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Abstract: This work focuses on fuzzy data processing in control and decision-making systems
based on the transformation of real-timeseries and high-frequency data to fuzzy sets with further
implementation of diverse fuzzy arithmetic operations. Special attention was paid to the synthesis of
the computational library of horizontal and vertical analytic models for fuzzy sets as the results of
fuzzy arithmetic operations. The usage of the developed computational library allows increasing
the operating speed and accuracy of fuzzy data processing in real time. A computational library
was formed for computing of such fuzzy arithmetic operations as fuzzy-maximum. Fuzzy sets as
components of fuzzy data processing were chosen as triangular fuzzy numbers. The analytic models
were developed based on the analysis of the intersection points between left and right branches of
considered triangular fuzzy numbers with different relations between their parameters. Our study
introduces the mask for the evaluation of the relations between corresponding parameters of fuzzy
numbers that allows to determine the appropriate model from the computational library in automatic
mode. The simulation results confirm the efficiency of the proposed computational library for
different applications.

Keywords: big data; fuzzy set; vertical and horizontal models; maximum; computational library;
real-time data processing

1. Introduction

Increasing the efficiency of the real-time control systems and decision-making processes under
uncertain conditions deals with creating new techniques for Big Data processing, management,
and analysis taking into account the dynamic nature of real objects’ signals and information [1–3].

To this day, there are some successful mathematical methods, algorithms, and approaches
developed based on the theory of computational intelligence, machine learning, soft computing,
and recent advancements in cognitive computing [4–7]. Nevertheless, the exponential growth of the
volume of modern Big Data and increasing velocity of their formation requires constant improvement
and modifications of such methods. Special attention should be paid to the application of the theory of
fuzzy sets, fuzzy logic, and fuzzy optimization as powerful tools for Big Data analysis and processing in
terms of solving real-world problems in uncertain or fuzzy conditions [8–10]. As the fuzzy sets theory
was primarily introduced in the publication by L. Zadeh [11], a lot of world-class scientists devoted
their research to the field of fuzzy logic and its application in control, decision-making, and signal
processing for investigation of various complex systems in engineering, economics, management,
and so on [5,8,12,13].
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Recent publications reveal how various fuzzy and other intelligent algorithms can be realized by
computers and other different computing means for embedded signal processing, decision-making,
and control systems. In particular, different algorithms of fuzzy control strategies in the embedded
control systems with specific architectures can be successfully implemented based on such
electronic devices as PLCs (Programmable Logic Controllers) [14–18] and reconfigurable FPGA (Field
Programmable Gate Array) systems [19–21]. Moreover, a lot of advantages are in applications of the
microcontroller Arduino [22–24] and the microprocessor Raspberry Pi [25,26] for the real-time fuzzy
data computations and fuzzy information processing in diverse applications.

The necessity to solve different serious tasks in uncertain data analysis, as well as new
requirements (e.g., reducing time and computational complexity) for real-time Big Data processing
serve as a motivation for the development of new fuzzy techniques, models, and algorithms that
increase efficiency (e.g., computation speed, accuracy, reliability, dependability, etc.) [1,3,5,9,27] of
applied problems solving [1,2,5,28].

We will consider a fuzzy set C
˜

(Figure 1) as a set of couples
(

y, µC
˜
(y)
)

, where y is an element

on the universal set U [11,29,30] which belongs to the fuzzy set C
˜

with a corresponding degree of

confidence or the specific membership function (MF) value µC
˜
(y) ∈ [0, 1].
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Successful examples of fuzzy technique application for finding efficient solutions under
uncertainty in various fields of human activity include automation of the different technological
processes, optimization of transport routes and logistics planning, evaluation of the investment
and perspective research project proposals, decision making in medical diagnostics and medical
image retrieval, management of banking and finances, etc. These techniques for data analysis rely,
for example, on the usage of such flexible soft computing components as (a) non-parametrized and
parametrized operators of t-norm and s-norm [29], t-concepts [31], fuzzy signatures and signatures
trees [32], vector quantization and fuzzy S-tree [33], (b) different fuzzy inference engines (Mamdani,
Sugeno, etc. [13,29]), (c) as well as different fuzzy approaches for implementation of fuzzy arithmetic
operations with fuzzy numbers (FNs), including FNs-minimum, FNs-maximum, FNs-subtraction,
FNs-multiplication, FNs-division, and FNs-addition [29,30,34–39].

Special attention should be paid to the formation of the resulting analytic models for
fuzzy arithmetic because of their capacity to increase the accuracy and speed of the Big Data
processing [30,34]. In some practical cases, it is possible to transform the big volume of information
to corresponding fuzzy numbers [29,40] with further implementation of the resulting MFs for
corresponding arithmetic operations with FNs.

One of the efficient approaches for the synthesis of the resulting MFs’ analytic models is using
α-cuts [29,34,41], in particular, for construction of the horizontal (inverse) and vertical (direct) models
of the resulting membership functions. However, in some cases, the necessity to form such resulting
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models is time consuming and leads to the decrease in data processing speed and lower quality of the
real-time control and decision-making processes [1,34,42,43].

Another approach deals with usage of Zadeh’s extension principle [29,43–45] or algorithm of
Max-Min convolution [30], which requires a transformation of each initial fuzzy set (involved in fuzzy
data processing) to discrete form using a discreteness step ∆y = ymax−ymin

K = const for determining
yi+1 = yi + ∆y, (i = 0, 1, 2, . . . , K). This leads to the synthesis of the resulting fuzzy sets, for example

S
˜
, in the table style or as a set of united singletons S

˜
=

K
∑

i=0

µS
˜
(yi)

yi
.

The abovementioned α-cuts and Max-Min convolution approaches [29,30] require additional
mathematical transformations for obtaining an analytic model of membership function µS

˜
(y) of

the resulting fuzzy set S
˜

which can be used for computing (for any y∗, y∗ ∈ [ymin, ymax]) the

corresponding membership’s value µS
˜
(y∗) that characterizes belonging y∗ to the resulting fuzzy set

S
˜
. The mathematical formalization of the resulting analytic model µS

˜
(y) can be realized based on the

polynomial approximation [29] for the discrete fuzzy set S
˜
=

K
∑

i=0

µS
˜
(yi)

yi
. The usage of the interpolation

procedure is also possible for calculation of the corresponding value µS
˜
(y∗), in the case if y∗ is situated

between any neighboring values yi and yi+1, that is yi < y∗ < yi+1. Both considered approaches are
based on the implementation of the “multi-step” computational procedures. Any changes in the initial
fuzzy sets requires implementing the polynomial approximation or interpolation procedures for fuzzy
data processing that leads to the increase of computing complexity and computational time as well as
decrease of the accuracy of calculations. Thus, the development of the new methods for automation
of the procedures of resulting analytic models’ synthesis can significantly improve the quality of the
“one-step” computational processes in fuzzy data processing.

This research aims to propose the advancements in the construction of the universal horizontal
and vertical analytic models of the resulting MFs as main components of the generalized computational
library that provide (a) automatic choice of the desired analytic models from the computational library
based on the relationships between parameters of the initial fuzzy sets for fuzzy data processing and
(b) improvement in the operating velocity and accuracy of the fuzzy arithmetic operations with special
attention to FNs-maximum (maximum of fuzzy numbers) as one of the most difficult and complex
(in computing aspects) arithmetic operations. This paper contributes to the literatures on fuzzy data
processing and Big Data analysis [1,2,43].

The rest of the article is organized as follows. Main definitions and the problem statement may
be found in Section 2. Section 3 describes the methodology of the analytic models’ synthesis for the
results of the arithmetic operation FNs-maximum with triangular fuzzy numbers. All components of
the developed computational library for different relations between FNs’ parameters as corresponding
sets of the resulting horizontal and vertical models are presented in Section 4. Modelling results for
validation of the synthesized analytic models, which were obtained with the usage of the corresponding
masks and proposed computation library, are discussed in Section 5. Section 6 summarizes the article
and suggests some directions for future research.

2. Problem Statement

Using α-cuts for the implementation of FNs-maximum for two fuzzy sets leads to the step-by-step
realization of the corresponding arithmetic algorithm for different α-levels [29,30,34] (Figure 1):

αi = αi−1 + δα, (i = 1, 2, . . . , N) (1)

where δα is a discreteness step, which can be calculated as δα = 1
N ;
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This iterative procedure has high computing complexity and the choice of the parameter N and
corresponding value δα sufficiently influences the computing velocity and calculation accuracy of the
resulting MF [29,36,37].

In general, α-cut Cα =

{
y
∣∣∣∣µC

˜
(y) ≥ α

}
, α ∈ [0, 1] of the fuzzy number C

˜
∈ R is a crisp subset that

includes (Figure 1) only values y ∈ R with not less than α membership degree of belonging to the set
C
˜
, where R is a set of real numbers [29,30]. For fuzzy sets C

˜
∈ R, D

˜
∈ R it is possible to represent their

α-sets Cα and Dα in such style as:
Cα = [c1(α), c2(α)], (2)

Dα = [d1(α), d2(α)], α ∈ [0, 1]. (3)

The computing of FNs-maximum will be more efficient in terms of the computational velocity
and accuracy in the case of an analytic model of resulting MF that can be preliminarily synthesized [42].
The main goal of this study is the synthesis of the computational library of the resulting horizontal and
vertical analytical models for the arithmetic operation of FNs-maximum in order to (a) decrease the
complexity of the calculation process, (b) increase operating velocity of the arithmetic operation,
(c) exclude the rooting iterative computing procedure, and (d) increase the accuracy of fuzzy
data processing.

Let us present the synthesis procedure for abovementioned computational library [42,43] based
on the MFs of triangular fuzzy numbers (TrFNs) with different relations R between their parameters
(Figure 1).

The triangular fuzzy numbers C
˜
= (c1, c0, c2) and D

˜
= (d1, d0, d2) can be characterized by their own

MFs µC
˜
(y) and µD

˜
(y) with corresponding parameters µC

˜
(c0) = 1, µD

˜
(d0) = 1, µC

˜
(c1) = 0, µC

˜
(c2) = 0,

µD
˜
(d1) = 0, and µD

˜
(d2) = 0. The horizontal Cα, Dα and vertical µC

˜
(y), µD

˜
(y) models of the triangular

fuzzy numbers C
˜
∈ R, D

˜
∈ R can be represented by the expressions (4)–(7) [29,30,34–37,42,43]:

Cα = [c1(α), c2(α)] = [c1 + α(c0 − c1), c2 − α(c2 − c0)], (4)

µC
˜
(y) =


0, ∀(y ≤ c1) ∪ (y ≥ c2)

FCL(y, c1, c0), ∀(c1 < y ≤ c0)

FCR(y, c0, c2), ∀(c0 < y < c2)

, (5)

Dα = [d1(α), d2(α)] = [d1 + α(d0 − d1), d2 − α(d2 − d0)], (6)

µD
˜
(y) =


0, ∀(y ≤ d1) ∪ (y ≥ d2)

FDL(y, d1, d0), ∀(d1 < y ≤ d0)

FDR(y, d0, d2), ∀(d0 < y < d2)

, (7)

where FCL(y, c1, c0) = (y− c1)/(c0 − c1) is the left branch of the MF µC
˜
(y) for TrFN C

˜
;

FDL(y, d1, d0) = (y− d1)/(d0 − d1) is the left branch of the MF µD
˜
(y) for TrFN D

˜
;

FCR(y, c0, c2) = (c2 − y)/(c2 − c0) is the right branch of the MF µC
˜
(y) for TrFN C

˜
; and

FDR(y, d0, d2) = (d2 − y)/(d2 − d0) is the right branch of the MF µD
˜
(y) for TrFN D

˜
.

In the case of FNs-maximum computation, the usage of such algorithms as Max-Min or Min-Max
convolutions [30,42], comparative to the α-cuts algorithm, in many cases leads (a) to the violation of the
properties of normality and convexity of the resulting fuzzy set S

˜
= C

˜
(∨)D

˜
and (b) to the increasing

complexity and calculation time for the fuzzy data processing.

Finally, the operation of FNs-maximum
(

S
˜
= C

˜
(∨)D

˜

)
can be presented using α-cuts in such

a style:
Sα = Cα(∨)Dα = [c1(α), c2(α)](∨)[d1(α), d2(α)] =

= [c1(α) ∨ d1(α), c2(α) ∨ d2(α)],
(8)
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where Sα = [s1(α), s2(α)] is a horizontal model of the resulting fuzzy set S
˜
. The functional

parameters {c1(α), c2(α), d1(α), d2(α)} of the horizontal models (4) and (6) will be used in Section 3 for
transformation of the step-by-step α-cuts procedure of the FNs-maximum processing (8) to synthesis
of the universal analytic models of the resulting fuzzy set S

˜
= C

˜
(∨)D

˜
for one-step computational

procedure of the resulting membership function values µS
˜
(y).

3. Formation of the Horizontal and Vertical Resulting Models for Fuzzy Arithmetic Operation
“TrFNs-Maximum”

Let us consider the intersection between left branches C
˜ L
∩ D

˜ L
and right branches C

˜ R
∩ D

˜ R
of the

TrFNs C
˜
∈ R, D

˜
∈ R, separately. The intersection points for left and right branches are the switching

points for the resulting analytic models of TrFNs-maximum.
Let us find the solutions (arguments yL, yR) of the equation:

µC
˜
(y) = µD

˜
(y) (9)

by analyzing the intersection of the (a) left branches C
˜ L
∩ D

˜ L
of the TrFNs C

˜
∈ R, D

˜
∈ R (Figure 2)

FCL(y, c1, c0) ∩ FDL(y, d1, d0) : C
˜
∈ R, D

˜
∈ R (10)

and (b) right branches C
˜ R
∩ D

˜ R
of TrFNs C

˜
∈ R, D

˜
∈ R (Figure 3).

FCR(y, c0, c2) ∩ FDR(y, d0, d2) : C
˜
∈ R, D

˜
∈ R (11)
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Let us consider the intersection, for example, of the right branches (Figure 3) in more details.
For intersection (11) between right branches with condition α ∈ [0, 1] we can form such

an equation:
c2(α) = d2(α) = s2(α) (12)

which can be rewritten in another style:

c2 − α(c2 − c0) = d2 − α(d2 − d0) (13)

Based on the right components of the horizontal models Cα (2) and Dα (3):

c2(α) = c2 − α(c2 − c0) (14)

and
d2(α) = d2 − α(d2 − d0). (15)

It is possible to find a vertical coordinate α = αR of the intersection point using (12) and (13):

αR =
d2 − c2

d2 − d0 − c2 + c0
(16)

In this case we can write:

αR = µC
˜
(yR) = µD

˜
(yR) = µS

˜
(yR) (17)

using horizontal coordinate yR for condition (11).
Thus, two couples: {

(c2(αR), αR),
(

yR, µC
˜
(yR)

)}
(18)

of the intersection point’s coordinates for the (11) can be formed for the right components of the

horizontal (c2(αR), αR) and vertical
(

yR, µC
˜
(yR)

)
models. In this case: yR = c2(αR), µC

˜
(yR) = αR.

It is possible to find the parameter c2(αR) using (4) and (16):

c2(αR) = c2 − αR(c2 − c0) = c2 −
(d2 − c2)(c2 − c0)

d2 − d0 − c2 + c0
(19)

where c2(αR) ∈ [max(c0, d0), max(c2, d2)].
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For the intersection (10) between the left branches of TrFNs, it is possible to find α = αL ∈ [0, 1],
and using the same approach as for the right branches intersection, we can find two couples:{

(c1(αL), αL),
(

yL, µC
˜
(yL)

)}
(20)

of the coordinates of intersection point (10), in particular, for left components of the horizontal

(c1(αL), αL) and vertical
(

yL, µC
˜
(yL)

)
models.

In this case for yL = c1(αL) and µC
˜
(yL) = αL we can find the corresponding parameters αL and

c1(αL) as

αL =
d1 − c1

c0 − c1 − d0 + d1
(21)

c1(αL) = c1 + αL(c0 − c1) = c1 +
(d1 − c1)(c0 − c1)

c0 − c1 − d0 + d1
(22)

where c1(αL) ∈ [max(c1, d1), max(c0, d0)].
Finally, we can calculate the values of the coordinates (c1(αL), αL) and (c2(αR), αR) for the

intersection points (10) and (11) using developed analytic models (17), (19), (21), (22), and
corresponding data (c1, d1, c0, d0, c2, d2) for the considered TrFNs C

˜
= (c1, c0, c2) and D

˜
= (d1, d0, d2).

The developed models (17), (19), (21), and (22) are universal for any pairs of the TrFNs.
For example, for such relations between TrFNs parameters as c1 < d1, c0 > d0, c2 < d2, we can

form the horizontal Sα = Cα(∨)Dα and vertical µS
˜
(y) models of resulting MF using developed analytic

models (17), (19), (21), and (22).

Sα = Cα(∨)Dα = [c1(α) ∨ d1(α), c2(α) ∨ d2(α)] =

[s1(α), s2(α)] =[{
d1(α), ∀α|α ∈ [0, αL]

c1(α), ∀α|α ∈ [αL, 1]

}
,

{
c2(α), ∀α|α ∈ [αR, 1]
d2(α), ∀α|α ∈ [0, αR]

}] , (23)

µS
˜
(y) =



0, ∀(y ≤ d1) ∪ (y ≥ d2)

FDL(y, d1, d0), ∀(d1 < y ≤ d1(αL))

FCL(y, c1, c0), ∀(c1(αL) < y ≤ c0)

FCR(y, c0, c2), ∀(c0 < y < c2(αR))

FDR(y, d0, d2), ∀(c2(αR) < y < d2)

, (24)

where s1(0) = d1; s2(0) = d2; s1(1) = s2(1) = c0;

s1(α) =

{
d1 + α(d0 − d1), ∀α|α ∈ [0, αL]

c1 + α(c0 − c1), ∀α|α ∈ [αL, 1]

}
;

s2(α) =

{
c2 − α(c2 − c0), ∀α|α ∈ [αR, 1]
d2 − α(d2 − d0), ∀α|α ∈ [0, αR]

}
.

In the Section 3, authors proposed an approach for determining intersection parameters between
left (21), (22) and right (16), (19) branches of the initial fuzzy sets C

˜
∈ R, D

˜
∈ R that will be used and

extended in the following section for creating a set of the resulting analytic models Sα and µS
˜
(y) that

can be combined to the generalized computational library as its main components.



Data 2018, 3, 59 8 of 19

4. Synthesis of the Computational Library of Horizontal and Vertical Analytic Models for the
Results of the FNs-Maximum Operation

The horizontal Sα (23) and the vertical µS
˜
(y) (24) analytic models for the resulting fuzzy set

S
˜
= C

˜
(∨)D

˜
were synthesized for FNs-maximum operation taking into account the following relations

between the TrFNs parameters:
c1 < d1, c0 > d0, c2 < d2. (25)

Thus, the analytic models (23) and (24) are validated only for relations (25) in the case of TrFNs
C
˜
= (c1, c0, c2) and D

˜
= (d1, d0, d2).

At the same time, TrFNs with different relations R between their parameters can present a lot of
input signals in the real systems and processes [42]:

{c1Rd1, c0Rd0, c2Rd2} (26)

where R ∈ {(<), (>)}.

For each different combination (25) between parameters (c1, d1; c0, d0; c2, d2) of TrFNs
(

C
˜
, D

˜

)
it

is necessary to synthesize separate horizontal and vertical analytic models of the resulting MF in the
case of implementation of the FNs-maximum arithmetic operation.

Let us synthesize the computational library of the resulting fuzzy sets S
˜

as corresponding sets of

horizontal and vertical analytic models for realization of the FNs-maximum arithmetic operation with
TrFNs C

˜
and D

˜
for different combinations (26) with relations R.

Let us introduce the mask:

Mask
(

C
˜
, D

˜

)
= {m1, m2, m3}, (27)

which can be used for recognition of the corresponding relations R as relations between parameters of
the TrFNs C

˜
and D

˜
[37,42].

The binary indicators m1, m2, and m3 in the mask (27) can be presented as:

m1 =

{
0, i f c1 > d1

1, i f c1 < d1
;

m2 =

{
0 , i f c0 > d0

1 , i f c0 < d0
;

m3 =

{
0 , i f c2 > d2

1 , i f c2 < d2
.

(28)

Using Mask (27) it is possible to form the computational library of the horizontal (29)–(44) and
vertical (45)–(52) analytic models {SM1 . . . SM8} for the resulting fuzzy sets in the case of execution

of FNs-maximum operation with different R relations (26) between parameters of the TrFNs
(

C
˜
, D

˜

)
,

where SMi, (i = 1 . . . 8) is the i-th analytic model. The masks (27) and the corresponding models,
SMi, i = 1 . . . 8, as components of the computational library {SM1, SM2, . . . , SM8}, are represented in
the Table 1.

Table 1. Models SMi, (i = 1 . . . 8) and masks {m1, m2, m3} for different combinations of TrFNs C
˜
, D

˜
∈ R.

SMi,i=1. . . 8 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8

{m1, m2, m3} {1, 1, 1} {1, 1, 0} {1, 0, 1} {1, 0, 0} {0, 1, 1} {0, 1, 0} {0, 0, 1} {0, 0, 0}
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Let us form the computational library of the horizontal Sα = [s1(α), s2(α)] and the vertical µS
˜
(y)

analytic models of the resulting fuzzy set S
˜
= C

˜
(∨)D

˜
for different masks (27) according to the Table 1.

The horizontal models Sα are synthesized based on the: (a) parameters of α-cuts
{c1(α), c2(α), d1(α), d2(α)}, (b) value α, and (c) TrFNs’ parameters {c1, c0, c2, d1, d0, d2}.

The main components (29)–(44) of the computational library {SM1, SM2, . . . , SM8} of horizontal
analytic models Sα = [s1(α), s2(α)] are:

- for Mask
(

C
˜
, D

˜

)
= {m1, m2, m3} = {1, 1, 1}, model SM1:

Sα = [s1(α), s2(α)] = [{d1(α), ∀α|α ∈ [0, 1]}, {d2(α), ∀α|α ∈ [0, 1]}], (29)

[s1(α), s2(α)] = [{d1 + α(d0 − d1), ∀α|α ∈ [0, 1]}, {d2 − α(d2 − d0), ∀α|α ∈ [0, 1]}]; (30)

- for Mask
(

C
˜
, D

˜

)
= {m1, m2, m3} = {1, 1, 0}, model SM2:

Sα = [s1(α), s2(α)] =

[
{d1(α), ∀α|α ∈ [0, 1]},

{
d2(α), ∀α|α ∈ [αR, 1]
c2(α), ∀α|α ∈ [0, αR]

}]
, (31)

[s1(α), s2(α)] =

[
{d1 + α(d0 − d1), ∀α|α ∈ [0, 1]},

{
d2 − α(d2 − d0), ∀α|α ∈ [αR, 1]
c2 − α(c2 − c0), ∀α|α ∈ [0, αR]

}]
; (32)

- for Mask
(

C
˜
, D

˜

)
= {m1, m2, m3} = {1, 0, 1}, model SM3:

Sα = [s1(α), s2(α)] =

[{
d1(α), ∀α|α ∈ [0, αL]

c1(α), ∀α|α ∈ [αL, 1]

}
,

{
c2(α), ∀α|α ∈ [αR, 1]
d2(α), ∀α|α ∈ [0, αR]

}]
, (33)

[s1(α), s2(α)] =

[{
d1 + α(d0 − d1), ∀α|α ∈ [0, αL]

c1 + α(c0 − c1), ∀α|α ∈ [αL, 1]

}
,

{
c2 − α(c2 − c0), ∀α|α ∈ [αR, 1]
d2 − α(d2 − d0), ∀α|α ∈ [0, αR]

}]
; (34)

- for Mask
(

C
˜
, D

˜

)
= {m1, m2, m3} = {1, 0, 0}, model SM4:

Sα = [s1(α), s2(α)] =

[{
d1(α), ∀α|α ∈ [0, αL]

c1(α), ∀α|α ∈ [αL, 1]

}
, {c2(α), ∀α|α ∈ [0, 1]}

]
(35)

[s1(α), s2(α)] =

[{
d1 + α(d0 − d1), ∀α|α ∈ [0, αL]

c1 + α(c0 − c1), ∀α|α ∈ [αL, 1]

}
, {c2 − α(c2 − c0), ∀α|α ∈ [0, 1]}

]
; (36)

- for Mask
(

C
˜
, D

˜

)
= {m1, m2, m3} = {0, 1, 1}, model SM5:

Sα = [s1(α), s2(α)] =

[{
c1(α), ∀α|α ∈ [0, αL]

d1(α), ∀α|α ∈ [αL, 1]

}
, {d2(α), ∀α|α ∈ [0, 1]}

]
, (37)

[s1(α), s2(α)] =

[{
c1 + α(c0 − c1), ∀α|α ∈ [0, αL]

d1 + α(d0 − d1), ∀α|α ∈ [αL, 1]

}
, {d2 − α(d2 − d0), ∀α|α ∈ [0, 1]}

]
; (38)
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- for Mask
(

C
˜
, D

˜

)
= {m1, m2, m3} = {0, 1, 0}, model SM6:

Sα = [s1(α), s2(α)] =

[{
c1(α), ∀α|α ∈ [0, αL]

d1(α), ∀α|α ∈ [αL, 1]

}
,

{
d2(α), ∀α|α ∈ [αR, 1]
c2(α), ∀α|α ∈ [0, αR]

}]
, (39)

[s1(α), s2(α)] =

[{
c1 + α(c0 − c1), ∀α|α ∈ [0, αL]

d1 + α(d0 − d1), ∀α|α ∈ [αL, 1]

}
,

{
d2 − α(d2 − d0), ∀α|α ∈ [αR, 1]
c2 − α(c2 − c0), ∀α|α ∈ [0, αR]

}]
; (40)

- for Mask
(

C
˜
, D

˜

)
= {m1, m2, m3} = {0, 0, 1}, model SM7:

Sα = [s1(α), s2(α)] =

[
{c1(α), ∀α|α ∈ [0, 1]},

{
c2(α), ∀α|α ∈ [αR, 1]
d2(α), ∀α|α ∈ [0, αR]

}]
, (41)

[s1(α), s2(α)] =

[
{c1 + α(c0 − c1), ∀α|α ∈ [0, 1]},

{
c2 − α(c2 − c0), ∀α|α ∈ [αR, 1]
d2 − α(d2 − d0), ∀α|α ∈ [0, αR]

}]
; (42)

- for Mask
(

C
˜
, D

˜

)
= {m1, m2, m3} = {0, 0, 0}, model SM8:

Sα = [s1(α), s2(α)] = [{c1(α), ∀α|α ∈ [0, 1]}, {c2(α), ∀α|α ∈ [0, 1]}], (43)

[s1(α), s2(α)] = [{c1 + α(c0 − c1), ∀α|α ∈ [0, 1]}, {c2 − α(c2 − c0), ∀α|α ∈ [0, 1]}]. (44)

The vertical (45)–(52) models µS
˜
(y) of the resulting fuzzy sets S

˜
= C

˜
(∨)D

˜
are synthesized based

on the: (a) left and right functions
{

FCL , FCR , FDL , FDR

}
, and (b) TrFNs’ parameters {c1, c0, c2, d1, d0, d2}.

The main components (45)–(52) of the computational library {SM1, SM2, . . . , SM8} of the vertical
analytic models µS

˜
(y) are:

- for the Mask
(

C
˜
, D

˜

)
= {m1, m2, m3} = {1, 1, 1}, model SM1:

µS
˜
(y) =


0, ∀(y ≤ d1) ∪ (y ≥ d2)

FDL(y, d1, d0), ∀(d1 < y ≤ d0)

FDR(y, d0, d2), ∀(d0 < y < d2)

=


0, ∀(y ≤ d1) ∪ (y ≥ d2)

(y− d1)/(d0 − d1), ∀(d1 < y ≤ d0)

(d2 − y)/(d2 − d0), ∀(d0 < y < d2)

; (45)

- for the Mask
(

C
˜
, D

˜

)
= {m1, m2, m3} = {1, 1, 0}, model SM2:

µS
˜
(y) =


0, ∀(y ≤ d1) ∪ (y ≥ c2)

FDL(y, d1, d0), ∀(d1 < y ≤ d0)

FDR(y, d0, d2), ∀(d0 < y < c2(αR))

FCR(y, c0, c2), ∀(c2(αR) ≤ y < c2)

=


0, ∀(y ≤ d1) ∪ (y ≥ c2)

(y− d1)/(d0 − d1), ∀(d1 < y ≤ d0)

(d2 − y)/(d2 − d0), ∀(d0 < y < c2(αR))

(c2 − y)/(c2 − c0), ∀(c2(αR) ≤ y < c2)

; (46)

- for the Mask
(

C
˜
, D

˜

)
= {m1, m2, m3} = {1, 0, 1}, model SM3:

µS
˜
(y) =



0, ∀(y ≤ d1) ∪ (y ≥ d2)

FDL(y, d1, d0), ∀(d1 < y ≤ c1(αL))

FCL(y, c1, c0), ∀( c1(αL) < y ≤ c0)

FCR(y, c0, c2), ∀(c0 < y < c2(αR))

FDR(y, d0, d2), ∀( c2(αR) ≤ y < d2)

=



0, ∀(y ≤ d1) ∪ (y ≥ d2)

(y− d1)/(d0 − d1), ∀(d1 < y ≤ c1(αL))

(y− c1)/(c0 − c1), ∀(c1(αL) < y ≤ c0)

(c2 − y)/(c2 − c0), ∀(c0 < y < c2(αR))

(d2 − y)/(d2 − d0), ∀(c2(αR) ≤ y < d2)

; (47)
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- for the Mask
(

C
˜
, D

˜

)
= {m1, m2, m3} = {1, 0, 0}, model SM4:

µS
˜
(y) =


0, ∀(y ≤ d1) ∪ (y ≥ c2)

FDL(y, d1, d0), ∀(d1 < y ≤ c1(αL))

FCL(y, c1, c0), ∀(c1(αL) < y ≤ c0)

FCR(y, c0, c2), ∀(c0 < y < c2)

=


0, ∀(y ≤ d1) ∪ (y ≥ c2)

(y− d1)/(d0 − d1), ∀(d1 < y ≤ c1(αL))

(y− c1)/(c0 − c1), ∀(c1(αL) < y ≤ c0)

(c2 − y)/(c2 − c0), ∀(c0 < y < c2)

; (48)

- for the Mask
(

C
˜
, D

˜

)
= {m1, m2, m3} = {0, 1, 1}, model SM5:

µS
˜
(y) =


0, ∀(y ≤ c1) ∪ (y ≥ d2)

FCL(y, c1, c0), ∀(c1 < y ≤ c1(αL))

FDL(y, d1, d0), ∀(c1(αL) < y ≤ d0)

FDR(y, d0, d2), ∀(d0 < y < d2)

=


0, ∀(y ≤ c1) ∪ (y ≥ d2)

(y− c1)/(c0 − c1), ∀(c1 < y ≤ c1(αL))

(y− d1)/(d0 − d1), ∀(c1(αL) < y ≤ d0)

(d2 − y)/(d2 − d0), ∀(d0 < y < d2)

; (49)

- for the Mask
(

C
˜
, D

˜

)
= {m1, m2, m3} = {0, 1, 0}, model SM6:

µS
˜
(y) =



0, ∀(y ≤ c1) ∪ (y ≥ c2)

FCL(y, c1, c0), ∀(c1 < y ≤ c1(αL))

FDL(y, d1, d0), ∀( c1(αL) < y ≤ d0)

FDR(y, d0, d2), ∀(d0 < y < c2(αR))

FCR(y, c0, c2), ∀( c2(αR) ≤ y < c2)

=



0, ∀(y ≤ c1) ∪ (y ≥ c2)

(y− c1)/(c0 − c1), ∀(c1 < y ≤ c1(αL))

(y− d1)/(d0 − d1), ∀(c1(αL) < y ≤ d0)

(d2 − y)/(d2 − c0), ∀(d0 < y < c2(αR))

(c2 − y)/(c2 − c0), ∀(c2(αR) ≤ y < c2)

; (50)

- for the Mask
(

C
˜
, D

˜

)
= {m1, m2, m3} = {0, 0, 1}, model SM7:

µS
˜
(y) =


0, ∀(y ≤ c1) ∪ (y ≥ d2)

FCL(y, c1, c0), ∀(c1 < y ≤ c0)

FCR(y, c0, c2), ∀(c0 < y < c2(αR))

FDR(y, d0, d2), ∀(c2(αR) ≤ y < d2)

=


0, ∀(y ≤ c1) ∪ (y ≥ d2)

(y− c1)/(c0 − c1), ∀(c1 < y ≤ c0)

(c2 − y)/(c2 − c0), ∀(c0 < y < c2(αR))

(d2 − y)/(d2 − d0), ∀(c2(αR) ≤ y < d2)

(51)

- for the Mask
(

C
˜
, D

˜

)
= {m1, m2, m3} = {0, 0, 0}, model SM8:

µS
˜
(y) =


0, ∀(y ≤ c1) ∪ (y ≥ c2)

FCL(y, c1, c0), ∀(c1 < y ≤ c0)

FCR(y, c0, c2), ∀(c0 < y < c2)

=


0, ∀(y ≤ c1) ∪ (y ≥ c2)

(y− c1)/(c0 − c1), ∀(c1 < y ≤ c0)

(c2 − y)/(c2 − c0), ∀(c0 < y < c2)

. (52)

Thus, formation of the mask (27) for any pair
(

C
˜
, D

˜

)
of the fuzzy numbers with various

relations (26) between their parameters {c1, c0, c2, d1, d0, d2} allows: (a) to determine (automatically)
the corresponding horizontal and vertical analytic models of the resulting fuzzy set based on the
developed computational library (29)–(52), and (b) to use these analytic models for the one-step
computation of the resulting membership function values µS

˜
(y) for different values of the variable

y. In Section 5, the authors provide a numerical example of the fuzzy data processing based on the
application of the computational library (29)–(52).

5. Example: Computational Library Application

Let us consider an example with the realization of the FNs-maximum operation for the TrFNs
(Figure 4):

C
˜
= (8, 20, 25), D

˜
= (5, 10, 40) (53)
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where parameters of the TrFNs are: c1 = 8; d1 = 5; c0 = 20; d0 = 10; c2 = 25; d2 = 40.

Data 2018, 3, x FOR PEER REVIEW  12 of 19 

 

the corresponding horizontal and vertical analytic models of the resulting fuzzy set based on the 

developed computational library (29)–(52), and (b) to use these analytic models for the one-step 

computation of the resulting membership function values ( )S y  for different values of the variable 

y . In Section 5, the authors provide a numerical example of the fuzzy data processing based on the 

application of the computational library (29)–(52). 

5. Example: Computational Library Application 

Let us consider an example with the realization of the FNs-maximum operation for the TrFNs 

(Figure 4): 

( )8,20,25C = , ( )5,10,40D =  (53) 

where parameters of the TrFNs are: 
1 1 0 0 2 28;  5;  20;  10;  25;  40c d c d c d= = = = = = . 

y  

( )μ y  (5,10,40)D =  

( )2 22R Rc y = =  

30  40  20  10  

(8,20,25)C =  

C  

( )μ 0.6R Ry = =  

D  

1d  0d  0c  2c  2d  1c  

 

1   

0.6 

0 

 

Figure 4. FNs-Maximum ( )S C D=   of the TrFNs C R and D R . 

In this case, the relations (21) can be defined as 

1 1 0 0 2 2;  ;  c d c d c d   . (54) 

Using (27), (28), and (54) we can automatically determine: 

(a) the corresponding ( )    1 2 3 , , , 0,0,1Mask C D m m m= = , 

(b) and the corresponding model 7SM from the computational library of models 

 1 2 8, ,...,SM SM SM (Table 1). 

Let us calculate the coordinates ( )( )2 ,R Rc    for the intersection point (11) of the given (53) 

fuzzy numbers ( ),C D  according to (19) and (16): 

( )
( )( ) ( )( )2 2 2 0

2 2

2 0 2 0

40 25 25 20
25 22.0

40 10 25 20
R

d c c c
c c

d d c c


− − − −
= − = − =

− − + − − +
, (55) 

2 2

2 0 2 0

40 25
0.6

40 10 25 20
R

d c

d d c c


− −
= = =

− − + − − +
. (56) 

In the next step, we can choose (for recognized 7SM ) the corresponding horizontal S  (41)–

(42) and vertical ( )S y  (51) models from the computational library (29)–(52) of the resulting analytic 

models. We further present the resulting horizontal ( )S C D  =   (57) and vertical ( )S y (58) 

models (Figure 4) for FNs-maximum ( )S C D=  : 

Figure 4. FNs-Maximum S
˜
= C

˜
(∨)D

˜
of the TrFNs C

˜
∈ R and D

˜
∈ R.

In this case, the relations (21) can be defined as

c1 > d1; c0 > d0; c2 < d2. (54)

Using (27), (28), and (54) we can automatically determine:

(a) the corresponding Mask
(

C
˜
, D

˜

)
= {m1, m2, m3} = {0, 0, 1},

(b) and the corresponding model SM7 from the computational library of models
{SM1, SM2, . . . , SM8} (Table 1).

Let us calculate the coordinates (c2(αR), αR) for the intersection point (11) of the given (53) fuzzy

numbers
(

C
˜
, D

˜

)
according to (19) and (16):

c2(αR) = c2 −
(d2 − c2)(c2 − c0)

d2 − d0 − c2 + c0
= 25− (40− 25)(25− 20)

40− 10− 25 + 20
= 22.0, (55)

αR =
d2 − c2

d2 − d0 − c2 + c0
=

40− 25
40− 10− 25 + 20

= 0.6. (56)

In the next step, we can choose (for recognized SM7) the corresponding horizontal Sα (41)–(42)
and vertical µS

˜
(y) (51) models from the computational library (29)–(52) of the resulting analytic models.

We further present the resulting horizontal Sα = Cα(∨)Dα (57) and vertical µS
˜
(y) (58) models (Figure 4)

for FNs-maximum S
˜
= C

˜
(∨)D

˜
:

Sα = Cα(∨)Dα =

 {c1 + α(c0 − c1), ∀α|α ∈ [0, 1]},{
c2 − α(c2 − c0), ∀α|α ∈ [αR, 1]
d2 − α(d2 − d0), ∀α|α ∈ [0, αR]

}  =

 {8 + 12α, ∀α|α ∈ [0, 1]},{
25− 5α, ∀α|α ∈ [0.6, 1]

40− 30α, ∀α|α ∈ [0, 0.6]

} , (57)

µS
˜
(y) =


0, ∀(y ≤ c1) ∪ (y ≥ d2)
(y−c1)
(c0−c1)

, ∀(c1 < y ≤ c0)
(c2−y)
(c2−c0)

, ∀(c0 < y < c2(αR))
(d2−y)
(d2−d0)

, ∀(c2(αR) ≤ y < d2)

=


0, ∀(y ≤ 8) ∪ (y ≥ 40)
(y−8)

12 , ∀(8 < y ≤ 20)
(25−y)

5 , ∀(20 < y < 22)
(40−y)

30 , ∀(22 ≤ y < 40)

. (58)

The models (57) and (58) are the exact analytic models that help to obtain the exact
calculation results.



Data 2018, 3, 59 13 of 19

The horizontal analytic model (57) has a capacity to calculate Sα of the resulting fuzzy set
S
˜
= C

˜
(∨)D

˜
for any α|α ∈ [0, 1]. For example, for α = 0.35 the resulting Sα will be calculated as

Sα = [8 + 12α, 40− 30α] = [8 + 12 · 0.35, 40− 30 · 0.35] = [12.2, 29.5].
Using the vertical model (58), it is easy to calculate the value of µS

˜
(y∗) of the resulting membership

function µS
˜
(y) for any required value of y = y∗. For example, for y∗ = 21, 1 we have the exact result of

µS
˜
(21.1) = 0.78, and for y∗ = 23.05 µS

˜
(23.05) = 0.565.

Let us compare these pairs of exact results
(

y∗ = 21.1; µS
˜
(21.1) = 0.78

)
and(

y∗ = 23.05; µS
˜
(23.05) = 0.565

)
, obtained using the developed computational library of analytic

models (45)–(52), with results obtained using the traditional α-cut approach [29,30,43], where
according to (1) αi = αi−1 + δα, (i = 1, 2, . . . , N).

Let us choose, for example, N = 4. In this case, δα = 0.25 and the horizontal models Sα for
the FNs-maximum S

˜
= C

˜
(∨)D

˜
can be calculated using FNs-maximum algorithm (8), initial data

Sα=0 = [8, 40] for α = 0, and the iterative procedure αi = αi−1 + 0.25, (i = 1, 2, 3, 4), as:

Sα=0.25 = [11, 32.5]; Sα=0.5 = [14, 25]; Sα=0.75 = [17, 21.25]; and Sα=1 = [20, 20].

For determining each component of Sα=αi of the corresponding horizontal model it is necessary
to realize a multi-step calculation procedure using different formulas:

(a) calculate c1(αi), using the horizontal model (4-1) for the left branch of the TrFN C
˜
;

(b) calculate c2(αi), using the horizontal model (4-1) for the right branch of the TrFN C
˜
;

(c) calculate d1(αi), using the horizontal model (6) for the left branch of the TrFN D
˜

;

(d) calculate d2(αi), using the horizontal model (6) for the right branch of the TrFN D
˜

;

(e) determine s1(αi) based on the horizontal model (8) for the left branch of the resulting fuzzy set S
˜

and using the Max-operator: s1(αi) = c1(αi) ∨ d1(αi) = max{c1(αi), d1(αi)};
(f) determine s2(αi) based on the horizontal model (8) for the right branch of the resulting fuzzy set

S
˜

and using the Max-operator: s2(αi) = c2(αi) ∨ d2(αi) = max{c2(αi), d2(αi)}.

The corresponding resulting fuzzy set is

S
˜
=

2N

∑
i=0

µS
˜
(yi)

yi
=

0
8
+

0.25
11

+
0.5
14

+
0.75
17

+
1

20
+

0.75
21.25

+
0.5
25

+
0.25
32.5

+
0

40
(59)

If y∗ /∈ supp
(

S
˜

)
, where supp

(
S
˜

)
=

{
y : µS

˜
(y) > 0

}
= {(8), 11, 14, 17, 20, 21.25, 25, 32.5, (40)}

according to (59), then, for example, as the next step, it is necessary to implement the polynomial
approximation or linear interpolation procedures. Let us find µS

˜
(y∗) for yi < y∗ < yi+1 based on the

fuzzy set (59) and the linear interpolation approach:

µS
˜
(y∗) = µS

˜
(yi) +

µS
˜
(yi+1)− µS

˜
(yi)

yi+1 − yi
(y∗ − yi). (60)

For example, (a) for y∗ = 22, y5 < y∗ < y6, we can calculate µS
˜
(22) using (60) as:

µS
˜
(22) = µS

˜
(y5) +

µS
˜
(y6)− µS

˜
(y5)

y6 − y5
(22− y5) = 0.75 +

0.5− 0.75
25− 21.25

(22− 21.25) = 0.6786; (61)
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(b) for y∗ = 21.1, y4 < y∗ < y5:

µS
˜
(21.1) = 1 +

0.75− 1
21.25− 20

(21.1− 20) = 0.78; (62)

(c) for y∗ = 23.05, y5 < y∗ < y6:

µS
˜
(23.05) == 0.75 +

0.5− 0.75
25− 21.25

(23.05− 21.25) = 0.622. (63)

The authors further present the corresponding interpolation errors comparing with the
calculations based on the analytic model (58, obtained from the developed computational library:

∆a = |0.6− 0.6786| = 0.0786, for y∗ = 22;

∆b = |0.78− 0.78| = 0, for y∗ = 21.1;

∆c = |0.565− 0.622| = 0.057, for y∗ = 23.05,

that corresponds (in percentage) to the relative values of 13,10%, 0,00%, and 10.08%.
These examples show that the interpolation errors will exist for the condition y5 < y∗ < y6.

In a general case, these errors exist for the values of y∗, which belongs to the intervals [yk, yk+1] and[
yj, yj+1

]
with corresponding conditions: c1(αL) ∈ [yk, yk+1] and c2(αR) ∈

[
yj, yj+1

]
. It is possible to

decrease the interpolation errors by increasing the number N of α-cuts, but in this case, the resulting
fuzzy set (59) will have more components and the computing time will be significantly increased due
to the multi-step calculations.

The computational library was realized in the computing development environment Visual
Studio 2013 using the C# (Windows Forms) programming language. The link to the program code
is https://bitbucket.org/ykondratenko/computelib/src. Modeling results confirm that the analytic
models (as components of the computational library (45)–(52)) proposed in this article provide efficient
one-step calculation of the resulting membership function for values µS

˜
(y∗) with higher accuracy and

improved calculation speed compared with α-cuts approach and Max-Min convolution, which are
based on the multi-step calculation procedures.

6. Conclusions

The main contribution of this work deals with the development of the methodological approach
and the “one-step” calculation algorithm for fuzzy data processing based on: (a) evaluation of the
relations between FNs parameters using a proposed three-components mask; (b) development of the
universal horizontal and vertical analytic models for the resulting fuzzy sets, which provides a high
accuracy of fuzzy data processing; and (c) creation of the generalized computational library of the
resulting analytic models that allows a realization of “one-step” computing for various combinations
between the FNs parameters.

The proposed computational library of the horizontal and vertical analytic models (29)–(52)
allows more efficient data processing in real-time. When it comes to application and realization of
FNs-maximum operations with triangular fuzzy numbers parameters, it was necessary to choose
the preliminary synthesized analytic models from the computational library based on the TrFNs
parameters. This approach leads to significant increasing computational speed of the data processing
since the usage of the proposed library of horizontal and vertical models allows realizing only one-step
computing automation mode in fuzzy data processing, in particular, for computing the FNs-maximum
arithmetic operation S

˜
= C

˜
(∨)D

˜
.

In some practical applications, it is necessary to represent Big Data (random time-series, random
consequences, etc.) as compressed fuzzy sets (fuzzy numbers) using aggregation algorithms for

https://bitbucket.org/ykondratenko/computelib/src
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different data streams [29,46,47]. It is possible to use a four-step algorithm for “Big Data-fuzzy data”
processing of such random streams or consequences using the proposed computational library:

(a) Each random stream or consequence of Big Data can be transformed into the compressed fuzzy
set (fuzzy number) [1,29,40]. Examples of such random sequences’ transformations are presented
in References [29,40], where TrFNs “between nine and eleven” and “approximately ten” [29], as
well as ordered fuzzy numbers and ordered fuzzy candlesticks [40] are used;

(b) The approximation of the compressed fuzzy set by triangular fuzzy number and determination
of the TrFNs parameters;

(c) The determination of the mask (21) for any pair of the TrFNs based on the relations between
their parameters;

(d) Choosing (from the corresponding computational library) the corresponding horizontal and
vertical models of the resulting fuzzy set for realization of the desired operation of fuzzy

arithmetic with TrFNs
{

C
˜
(+)D

˜
, C

˜
(−)D

˜
, C

˜
(×)D

˜
, C

˜
(÷)D

˜
, C

˜
(∧)D

˜
, C

˜
(∨)D

˜

}
. For realization

of the FNs-maximum, it is possible to use the computational library proposed by the authors in
Section 4.

This approach for synthesis of the computational library of resulting analytic models for fuzzy
maximum of the TrFNs is based on the analysis of the intersection points for the left and right branches
of the TRFNs and can be successfully applied for the data processing of fuzzy sets with diverse forms
and shapes of the membership functions (Gaussian, bell-shape, exponential, trapezoidal, and others)
by construction of the corresponding computational libraries.

The simulation results confirm the universality and efficiency of the proposed computational
library of the horizontal and vertical analytic models for diverse practical applications.
The computation library application can be recommended for fuzzy data processing in solving
different control and decision-making problems, for example, for choosing the optimal model of
the “university-industry” cooperation [48], selection of partners in business, education, sport or culture
exchange [49–51], route planning and optimization in uncertainty [52–54], portfolio selection [40],
evaluation of the qualification level of the specialists, control of robots in dynamic environment [55,56],
control of industrial processes [13,57] with multi-sensor data processing, and others. Application of
the developed computational library (29)–(52) is limited to the usage of the triangular form of FNs.
Future research should consider the library’s expansion for different shapes of the fuzzy numbers as
well as its application for solving various practical and real-world problems.

Author Contributions: Methodology of the vertical and horizontal model synthesis, Y.K.; original draft
preparation, Y.K.; conceptualization of the computational library creating and applying, N.K.; writing—review
and editing, N.K.

Funding: This research received no external funding.

Acknowledgments: Authors cordially thank the Fulbright Program (USA) and US host institutions Cleveland
State University and University of South Carolina for possibility to conduct research and study in USA as well as
Ukrainian Fulbright Circle and Institute of International Education for the support of this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Recent Developments in Data Science and Intelligent Analysis of Information, Proceedings of the XVIII International
Conference on Data Science and Intelligent Analysis of Information, Kiev, Ukraine, 4–7 June 2018; Chertov, O.;
Mylovanov, T.; Kondratenko, Y.; Kacprzyk, J.; Kreinovich, V.; Stefanuk, V. (Eds.) Series: Advances in
Intelligent Systems and Computing; Springer International Publishing: Kyiv, Ukraine, 2019; Volume 836,
ISBN 978-3-319-97884-0.

2. Gorodetsky, V. Big Data: Opportunities, Challenges and Solutions. In Information and Communication
Technologies in Education, Research, and Industrial Applications (ICTERI 2014); Ermolayev, V., Mayr, H.C.,



Data 2018, 3, 59 16 of 19

Nikitchenko, M., Spivakovsky, A., Zholtkevych, G., Eds.; Communications in Computer and Information
Science; Springer: Cham, Switzerland, 2014; Volume 469, pp. 3–22, ISBN 978-3-319-13205-1.

3. Khayut, B.; Fabri, L.; Abukhana, M. Modeling, Planning, Decision-Making and Control in Fuzzy
Environment. In Advance Trends in Soft Computing; Jamshidi, M., Kreinovich, V., Kacprzyk, J., Eds.;
Studies in Fuzziness and Soft Computing; Springer: Cham, Switzerland, 2014; Volume 312, pp. 137–143,
ISBN 978-3-319-03674-8.

4. Zgurovsky, M.Z.; Zaychenko, Y.P. The Fundamentals of Computational Intelligence: System Approach;
Series: Studies in Computational Intelligence; Springer: Cham, Switzerland, 2017; Volume 652,
ISBN 978-3-319-35160-5.

5. Information Processing and Management of Uncertainty in Knowledge-Based Systems: Theory and Foundations,
Proceedings of the 17th International Conference IPMU 2018, Cádiz, Spain, 11–15 June 2018, Part II; Medina, J.;
Ojeda-Aciego, M.; Verdegay, J.L.; Pelta, D.A.; Cabrera, I.P.; Bouchon-Meunier, B.; Yager, R.R. (Eds.)
Series: Communications in Computer and Information Science; Springer International Publishing: Cham,
Switzerland, 2018; Volume 854, ISBN 978-3-319-91475-6.

6. Kondratenko, Y.P.; Kozlov, O.V.; Gerasin, O.S.; Zaporozhets, Y.M. Synthesis and research of neuro-fuzzy
observer of clamping force for mobile robot automatic control system. In Proceedings of the 2016 IEEE First
International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 23–27 August 2016;
pp. 90–95. [CrossRef]

7. Vynokurova, O.; Bodyanskiy, Y.; Peleshko, D.; Rashkevych, Y. The Autoencoder based on Generalized
Neo-Fuzzy Neuron and Its Fast Learning for Deep Neural Networks. In Proceedings of the 2018 IEEE Second
International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 21–25 August 2018;
pp. 113–118, ISBN 978-1-5386-2875-1.

8. Kacprzyk, J.; Zadrozny, S.; De Tré, G. Fuzziness in database management systems: Half a century of
developments and future prospects. Fuzzy Sets Syst. 2015, 281, 300–307. [CrossRef]

9. Kondratenko, Y.P.; Simon, D. Structural and parametric optimization of fuzzy control and decision making
systems. In Recent Developments and the New Direction in Soft Computing Foundations and Applications; Zadeh, L.,
Yager, R.R., Shahbazova, S.N., Reformat, M.Z., Kreinovich, V., Eds.; Studies in Fuzziness and Soft Computing;
Springer: Cham, Switzerland, 2018; Volume 361, pp. 273–289, ISBN 978-3-319-75407-9.

10. Simon, D. Training fuzzy systems with the extended Kalman filter. Fuzzy Sets Syst. 2002, 132, 189–199.
[CrossRef]

11. Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [CrossRef]
12. Green IT Engineering: Social, Business and Industrial Applications; Studies in Systems, Decision and Control;

Kharchenko, V.; Kondratenko, Y.; Kacprzyk, J. (Eds.) Springer: Cham, Switzerland, 2019; Volume 171,
ISBN 978-3-030-00252-7.

13. Vrkalovic, S.; Lunca, E.-C.; Borlea, I.-D. Model-free sliding mode and fuzzy controllers for reverse osmosis
desalination plants. Int. J. Artif. Intell. 2018, 16, 208–222.

14. Wang, T.Y.; Hu, J.Y. Realization of fuzzy-PID adaptive algorithm in PLC. J. Univ. Sci. Technol. Liaoning 2010,
2, 008.

15. Kondratenko, Y.; Korobko, O.; Kozlov, O.; Gerasin, O.; Topalov, A. PLC Based System for Remote Liquids
Level Control with Radar Sensor. In Proceedings of the 2015 IEEE 8th International Conference on Intelligent
Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Warsaw,
Poland, 24–26 September 2015; Volume 1, pp. 47–52. [CrossRef]
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