in this cycle, should be identified as fault-free.

Units that are not identified as fault-free are either permanently faulty or have an intermittent
fault. It should be noted that there is low probability of incorrect diagnosis. This probability can be
evaluated in relation to different total number of system units, different classes of intermittent faults
and different number of test routine repetitions [24].

The task of determining the probability of diagnosis results (fault omission and incorrect
identification of fault-free units) is a separate task and it was not the subject of this paper.

Figure 8 summarizes the presented approach to diagnosis at a system level when units can be
intermittently faulty.
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8. Conclusions

System level diagnosis is an abstraction at a high level and, thus, its practical implementation to
particular cases of complex systems is the task which requires additional investigations, both theoretical
and modeling. Mostly, system level self-diagnosis deals with the diagnosis of permanently faulty units.
Although, there are many real situations when intermittently faulty units can occur in the system.
In the given case it is necessary to take into account various behaviors of such faulty units.

Behavior of intermittent faults can be modeled by continuous Markov chain with two
states—Passive (PS) and Active (AS). If an intermittent fault is in PS, unit acts as fault-free. If an
intermittent fault is in an AS, the unit acts as faulty (i.e., as if it has a permanent fault).

During system level self-diagnosis both permanent and intermittent faults can occur. Each test
evaluates the state of a unit either as fault-free or as faulty. In the latter case, it does not discriminate
the permanent and intermittent faults.
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Diagnosis algorithms that deal with the sets of test results can consider (take into account) the
testing time and, thus, potentially they could discriminate the permanent and intermittent faults.
For this, the testing procedure must be very long. In reality, it is needed to perform the testing
procedure in acceptable time for each concrete system. This leads to the situation when it is very
difficult to discriminate between permanent and intermittent faults. In view of this, we are not going
to provide discrimination between permanently and intermittently faulty units. All units that are not
diagnosed as fault-free should be considered as faulty without further specification.

In the paper, we follow the approach to diagnose intermittent faults suggested by Mallela and
Masson. That is, we provide diagnosis based on the summary syndrome. Implementation of such
diagnosis requires formation of potential syndromes and verification of conditions introduced by
Mallela and Masson. These tasks can be easily performed for the cases where tests are performed
according to predefined schedule. In this paper, we considered more complex case when tests can be
performed randomly and the testing graph is arbitrary. We also extended the diagnosis algorithm so
that now it could cope with the situation when the main condition was not met.

One of the main advantages of our proposed approach to diagnose complex systems consists of its
applicability during system operation. In the given case, system units perform both system tasks and
diagnosis. After recovery from faults, system diagnosis proceeds using the same diagnosis algorithm.
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