
data

Article

LNSNet: Lightweight Navigable Space Segmentation
for Autonomous Robots on Construction Sites

Khashayar Asadi 1,* , Pengyu Chen 2, Kevin Han 1 , Tianfu Wu 3 and Edgar Lobaton 3

1 Department of Civil, Construction, and Environmental Engineering, North Carolina State University,
2501 Stinson Dr, Raleigh, NC 27606, USA; kevin_han@ncsu.edu

2 Department of Computer Science, Columbia University in the City of New York, Mudd Building,
500 W 120th St, New York, NY 10027, USA; pengyu.chen@columbia.edu

3 Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Drive,
Raleigh, NC 27606, USA; tianfu_wu@ncsu.edu (T.W.); edgar.lobaton@ncsu.edu (E.L.)

* Correspondence: kasadib@ncsu.edu; Tel.: +1-919-917-0326

Received: 11 February 2019; Accepted: 7 March 2019; Published: 13 March 2019
����������
�������

Abstract: An autonomous robot that can monitor a construction site should be able to be can
contextually detect its surrounding environment by recognizing objects and making decisions based
on its observation. Pixel-wise semantic segmentation in real-time is vital to building an autonomous
and mobile robot. However, the learning models’ size and high memory usage associated with
real-time segmentation are the main challenges for mobile robotics systems that have limited
computing resources. To overcome these challenges, this paper presents an efficient semantic
segmentation method named LNSNet (lightweight navigable space segmentation network) that
can run on embedded platforms to determine navigable space in real-time. The core of model
architecture is a new block based on separable convolution which compresses the parameters of
present residual block meanwhile maintaining the accuracy and performance. LNSNet is faster,
has fewer parameters and less model size, while provides similar accuracy compared to existing
models. A new pixel-level annotated dataset for real-time and mobile navigable space segmentation
in construction environments has been constructed for the proposed method. The results demonstrate
the effectiveness and efficiency that are necessary for the future development of the autonomous
robotics systems.

Keywords: efficient real-time segmentation; embedded platform; autonomous navigation in
construction; autonomous data collection

1. Introduction

In the past decade, the construction industry has struggled to improve its productivity while the
manufacturing industry has experienced a dramatic productivity improvement [1]. The deficiency
of advanced automation in construction is one possible reason [2]. On the other hand, construction
progress monitoring has been recognized as one of the key elements that lead to the success of
a construction project [3,4]. Although there were various attempts by researchers to automate
construction progress monitoring [5–9], in the present state, the monitoring task is still performed
by site managers through on-site data collection and analysis, which are time-consuming and prone
to errors [10]. If automated, the time spent on data collection can be better spent by the project
management team, responding to any progress deviations by making timely and effective decisions.

The use of Unmanned ground and aerial Vehicles (UVs) on construction sites can potentially
automate the data collection required for visual data analytics that will automate the progress inference
process. Moreover, the use of UVs has dramatically grown in the past few years [11]. To effectively

Data 2019, 4, 40; doi:10.3390/data4010040 www.mdpi.com/journal/data

http://www.mdpi.com/journal/data
http://www.mdpi.com
https://orcid.org/0000-0003-0665-1579
https://orcid.org/0000-0002-2995-8381
https://orcid.org/0000-0002-4056-8309
http://www.mdpi.com/2306-5729/4/1/40?type=check_update&version=1
http://dx.doi.org/10.3390/data4010040
http://www.mdpi.com/journal/data

Data 2019, 4, 40 2 of 17

utilize a UV for construction progress monitoring, it should (1) autonomously navigate, (2) collect
multiple types of sensory and visual data, and (3) process them in real-time. Moreover, the lower
computational complexity of a UV platform makes it more affordable and reliable to operate compared
to other systems [12].

The authors’ previous research on an integrated mobile robotic system [13] presents an unmanned
ground vehicle (UGV) that runs multiple modules and enables future development of an autonomous
UGV. The platform was built on the Clearpaths Husky mobile robotic platform [14] by incorporating
a stack of NVIDIA Jetson TX1 boards (denoted as Jetson boards) [15] and a monocular camera (i.e.,
a webcam) as a visual sensor. The Jetson boards are low-power embedded devices with integrated
Graphics Processing Units (GPUs). In [13], they are used to process simultaneous localization and
mapping, motion planning and control, and context awareness (via semantic image segmentation)
modules of the system as illustrated in Figure 1.

Figure 1. Overview of the previous research’s system components. Control, Simultaneous Localization
and Mapping (SLAM), Context Awareness, and Mapping Modules adapted from (Asadi et al. 2018).

The two major bottlenecks of this platform, in terms of computational loads, were SLAM and
segmentation. For this reason, there was a designated Jetson board for each of these tasks. This is a
major challenge in developing an autonomous robot because it increases the size and weight, especially
with added batteries. Moreover, the problem becomes even more challenging if this robotics system
was to be applied to an unmanned aerial vehicle (UAV).

This previous work implemented ENet [16] as the semantic segmentation method. This
segmentation task (shown as Context Awareness Module in the red box in Figure 1) had the heaviest
computational load. The inference speed for the ENet implementation on the Jetson TX1, before
integration between multiple modules (SLAM, Control, and Context-Awareness each running on a
Jetson), for images with the resolution of 512× 256, was around 15fps. After integration via a wired
network the inference rate reduced to 3fps. Data transformation between modules over the network
using Robotic Operation System (ROS) [17] caused this slowdown which made the authors restrict the
speed of the UGV for real-time performance necessity. Combining the SLAM and Context-Awareness
Modules into the same Jetson TX1 would help to mitigate this problem, but the large size of the

Data 2019, 4, 40 3 of 17

segmentation model and the high memory usage, make this solution practically unfeasible. Improving
the segmentation model in order to reduce the computational load in the Context Awareness Module
will address this issue.

2. Research Objectives and Contributions

The major goal of this paper is to propose a deep convolution neural network (CNN) which
reduces the computational load (model size) in order to reduce the latency by running multiple
modules on the same Jetson. Since Asadi et al. [13] have already validated ENet implementation on
the embedded platform in real-time, this paper focuses on comparing the performance of ENet and the
proposed method on a server with the following specification: 128 GB RAM, Intel Xeon E5 processor,
and two GPUs - NVIDIA Tesla K40c and Telsa K20c.

The ultimate goal is to develop a robotics platform that navigates on construction sites. The
hardware development (the authors’ previous work [13]) and algorithm development (this paper)
were tailored to navigation on construction sites. This paper proposes a segmentation method to be
efficient while providing accurate semantic segmentation.

The main contributions of this paper are (1) creating a new pixel-level annotated dataset for
real-time and mobile semantic segmentation in construction environments to deal with the limited
number of training dataset and (2) proposing an efficient semantic segmentation method with a smaller
model size and faster inference speed for future development of autonomous robots on construction
sites. Although the focus of this study is on reducing the model size to enable running multiple
modules on the same Jetson TX1, the inference time is also decreased, which increases the maximum
input frame rate of the segmentation process for real-time performance.

3. Literature Review

3.1. Vision-Based Object Recognition in Construction

A construction project involves diverse materials, a range of equipment, and a variety of workers,
creating a complex and dynamic environment to be predicted. Nowadays, digital cameras are widely
used to record construction scenes. Besides increasing the frequency of collecting data, they have
reduced the price for acquiring and maintaining the construction-site images [18]. By processing these
images properly, the abundant project information can be effectively extracted, which provide an
opportunity for automation in construction monitoring.

To process visual data, the first step to be taken is to identify construction objects of interest.
To achieve this goal, computer vision is widely used for various construction applications and also
has a great potential to automate construction management processes [10,19]. In particular, the
characterization of construction resources (i.e., personnel, equipment, and materials) has been one of
the major areas that image processing is successfully applied. Many studies have focused on detecting
equipment, workers, vehicles, and specific types of construction damages such as cracks in concrete
and steel surfaces [20–33].

Park and Brilakis [24] proposed a method to detect construction worker in video frames. The
method exploited motion, shape, and color features to characterize workers. Escorcia et al. [25]
presented a method that detected construction workers and their actions using colors and depth
information from a Microsoft Kinect sensor. They extracted meaningful visual features based on
the estimated body pose of workers. Memarzadeh et al. [26] used histograms of oriented gradients
and colors for detecting construction workers and equipment from site video streams. Chao and
Gay [27] demonstrated a rapid method to recognize and register dynamic heavy equipment operations
in 3D views. Their method extracted and processed the target objects’ point cloud data from the
background scene and registered 3D target models from a model database to the corresponding point
clouds. Park and Brilakis [29] presented a hybrid method to locate construction workers. This method
fused tracking and detection together throughout the tracking process. Zhu et al. [28] proposed a

Data 2019, 4, 40 4 of 17

framework that integrated the visual tracking into the detection of the construction workforce and
equipment. Like the above mentioned methods, in the structural health monitoring studies, deep
convolutional neural networks are widely used for detecting civil infrastructure defects to partially
replace human-conducted onsite inspections [30–33].

Similarly, many researchers have conducted research on vision-based material recognition to
aid automation in construction progress monitoring [19,34–40]. Wu et al. [35] proposed a method
to extract the objects of interest from construction images using solid imaging algorithms and 3D
computer-aided design. Han and Golparvarfard [37] and Han et al. [41] presented geometry and
appearance-based material classification methods for monitoring construction progress deviations
at the operation level. The method leveraged 4D Building Information Models (BIM) and 3D point
cloud models. Kim et al. [19] demonstrated the data-driven scene parsing method to recognize various
objects on a construction image. Hamledari et al. [38] proposed a method to detected the components
of an interior partition and infer its current state using 2D digital images.

Some of the aforementioned methods were designed for real-time performance. For instance, the
construction worker detection method proposed by Park and Brilakis [24] can achieve near real-time
(5 fps) performance. However, these methods generally could not provide enough information for
construction site navigation. On the other hand, the other data-driven scene parsing methods like
the one proposed by Kim et al. [19] are computationally expensive and cannot run on a light-weight
embedded device, even equipped with an onboard GPU like NVIDIA Jetson.

3.2. State-of-the-Art Object Recognition

Object recognition has been and still is, one of the major topics of interest in the computer vision
community. Object recognition can be performed through object classification or scene segmentation.
While semantic segmentation is computationally more intensive for real-time applications, it would
result in more accurate boundaries of the objects in the scene, which is more suitable for obstacle
avoidance. For instance, object recognition would classify all objects in the scene using boxes whereas
semantic segmentation will divide the scene by putting boundaries around the objects. The latter can
potentially help the mapping part of the SLAM for a robot.

Even though the technique involving convolutional neural networks (CNN) have been around
for years [42], it has not been used for segmentation until recently. Girshik et al. [43] and Girshik [44]
combined an image region proposal scheme with CNN as a classifier and performed near real-time
inference. CNN-based frameworks for semantic segmentation have also achieved near real-time
inference time although the common drawback still is the computational load. On the other hand,
Long et al. [45] proposed a semantic segmentation method that took exiting deep CNNs [46–48] into a
fully convolutional network (FCN) and performed segmentation from their learning representations.
Badrinarayanan et al. [49] proposed a semantic segmentation method that was based on a very large
encoder-decoder model, performing pixel-wise labeling and resulting in a very large number of
computations.

The ability to perform pixel-wise semantic segmentation in real-time is necessary for mobile
applications. The above studies have the disadvantage of requiring a large number of floating point
operations and have long run-times that hinder their usability. To address this issue, computationally
lighter convolutional networks have been presented in [16,50]. In the authors’ previous work [13],
for the segmentation model to work on the Jetson board with the limited memory and processing
power, ENet [16] which has a smaller architecture compared to the recent deep neural networks was
implemented on the UGV. However, the model size and high memory usage of this model forced
the authors to allocate a separate Jetson to this module. The resulting latency in data transformation
between different modules, caused by integrating multiple Jetson through the network, made the
system inefficient in fast movements. This latency forced the authors to restrict the speed of the
UGV for real-time performance necessity. Therefore, one of the two main contributions of this paper

Data 2019, 4, 40 5 of 17

focuses on proposing a new segmentation model by reducing the model size and memory usage while
maintaining accuracy.

4. Method

Real-time semantic segmentation algorithms are used to understand the content of images and
find target objects in real-time which are crucial tasks in mobile robotic systems. In the computer
vision fields, there is a growing interest in the use of deep neural network techniques for semantic
segmentation tasks. In this part, a new convolutional neural network model architecture, namely
LNSNet, as well as the strategies and techniques for its training, compressing and data processing will
be introduced. Adam Optimizer [51] is used to train the model and cross-entropy is utilized as loss
function. Also, a new pixel-level annotated dataset has been generated and validated for real-time and
mobile semantic segmentation in a construction engineering environment. Figure 2 shows an overview
of the components of the proposed algorithm. Each step is discussed in the following subsections.

Figure 2. An overview of the proposed method for real-time navigable space segmentation.

4.1. Model Architecture

In this section, firstly, factorized convolution block as a core block is described which LNSNet is
built on. Then the LNSNet network structure is illustrated followed by a model compressing method
description.

4.1.1. Factorized Convolution Block

To optimize the amount of parameters in a CNN model while maintaining its performance, cut
down the model sizes, and run the model faster, Depthwise Separable Convolution from MobileNet [50]
is applied. Depthwise Separable Convolution is a form of factorized convolutions which factorizes
a standard convolution into two separate operations—a depthwise convolution and a point-wise
convolution. While the standard convolution operates over every channel of the input feature map,
Depthwise Separable Convolution applies a single filter on every channel and use a point-wise
convolution, (1× 1) kernel convolution, and linearly combines the outputs. For a standard convolution
layer whose kernel size is K, it takes a feature map of size Hin ×Win × Cin as input where Hin, Win,

Data 2019, 4, 40 6 of 17

Cin are height, width, and channels respectively, and outputs a feature map of size Hout ×Wout × Cout.
The computational cost is computed using Equation (1).

K× K× Cin × Cout × Hin ×Win (1)

Equation (2), shows the computational cost for separable depthwise convolution, considering the
same feature map.

K× K× Cin × Hin ×Win + Cin × Cout × Hin ×Win (2)

By transforming the original convolution operation into depthwise separable convolution, the
reduction in computation cost is calculated by Equation (3)

K× K× Cin × Hin ×Win + Cin × Cout × Hin ×Win
K× K× Cin × Cout × Hin ×Win

=
1

Cout
+

1
K2 (3)

In the proposed method, depthwise separable convolutional layers replace the standard
convolution layers in a CNN model. This replacement reduces computational cost. For instance, a
convolutional layer with 3× 3 filters is substituted with depthwise separable convolutional layer. The
reduced computational cost is 0.13 which means that the model uses almost 8 times less computation
than standard computations which means that the model uses almost 8 times less computation than
standard computations (see Equation (4)).

1
Cout

+
1

K2 =
1
64

+
1
9
= 0.13 (4)

By utilizing the strength of depthwise separable convolution, we proposed a new residual block
based on the traditional residual block. The block has two branches. One branch consists of two 1× 1
convolutional layers (the first one is for projection and reducing the dimensionality which is located
before the depthwise separable convolution layer and the second one is placed afterward which is for
expansion), a depthwise convolutional layer, and a batch normalization layer at the end. The other
one is a shortcut branch which outputs an identical feature map as its input. If the type of the block is
Downsample, a MaxPooling layer is added to the shortcut branch. At the end of the block, the outputs
from the two branches are element-wise added. The structure of the block is shown in Figure 3.

4.1.2. Architecture Design

The proposed method has a light model that has been optimized for a mobile device and real-time
semantic segmentation applications. Moreover, the algorithm needs two classes (i.e., navigable
space and non-navigable space) for classifying open spaces for navigation and mapping. LNSNet
has an encoder-decoder architecture, which consists of several Factorized Convolution Blocks. The
architecture of our network is presented in Figure 4.

In the first Initial block where we followed the ENet architecture, we concatenated the output
of a 3× 3 convolutional layer with the stride of two and a MaxPooling layer to decrease the feature
size at an early stage. The Downsample and Standard blocks follow the structure we illustrated in the
Factorized Convolution Block part. As for the Upsample and LastConv blocks, the same configurations
are applied as ENet. The channels indicated by the * sign in Figure 4, originally designed to be 128;
however, they compressed to 64 by model compression (to be further detailed in the following section)

Data 2019, 4, 40 7 of 17

Figure 3. Factorized Convolution Block.

Figure 4. Model Architecture. The resolution values are respect to the example input (512× 256), but the
network is operable with arbitrary image sizes. The sizes are given following width× height× channel
order.

Data 2019, 4, 40 8 of 17

4.1.3. Model Compressing

A well-trained CNN model usually has significant redundancy among different filters and feature
channels. Therefore, an efficient way to cut down both computational cost and model size is to
compress the model [52].

For a layer whose kernel size is K, it transforms an Hin ×Win × Cin input feature map into an
output feature map whose shape is Hout ×Wout × Cout. The shape of the kernel matrix is Cin × K×
K× Cout. Each single Cin × K× K filter in the kernel could generates one layer of the output feature
map. L1 norm of the filter is used to evaluate the efficiency of the filter. The L1 norm of a vector x is
calculated using Equation (5), where xi represents each value of the kernel.

||x||1 = ∑ |xi| (5)

If the L1 norm is close to zero, it generates negligible output because the output feature map values
tend to be close to zero. To improve efficiency, removing these filters would reduce the computational
expense and model size. After removing the filters, the corresponding output feature map channels
would also be removed.

Network compressing consists of the following steps:

1. For each filter, calculate the L1 value.
2. Sort filters by L1 values calculated in Step1.
3. Remove the filters and corresponding feature maps.
4. Fine-tune the whole network.

Since the architecture of LNSNet is much more complex compared to CNNs without residual
connections, such as AlexNet [47] and VGG [48], the first several layers are very sensitive and could
have a huge impact on the layers behind and the overall performance.

However, it is hard to predict how many filters and which filters can be removed without
damaging the performance. As shown in Figure 5, by calculating and sorting the L1 values of every
filter in the model, the 128 filters (denoted as 128-kernels) generally have smaller L1 values and have
the largest number of redundant filters. 128-kernels are less sensitive to the changes compared to
other kernels. Therefore, removing 128-kernels have a negligible impact on performance. As shown in
Figure 5, the L1 values for half of them is less than one, which indicates that they have a small impact
on the overall performance. As a result, these filters could be removed without harming the accuracy.
As it is shown in Figure 4 half of the filters of 128-kernels are removed (is indicated with * in the figure)
and the model is fine-tuned on the same dataset.

Figure 5. L1 Norm visualization.

Data 2019, 4, 40 9 of 17

4.2. Optimizer and Loss Function

The Adam algorithm [51] is implemented as an optimization method. This method is based on
adaptive estimates of lower-order moments and is designed for first-order gradient-based optimization
of stochastic objective functions. A learning rate of 0.1 is used with β1 = 0.9 and β2 = 0.999. β1 and β2

are exponential decay rates for the moment estimates. For the loss function, binary cross entropy is
applied for binary segmentation task. The cross entropy is given by Equation (6).

H(p, q) = −∑
x

p(x) · log q(x) (6)

Cross-entropy can be used as an error measure if the outputs of the last layer of a neural network
are treated as probabilities. In Equation (6), p is the true distribution of the possibilities of the
classifications. On the other hand, q is the predicted distribution of the possibilities which are from
the network’s output. Cross-entropy can represent the likelihood of true and predicted distributions.
As for binary cross-entropy, the loss function used in the method is a special case of the general
cross-entropy when the number of classes is two.

5. Experimental Setup

5.1. Dataset Construction and Training Strategy

A new dataset has been constructed for the proposed method. The main objective of our
classification task is to segment all objects from navigable spaces in the scene, which is why the
proposed method has only two classes. To segment objects even in a new environment, the data is
collected from three completely different environments including construction sites, parking lots, and
roads (1000 images).

Images from the new dataset are collected with the following considerations: First, the
angle of the camera is varied randomly for the training data. Second, images are collected in
different weather conditions. Third, only two labels are assigned to the pixels during annotation;
Ground and Not Ground. This strategy highly simplified the labeling task while still addressing a
fundamental requirement for autonomous navigation (i.e., the identification of drivable terrain by the
autonomous agent).

In addition, an updated Cityscapes public dataset [53] is also used for training and testing process.
This dataset can prevent over-fitting of the proposed model. Therefore, it was used for training
and cross-validation. Cityscape has 5000 frames that have high-quality pixel-level annotations. As
it has 30 classes, these labels are grouped into 2 classes for our task. Table 1, shows the strategy
used for grouping the labels. Both Cityscapes and the newly collected datasets are combined in later
experiments. All images that were used have been resized to 256× 512 pixels. Figure 6 (top), shows a
sample images from new dataset and Figure 6 (bottom) is their corresponding labels.

Table 1. Label Grouping.

Proposed Dataset Labels Cityscapes Labels

Ground road,sidewalk, parking
Not Ground person, rider, car, truck, bus, on rails, motorcycle, bicycle, caravan, trailer,

fence, guard rail, bridge, tunnel, pole, pole group, traffic sign, traffic light,
rail track, sky, building, wall, vegetation, terrain, void(ground), void(dynamic),
void(static)

Since Asadi et al. [13] have already validated ENet implementation on the embedded platform in
real-time, this paper focuses on comparing the performance of ENet and the proposed method on a
server with the following specification: 128 GB RAM, Intel Xeon E5 processor, and two GPUs-NVIDIA
Tesla K40c and Telsa K20c.

Data 2019, 4, 40 10 of 17

Tensorflow [54] and Keras [55] framework are used to implement the algorithm. CUDA [56] and
CuDNN [57] are also utilized for accelerating the computations. The whole training process took about
12 h. The batch size is an important parameter in deep learning. A small batch size typically makes the
model hard to converge. Large batch size can increase the efficiency by parallel computing and make
full use of memory [58]. On the other hand, a large batch size would also cause a huge demand for
memory. A batch size of 32 has been used in training. During each step, one batch is used for training.
The total step is 200 per epoch. For each epoch, the training program runs through the whole dataset
once. The total number of epochs is 15.

The training data is K-fold cross-validated by dividing it into K subsets [59]. Each time, one of the
subsets is used as the validation set and the rest is used as the training set. Every data is used K− 1
times for training and one time for validation. For this experiment, K is set to five. The validation set is
used after each epoch of training in order to evaluate accuracy and loss.

Figure 6. Dataset: (top) proposed dataset image, (bottom) proposed dataset labels.

5.2. Data Augmentation

Deep learning models need to be trained on a large dataset. A small data set could cause
over-fitting (i.e., performing well on the training data but not on the testing data). To deal with this
challenge of having a limited number of the training images, label-preserving data augmentation is
used. In this research similar to krizhevsky et al. [47], different methods of data augmentation such as
random cropping, random color jitter, and flipping are implemented (see Figure 7).

Random cropping randomly selects a smaller region of the raw image, along with its
corresponding annotation—therefore, “label-preserving” as mentioned previously. Then the region
is resized to the raw image size and considered as a new sample. Random cropping utilizes the
translation-invariance feature of the object in the dataset (see Figure 7a. Random color jitter makes
a slight change in the color values of the image. The purpose of this operation is to simulate and
generate different lighting conditions (see Figure 7b. A gamma correction function has been used as
the Equation (7) shows. Vin is the color value of every pixel in the input images. Vout is the value in the
output images, corresponding to the input images pixel by pixel. This equation randomly chooses
the parameter γ from 0.5 to 1.5 for each image. Finally, regarding Figure 7c, flipping flips the images
horizontally. These three methods are also applied simultaneously to generate more samples. During
training, making data regularized is a common trick in deep learning, and gray-scale images are
rescaled from 0–255 to 0–1. Each image in the original dataset could generate 32 new images through
this data augmentation approach.

Vout = Vγ
in (7)

Data 2019, 4, 40 11 of 17

Figure 7. Data augmentation: (a) random cropping, (b) random color jitter, (c) flipping.

6. Experimental Results

6.1. Training Results

Figure 8 (bottom) shows the relations between accuracy and epochs during the training of both
ENet and LNSNet models. Each line in the figure represents the average loss or accuracy of all splits
during cross-validation. As the loss function decreases, the accuracy of the model increases, showing
that the segmentation ability of the model is elevated. Figure 8 (top) shows variations in losses while
training. The loss or cross-entropy in the figure decreases when the predictions are more accurate.

Since there is no obvious depart between validation loss and training loss, there is no over-fitting
in the training. As the first validation is conducted after the first epoch of training, the model has
already improved the classification ability at that time. On the other hand, the first point of training
lines shows the model accuracy right after the initialization. So, the validation curves always start
from a relatively higher accuracy than the training curves. Table 2 shows accuracy, precision, and recall
rates at the end of the training process for both ENEt and LNSNet models.

Table 2. Proposed vs ENet Accuracy in Training Data.

ENet LNSNet

Recall 0.9664 0.9442
Precision 0.9367 0.9290
Accuracy 0.9659 0.9551

Data 2019, 4, 40 12 of 17

Figure 8. Training visualization for LNSNet and ENet models: (bottom) training accuracy vs. epochs,
(top) loss variation vs epochs

6.2. Test Results

For testing and evaluation, 150 images are used from three scenes, including a parking lot, road,
and construction site. Due to the differences between the three scenes, models performance is varied
and highly related to the complexity of images and categories of objects. The test results are shown in
Table 3.

A precision-recall curve is also drawn to evaluate the two models. Figure 9 shows the relation
between precision and recall while changing the thresholding value of the binary classification. As it is
shown in Figure 9, Tables 2 and 3, the LNSNet model has almost similar accuracy, precision, and recall
rates rates compare to those of ENet. The difference was around 2% and the precision-recall curves are
approximately overlapped, indicating no significant difference in accuracy.

Data 2019, 4, 40 13 of 17

Figure 9. Precision-Recall curves: (a) training time, (b) test time.

Table 3. Proposed vs. ENet Accuracy in Test Data.

ENet LNSNet

Recall 0.9890 0.9908
Precision 0.8855 0.8384
Accuracy 0.9435 0.9231

6.3. Model Comparison

The results in Tables 2 and 3 show that only 2% percent of accuracy is lost, on the other hand,
the complexity of the network is reduced greatly by decreasing the parameters and the feature layers
by half. The model size drops from 2225 KB to 1068 KB. The comparison between the two models
is shown in Table 4. The inference time is directly related to computation cost in the network. The
proposed model’s inference time decreased about 18%, although the number of parameters decreased
significantly (see Table 4 and Figure 10). There are two tasks performed by the GPU: creating the
kernel and evaluating the model. The proposed model only decreases the evaluation time which is
why the inference time does not decrease at the same rate. In other words, the inference time depends
greatly on other computation factors rather than just the evaluation of the neural network model (i.e.,
the cost of launching the GPU kernel starts to dominate the computation time).

Table 4. LNSNet vs. ENet.

LNSNet ENet

Average inference time per frame (ms) 36.5 44.7
Total parameters 227,393 371,116
Max input frame rate for real-time performance 27.4 22.4
Model size (KB) 1068 2225

Table 5 shows the means, standard deviations, and t-test results which indicate that the average
inference time per frame has reduced from 44.7 ms to 36.5 ms per frame. This reduction in the inference
time means that the maximum input frame rate for real-time performance can be increased by 5 fps
(from 22 fps in ENet to 27 fps in LNSNet). The p-value of 4.06× 10−51 indicates that the difference is
statistically significant at α = 0.01. Although the proposed segmentation method has a lower inference
time compare to the ENet method, the main contribution of the proposed method is reducing the
model size (more than 50%). This reduction enables multiple modules to be run on the same Jetson TX1,
which will reduce the latency caused by integrating multiple Jetson TX1s through the wired network.

Data 2019, 4, 40 14 of 17

Figure 10. Inference time per frame for ENet (blue frequency) and LNSNet (orange frequency) and
corresponding linear regressions (blue and orange straight lines).

Table 5. Mean, standard deviation, and t-test results on the inference times.

Mean (s) Std (s) df t-Value p-Value

ENet 0.0447 0.0048 473.98 17.036 4.0602 ×10−51
LNSNet 0.0365 0.0042

7. Conclusions and Future Works

One of the major challenges in a robotic system that integrates multiple modules on a single
modular framework, is the integration between the modules which are running on separate processing
units. Latency in data transformation between different processing units decreases the performance of
the system. Combining modules to run on the same processing unit can address this challenge and also
reduces the cost, size, and weight of the system which counts as a significant improvement for mobile
robotic systems that have either limited computing resources or payload capacity (e.g., unmanned
aerial vehicles). This paper presents an efficient semantic segmentation model that can be run in
real-time on multiple embedded platforms that are integrated as a system to determine navigable
space in real-time. The results show improvement in model size, memory usage, and computation time
(50% and 18% reduction in model size and inference time respectively) while keeping the accuracy
almost the same. 50% reduction in the model size is a significant contribution, which enables multiple
modules to be combined and run on the same processing unit. The core of model architecture is a
new block based on separable convolution which compresses the parameters of present residual block
meanwhile maintaining the accuracy and performance.

The proposed method is a step forward in making intelligent and contextually aware robots
ubiquitous. In the future, the model’s segmentation ability and inference speed could be further
improved by applying new neural network architectures and new loss function design. The proposed
binary problem in the dataset is a good starting point but more complex classification tasks would
be required in more realistic scenarios. So, a high-precise and multi-class annotated construction site
dataset are in need. Moreover, existing 3D models (i.e., BIM) of construction sites can potentially guide
and streamline the data collection of highly precise pixel-level annotations.

Data 2019, 4, 40 15 of 17

Author Contributions: Conceptualization, K.A. and P.C. and K.H.; methodology, K.A. and P.C. and K.H.; software,
K.A. and P.C.; validation, K.A. and P.C. and K.H.; formal analysis, K.A. and P.C.; investigation, K.A. and P.C.;
resources, K.H. and T.W. and E.L.; data curation, K.A. and P.C.; writing—original draft preparation, K.A. and P.C.
and K.H.; writing—review and editing, K.A. and P.C. and K.H. and T.W. and E.L.; visualization, K.A. and P.C. and
K.H.; supervision, K.A. and K.H.; project administration, K.A. and K.H.

Funding: This research received no external funding.

Acknowledgments: The authors gratefully acknowledge the support of NVIDIA Corporation with the donation
of the Tesla K40 Graphics Processing Units used for this research. Any opinions, findings, conclusions or
recommendations presented in this paper are those of the authors and do not reflect the views of NVIDIA.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Changali, S.; Mohammad, A.; van Nieuwl, M. The Construction Productivity Imperative; McKinsey & Company:
Brussels, Belgium, 2015.

2. Kangari, R.; Yoshida, T. Automation in construction. Robot. Auton. Syst. 1990, 6, 327–335. [CrossRef]
3. Chan, A.P.; Scott, D.; Chan, A.P. Factors affecting the success of a construction project. J. Construct. Eng.

Manag. 2004, 130, 153–155. [CrossRef]
4. Asadi, K.; Ramshankar, H.; Noghabaee, M.; Han, K. Real-time Image Localization and Registration with

BIM Using Perspective Alignment for Indoor Monitoring of Construction. J. Comput. Civ. Eng. 2019.
5. Han, K.K.; Golparvar-Fard, M. Potential of big visual data and building information modeling for

construction performance analytics: An exploratory study. Autom. Constr. 2017, 73, 184–198. [CrossRef]
6. Asadi, K.; Ramshankar, H.; Pullagurla, H.; Bhandare, A.; Shanbhag, S.; Mehta, P.; Kundu, S.; Han, K.;

Lobaton, E.; Wu, T. Building an Integrated Mobile Robotic System for Real-Time Applications in Construction.
arXiv 2018, arXiv:1803.01745.

7. Asadi, K.; Han, K. Real-Time Image-to-BIM Registration using Perspective Alignment for Automated
Construction Monitoring. In Construction Research Congress 2018, New Orleans, LA, USA, 2–4 April 2018;
ASCE: Reston, VA, USA, 2018; pp. 388–397.

8. Kropp, C.; Koch, C.; König, M. Interior construction state recognition with 4D BIM registered image
sequences. Autom. Constr. 2018, 86, 11–32. [CrossRef]

9. Asadi Boroujeni, K.; Han, K. Perspective-Based Image-to-BIM Alignment for Automated Visual Data
Collection and Construction Performance Monitoring. In Computing in Civil Engineering 2017, Seattle, WA,
USA, 25–27 June 2017; ASCE: Reston, VA, USA, 2017; pp. 171–178.

10. Yang, J.; Park, M.W.; Vela, P.A.; Golparvar-Fard, M. Construction performance monitoring via still images,
time-lapse photos, and video streams: Now, tomorrow, and the future. Adv. Eng. Informat. 2015, 29, 211–224.
[CrossRef]

11. Ham, Y.; Han, K.K.; Lin, J.J.; Golparvar-Fard, M. Visual monitoring of civil infrastructure systems via
camera-equipped Unmanned Aerial Vehicles (UAVs): A review of related works. Vis. Eng. 2016, 4, 1.
[CrossRef]

12. Liu, P.; Chen, A.Y.; Huang, Y.N.; Han, J.Y.; Lai, J.S.; Kang, S.C.; Wu, T.; Wen, M.; Tsai, M. A review of
rotorcraft unmanned aerial vehicle (UAV) developments and applications in civil engineering. Smart Struct.
Syst. 2014, 13, 1065–1094. [CrossRef]

13. Asadi, K.; Ramshankar, H.; Pullagurla, H.; Bhandare, A.; Shanbhag, S.; Mehta, P.; Kundu, S.; Han, K.;
Lobaton, E.; Wu, T. Vision-based integrated mobile robotic system for real-time applications in construction.
Autom. Constr. 2018, 96, 470–482. [CrossRef]

14. ClearPathRobotics. husky-unmanned-ground-vehicle-robot. Available online: https://www.clearpathrobotics.
com/husky-unmanned-ground-vehicle-robot/ (accessed on 29 November 2017).

15. NVIDIA. Unleash Your Potential with the Jetson TX1 Developer Kit. Available online: https://developer.
nvidia.com/embedded/buy/jetson-tx1-devkit (accessed on 29 November 2017).

16. Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. ENet: A Deep Neural Network Architecture for Real-Time
Semantic Segmentation. CoRR 2016, arXiv:1606.02147.

17. Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.; Leibs, J.; Berger, E.; Wheeler, R.; Ng, A. ROS:
An open-source Robot Operating System. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA) Workshop on Open Source Robotics, Kobe, Japan, 12–17 May 2009.

http://dx.doi.org/10.1016/S0921-8890(05)80014-4
http://dx.doi.org/10.1061/(ASCE)0733-9364(2004)130:1(153)
http://dx.doi.org/10.1016/j.autcon.2016.11.004
http://dx.doi.org/10.1016/j.autcon.2017.10.027
http://dx.doi.org/10.1016/j.aei.2015.01.011
http://dx.doi.org/10.1186/s40327-015-0029-z
http://dx.doi.org/10.12989/sss.2014.13.6.1065
http://dx.doi.org/10.1016/j.autcon.2018.10.009
https://www.clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
https://www.clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
 https://developer.nvidia.com/embedded/buy/jetson-tx1-devkit
 https://developer.nvidia.com/embedded/buy/jetson-tx1-devkit

Data 2019, 4, 40 16 of 17

18. Golparvar-Fard, M.; Peña-Mora, F.; Savarese, S. D4AR–a 4-dimensional augmented reality model for
automating construction progress monitoring data collection, processing and communication. J. Inf. Technol.
Construct. 2009, 14, 129–153.

19. Kim, H.; Kim, K.; Kim, H. Data-driven scene parsing method for recognizing construction site objects in the
whole image. Autom. Constr. 2016, 71, 271–282. [CrossRef]

20. Brilakis, I.; Park, M.W.; Jog, G. Automated vision tracking of project related entities. Adv. Eng. Informat.
2011, 25, 713–724. [CrossRef]

21. Teizer, J.; Vela, P. Personnel tracking on construction sites using video cameras. Adv. Eng. Informat.
2009, 23, 452–462. [CrossRef]

22. Yang, J.; Arif, O.; Vela, P.A.; Teizer, J.; Shi, Z. Tracking multiple workers on construction sites using video
cameras. Adv. Eng. Informat. 2010, 24, 428–434. [CrossRef]

23. Chi, S.; Caldas, C.H. Automated object identification using optical video cameras on construction sites.
Comput.-Aided Civ. Infrastruct. Eng. 2011, 26, 368–380. [CrossRef]

24. Park, M.W.; Brilakis, I. Construction worker detection in video frames for initializing vision trackers.
Autom. Constr. 2012, 28, 15–25. [CrossRef]

25. Escorcia, V.; Dávila, M.A.; Golparvar-Fard, M.; Niebles, J.C. Automated vision-based recognition
of construction worker actions for building interior construction operations using RGBD cameras.
In Construction Research Congress 2012: Construction Challenges in a Flat World; 21–23 May 2012; West Lafayette,
IN, USA; ASCE: Reston, VA, USA, 2012; pp. 879–888.

26. Memarzadeh, M.; Golparvar-Fard, M.; Niebles, J.C. Automated 2D detection of construction equipment
and workers from site video streams using histograms of oriented gradients and colors. Autom. Constr.
2013, 32, 24–37. [CrossRef]

27. Cho, Y.K.; Gai, M. Projection-recognition-projection method for automatic object recognition and registration
for dynamic heavy equipment operations. J. Comput. Civ. Eng. 2013, 28, A4014002. [CrossRef]

28. Zhu, Z.; Ren, X.; Chen, Z. Integrated detection and tracking of workforce and equipment from construction
jobsite videos. Autom. Constr. 2017, 81, 161–171. [CrossRef]

29. Park, M.W.; Brilakis, I. Continuous localization of construction workers via integration of detection and
tracking. Autom. Constr. 2016, 72, 129–142. [CrossRef]

30. Kang, D.; Cha, Y.J. Autonomous UAVs for Structural Health Monitoring Using Deep Learning and an
Ultrasonic Beacon System with Geo-Tagging. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 885–902.
[CrossRef]

31. Cha, Y.J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous Structural Visual Inspection
Using Region-Based Deep Learning for Detecting Multiple Damage Types. Comput.-Aided Civ. Infrastruct.
Eng. 2017, 33, 731–747. [CrossRef]

32. Gao, Y.; Mosalam, K.M. Deep Transfer Learning for Image-Based Structural Damage Recognition.
Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 748–768. [CrossRef]

33. Cha, Y.J.; Choi, W.; Büyüköztürk, O. Deep Learning-Based Crack Damage Detection Using Convolutional
Neural Networks. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [CrossRef]

34. Zhu, Z.; Paal, S.; Brilakis, I. Detection of large-scale concrete columns for automated bridge inspection.
Autom. Constr. 2010, 19, 1047–1055. [CrossRef]

35. Wu, Y.; Kim, H.; Kim, C.; Han, S.H. Object recognition in construction-site images using 3D CAD-based
filtering. J. Comput. Civ. Eng. 2009, 24, 56–64. [CrossRef]

36. Son, H.; Kim, C.; Kim, C. Automated color model–based concrete detection in construction-site images by
using machine learning algorithms. J. Comput. Civ. Eng. 2011, 26, 421–433. [CrossRef]

37. Han, K.K.; Golparvar-Fard, M. Appearance-based material classification for monitoring of operation-level
construction progress using 4D {BIM} and site photologs. Autom. Constr. 2015, 53, 44–57. [CrossRef]

38. Hamledari, H.; McCabe, B.; Davari, S. Automated computer vision-based detection of components of
under-construction indoor partitions. Autom. Constr. 2017, 74, 78–94. [CrossRef]

39. Li, H.; Chan, G.; Wong, J.K.W.; Skitmore, M. Real-time locating systems applications in construction. Autom.
Constr. 2016, 63, 37–47. [CrossRef]

40. Asadi, K.; Jain, R.; Qin, Z.; Sun, M.; Noghabaei, M.; Cole, J.; Han, K.; Lobaton, E. Vision-based
Obstacle Removal System for Autonomous Ground Vehicles Using a Robotic Arm. arXiv 2019,
arXiv:cs.RO/1901.08180.

http://dx.doi.org/10.1016/j.autcon.2016.08.018
http://dx.doi.org/10.1016/j.aei.2011.01.003
http://dx.doi.org/10.1016/j.aei.2009.06.011
http://dx.doi.org/10.1016/j.aei.2010.06.008
http://dx.doi.org/10.1111/j.1467-8667.2010.00690.x
http://dx.doi.org/10.1016/j.autcon.2012.06.001
http://dx.doi.org/10.1016/j.autcon.2012.12.002
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000332
http://dx.doi.org/10.1016/j.autcon.2017.05.005
http://dx.doi.org/10.1016/j.autcon.2016.08.039
http://dx.doi.org/10.1111/mice.12375
http://dx.doi.org/10.1111/mice.12334
http://dx.doi.org/10.1111/mice.12363
http://dx.doi.org/10.1111/mice.12263
http://dx.doi.org/10.1016/j.autcon.2010.07.016
http://dx.doi.org/10.1061/(ASCE)0887-3801(2010)24:1(56)
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000141
http://dx.doi.org/10.1016/j.autcon.2015.02.007
http://dx.doi.org/10.1016/j.autcon.2016.11.009
http://dx.doi.org/10.1016/j.autcon.2015.12.001

Data 2019, 4, 40 17 of 17

41. Han, K.; Degol, J.; Golparvar-Fard, M. Geometry- and Appearance-Based Reasoning of Construction
Progress Monitoring. J. Construct. Eng. Manag. 2018, 144, 04017110. [CrossRef]

42. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

43. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and
Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Columbus, OH, USA, 24–27 June 2014; pp. 580–587.

44. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 7–13 December 2015; pp. 1440–1448.

45. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June
2015; pp. 3431–3440.

46. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

47. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [CrossRef]

48. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556.

49. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for
image segmentation. arXiv 2015, arXiv:1511.00561.

50. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.;
Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017,
arXiv:1704.04861.

51. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
52. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient convnets. arXiv 2016,

arXiv:1608.08710.
53. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B.

The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June 2016–1 July 2016; pp.
3213–3223

54. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.;
Isard, M.; et al. TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, USA,
2–4 November 2016; pp. 265–283.

55. Van Merriënboer, B.; Bahdanau, D.; Dumoulin, V.; Serdyuk, D.; Warde-Farley, D.; Chorowski, J.; Bengio, Y.
Blocks and fuel: Frameworks for deep learning. arXiv 2015, arXiv:1506.00619.

56. Nickolls, J.; Buck, I.; Garland, M.; Skadron, K. Scalable Parallel Programming with CUDA. Queue
2008, 6, 40–53. [CrossRef]

57. Chetlur, S.; Woolley, C.; Vandermersch, P.; Cohen, J.; Tran, J.; Catanzaro, B.; Shelhamer, E. cudnn: Efficient
primitives for deep learning. arXiv 2014, arXiv:1410.0759.

58. Goyal, P.; Dollár, P.; Girshick, R.; Noordhuis, P.; Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; He, K.
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. arXiv 2017, arXiv:1706.02677.

59. Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection; Ijcai: Montreal,
QC, Canada, 1995; Volume 14, pp. 1137–1145.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0001428
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1145/1365490.1365500
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Research Objectives and Contributions
	Literature Review
	Vision-Based Object Recognition in Construction
	State-of-the-Art Object Recognition

	Method
	Model Architecture
	Factorized Convolution Block
	Architecture Design
	Model Compressing

	Optimizer and Loss Function

	Experimental Setup
	Dataset Construction and Training Strategy
	Data Augmentation

	Experimental Results
	Training Results
	Test Results
	Model Comparison

	Conclusions and Future Works
	References

