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Abstract: We study big-data hybrid-data-processing lambda architecture, which consolidates
low-latency real-time frameworks with high-throughput Hadoop-batch frameworks over a massively
distributed setup. In particular, real-time and batch-processing engines act as autonomous multi-agent
systems in collaboration. We propose a Multi-Agent Lambda Architecture (MALA) for e-commerce
data analytics. We address the high-latency problem of Hadoop MapReduce jobs by simultaneous
processing at the speed layer to the requests which require a quick turnaround time. At the same
time, the batch layer in parallel provides comprehensive coverage of data by intelligent blending of
stream and historical data through the weighted voting method. The cold-start problem of streaming
services is addressed through the initial offset from historical batch data. Challenges of high-velocity
data ingestion is resolved with distributed message queues. A proposed multi-agent decision-maker
component is placed at the MALA stack as the gateway of the data pipeline. We prove efficiency of
our batch model by implementing an array of features for an e-commerce site. The novelty of the
model and its key significance is a scheme for multi-agent interaction between batch and real-time
agents to produce deeper insights at low latency and at significantly lower costs. Hence, the proposed
system is highly appealing for applications involving big data and caters to high-velocity streaming
ingestion and a massive data pool.

Keywords: Lambda Architecture; e-commerce analytics; real-time data analytics; real-time data
ingestion; real-time machine leaning; recommender engine; online k-means clustering

1. Introduction

Big-data Lambda Architecture (LA) attempts to balance high-throughput MapReduce frameworks
with low-latency real-time processing. Apache Hadoop is the de facto standard batch-processing
system used to provide high-throughput, comprehensive and more accurate views of historical data.
However, it suffers from several challenges such as high latency, larger storage, and bigger cluster
requirements.

This paper sought to shed light on an optimized framework for the e-commerce domain through
LA. The batch and real-time components of LA are two autonomous agents which collaborate at need.
We introduce novel concepts of Multi-Agent Lambda Architecture (MALA), bringing unprecedented
optimization through blending low-latency stream processing with comprehensive batch processing,
which fits the analytical challenges of the e-commerce domain.
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LA is a positive new direction towards the next generation of big-data analytics and has started
to witness wide industry adaptation in recent years. However, research efforts towards LA are still
in their infancy. We claim this work is the first general-purpose and comprehensive approach in
combination with big data and MALA designed for hybrid mixed learning of batch and stream data.

The main contributions of the paper are as follows:
High Responsive Streaming Layer: We prove that within the MALA framework, streaming data

can serve several functionalities in the speed layer. The novelty in the approach is that a big-data
multi-agent scheme enables graceful interaction of the stream data with historical batch data at the
initiation and thereafter in an autonomous way.

• Detect the outliers through hybrid clustering algorithm.
• Predictive analytics through mixed processing to forecast network traffic loads for the e-commerce

portal.
• Identify user buying patterns through the complete information trail from viewing to buying

an item.
• Ingested clickstream data simultaneously gets cleansed and processed to serve the user interface

(UI) layer and display the list of recently viewed items by each user to enhance the overall
shopping experience.

• List of Recently Viewed Items by a user determines the final order of recommended products
through an algorithm built upon weighted average between historical batch data and live
streaming data.

Recommender Service at Batch Layer: As proof to the MALA batch module, we demonstrate a
multi-agent collaboration approach which blends a real-time stream with historical batch data to
produce recommendations with outstanding accuracy. For brevity, this work does not elaborate on its
core recommendation engine. Our primary focus is to demonstrate the influence of stream data over
batch model, which is as follows:

• This paper redefines the item-to-item relationship by putting more relevance on current trends
than the historical data.

• We use a hybrid approach to mix results from Collaborative Filtering with content-based filtering
on item similarity.

• Based on the above studies, we present a novel architecture of an end-to-end recommender system
with a host of online and offline big-data ecosystem tools and their correlation as multi-agent
interaction model.

Big-Data Architecture: We analyze user clickstream data. Clickstream is intensely data exhaustive
compared to final purchase data. We propose a robust big-data infrastructure to support the enormous
storage and processing requirements.

1.1. Organization of this paper

The organization of this paper as follows: in Sections 3 and 4 we introduce the LA and MALA.
Sections 5 and 6 highlights the hybrid learning architecture through stream and batch modules.
Experimental results are presented in Section 7. The paper concludes with several remarks in Section 8.

1.2. Key Findings

Smart collaboration between batch and real-time agents delivers deeper insights at low latency.
The model gets more precise over time with incremental learning. It produces significant infrastructure
cost savings through smaller cluster requirements and improves training time, enabling quick
adaptability to learn newer changes faster.
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2. Background and Related Work

Several architectures were introduced for LA, involving applications dealing with the high velocity
of data ingestion. Scalable stream processing was started as a new category of open-source projects by
Twitter’s Nathan Marz [1], who also designed the generic model for LA.

In their work, Yamato et al. [2] illustrated a model for real-time predictive maintenance on an
IoT deployment for NTT DOCOMO. The model analyzes the sensor stream data for anomalies at the
speed layer, which requires prompt actions. In the batch layer, raw data are sent to the cloud and
stored in DB with low-cost methods such as night transfers. A maintenance application predicts the
failure to analyze data in detail, which does not need prompt actions.

In the area of hybrid active learning, Kim et al. [3] extended ideas such as online-learning
algorithms and batch processing to come up with a model which integrates pool-based and stream-
based sampling strategies for active learning to address scenarios where concept drift is prevalent, and
labeling is asynchronous.

A few notable domain application areas have emerged through these for LA such as telecom,
e-commerce, social networking, and manufacturing [4].

Lee et al. [5] implemented the LA model for a restaurant recommender system. Their work
builds upon several open-source pieces of software such as Apache Mesos, Kafka, and Spark. At the
speed layer, the pipeline processes the incoming stream data to compute user rating, while batch
layer is designed to process the large data offline and execute complex machine learning algorithm
using Spark.

Apache Storm and Spark are two prominent stream-processing platforms for big data.
Batyunk et al. [6] show a LA implementation for processing streaming data from social networks using
Apache Storm to perform the task to build up a predictive model of trends based on data streams from
GitHub and Twitter.

Hanif et al. [7] proposed an adaptive watermarking and dynamic buffering timeout mechanism
for Apache Flink, which is designed to increase overall throughput by making he watermarks of the
system adaptive according to the input workload.

In real-world applications, it is common to have access to implicit feedback in the form of
views, clicks, purchases, likes, shares, comments etc., Still a overwhelming majority of existing
research just focuses on users’ explicit feedback (ratings). In this paper Y. Hu et al. [8] proposed an
implicit feedback-based recommender system to improve customer experience through personalized
recommendations depending on prior implicit feedback. In our work, we do not access ratings
provided by the users and do not access user preferences specified during registration with the portal.
Implicit feedback is purely counted in terms of the item viewed by users.

The majority of the existing recommender approaches ignored contextual information such as data
age, place etc. For example, in the case of online shopping portals, buying pattern is largely influenced
by geographic location such as colder states vs warmer states, remote areas vs cities, browsing from
desktop vs mobile etc.. In other words, recommender systems deal with two types of entities—users
and items—but do not put them into a context when providing recommendations. Context here is a
multifaceted concept that has been studied across various research disciplines, including computer
science, cognitive science, linguistics, philosophy, psychology etc., [9–13]. Our work takes an approach
to consider context information as a latent factor to provide more meaningful recommendations
depicted as flows: Contextual RecommendationSystem = Users × Items × Context → Implicit
Feedback (clicks)-Based Recommender System (IFBRS). For example, time of browsing is extracted,
as a context provides data age. IFBRS prioritized recent data over the historical data in the final
recommendation ordering.

3. Big-Data Lambda Architecture

In this section, we present a novel hybrid processing and learning approach through big-data
LA. LA [14] combines both the batch and stream-processing approaches. As depicted in Figure 1,
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the full dataset ingested to the system is moved to both batch and stream layers for processing. The
stream layer serves only low-latency queries. Data gets merged for type of data mining, which requires
historical data. The architecture is classified into three layers:

Figure 1. Lambda architecture (LA), which combines low-latency real-time frameworks with
high-throughput Hadoop-batch framework over a massively distributed setup. Observe that while
data is being processed in real time as Spark DStreams, simultaneous batch processing takes place
through the stored data from Hadoop Distributed File System (HDFS). Cassandra stores the combined
view from batch and stream.

3.1. Batch layer

This is a high-throughput/high-latency option. Processing duration varies from a few minutes to
hours. Data is ingested in large batches at a certain schedule, reports are generated, users check the
same reports until the next data load occurs. Frameworks and solutions such as Hadoop MapReduce,
Spark core, Spark SQL, GraphX, and MLLib are the widely adapted big-data tools using batch mode.
Batch schedulers include Apache Oozie, Spring Batch, and Unix Corn which, invoke the processing at
a periodic intervals.

3.2. Speed Layer

This is a continuous non-blocking option which is for low-latency messaging and event process,
responding to user requests in real time or near real time. Most operations on streams are windowed
operations operating on slices of time such as moving averages for stock process every hour,
top products sold this week, etc.. Popular choices for stream-processing tools include Apache Kafka,
Apache Flume, Apache Storm, Spark Streaming, Apache Flink, Amazon Kinesis etc., [15].

3.3. Serving Layer

Serving layer consolidates batch and real-time views into one and retrieves results in real time
for on-demand queries over the entire dataset. It provides low-latency access on the full dataset.
Our approach considers real-time and batch components as autonomous, self-organizing, collaborative
multi-agent systems.
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4. Multi-Agent Lambda Architecture(MALA)

MALA is a consolidation framework for stream and batch modules based on the fundamentals of
LA. We design this as an extension to LA and our primary continuation in this paper. The framework
enables collaborative, accumulative learning through big-data tools and APIs as shown in Figure 2.
Streaming and batch components act as a cooperative autonomous multi-agent systems. See Figure 3.

Figure 2. Typical four-layered big-data architecture: ingestion, processing, storage, and visualization.
The proposed framework combines both batch and stream-processing frameworks. Not necessarily
every application implements all the components together.

Figure 3. Multi-Agent Lambda Architecture (MALA). Three components of MALA are: historical data
store, stream processor, knowledge miner. Real-time and batch layers act as autonomous multi-agent
systems in collaboration. A multi-agent decision-maker component is placed in the MALA stack at the
gateway of the data pipeline for further processing.
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4.1. Historical Data Store

A large volume of static data pool, all at once, at a periodic interval, gets ingested, processed
and written back using distributed frameworks such as Apache Hadoop and Spark. Input data is
stored over time in a distributed file system such as Hadoop Distributed File System (HDFS), NoSQL
databases, or Amazon Simple Storage Service (S3). The model is trained against the entire data
pool. In batch mode, response time is not a big constraint but rather design is inclined towards a
comprehensive coverage of the data. Historical Data Store (HDS) persists in the trained models.

4.2. Stream Processor

MALA updates its model with each new wave of incoming data. The streaming model initializes
itself with saved learning from batch by loading the trained model from persistent distributed storage
into distributed memory. Continuous data stream updates its model incrementally. The training
time largely depends on mini-batch data size and window length. Duration can vary from a few
milliseconds to minutes. We use Apache Spark Streaming to create in-memory DStreams from the
stored model in HDFS produced by the batch jobs. After each iteration of re-training, the updated
model is persisted into memory and disk. Since the model keeps growing, the most recent data is
cached into distributed memory and the remainder goes to disk. Amount of distributed memory size
is configurable through the Spark configuration file. Stream processing includes filtration of rows and
transforming the ingested flow into structured data.

4.3. Knowledge Miner and Knowledge Base

Knowledge Miner (KM) consolidates the past learning with recent stream updates into Knowledge
Base (KB). KM is responsible for filtration (eliminating unwanted and faulty records), knowledge
aggregation and data governance for monitoring and reporting purposes. Filtration and aggregation
logic is ad-hoc, developed for a specific case study. Refer to Section 5.1 for a hybrid learning approach
powered by KM.

5. MALA Streaming Framework

This section discusses the streaming module of MALA. The framework turns iterative learning
of streaming models into lifelong learning machines [16,17]. It also removes any cold-start situations to
begin with. The streaming model initializes itself with saved learning from batch by loading the trained
model from the HDFS into distributed memory. MALA updates its streaming model incrementally and
continuously on each new wave of incoming data as shown in Figure 4. The framework further allows
the merging of large static historical data pool with the latest and most updated streaming model.

(a) (b)

Figure 4. Screenshot for incremental streaming learning. MALA initializes with historical batch data
and updates its streaming model incrementally and continuously on each new wave of incoming
data. Model runs indefinitely at a 10-second window interval. (a) The training folder is updated
incrementally with new data; (b) The model is retrained simultaneously with a small amount of new
data as they appear.

5.1. Hybrid Learning in MALA

During the training, feature vectors initialize with historical batch data and write them into HDFS.
A long-running batch schedule trains the vector and the response is stored to HDFS. One specific
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problem with this setting is that the full dataset may not be available at the beginning of training
schedule. The other key challenge is that the vectors can get updated with new raw events over time.
A stream processor loads the model from HDFS and updates on top of it in an incremental fashion.
The correlation rui between user and item in the shopping portal is expressed as:

f (rui) = vuvi (1)

vu and vi are the feature vector for user and item, respectively. This approach has the limitation of
responsiveness with a large dimension of user and item feature vectors coupled with a huge volume of
data pool. The other challenge is that the vectors can get updated with new raw events arriving over
time. Therefore, there arises a constant need to revise the feature vectors, which leads us to an iterative
approach. The vectors will initialize with historical batch data and write them into HDFS. A stream
processor loads the model from HDFS and builds on top of it in an incremental fashion. Therefore,
we update Equation (1) to accommodate the incremental (delta) learning as follows:

f (rui) = vuvi + δuδi (2)

We learn vu, vi offline and δu, δi at an iterative fashion with small amount of streaming data. δu and
δi are the most current updates or fresh new rows of data. Dimensionality of δu is the same as vu or
dimensionality of δi is same as vi but the number of rows or overall data volume is just the volume of
data collected at a streaming window length of a few minutes and therefore not so huge. The design
enables the model to keep updated at low latency on a small amount of incremental data. See Algirithm
1.

Agarwal et al. [18] proposed a dimension reduction approach for vectors. Therefore, δi or δj need
not to be of the same dimension regarding user or item vector. Instead, only the modified columns
update the training model through the online process. This approach reduces the dimension of
streaming learning data and the online-learning time, since the online model only needs to learn the
correction over the batch offset. However, a search-and-compare for the rows and columns in it which
requires an update and merge with the batch proves to be expensive on a large volume of data pool.
Hence, our approach to retrain the model on a small window interval of data pool through distributed
in-memory processing of Apache Spark yields better outcome for response time. Dimension reduction
however can improve streaming learning with an efficient search and merge technique.

Algorithm 1 Lifelong Hybrid Learning Algorithm

Input: historical batch datastore db, dataset as collection of streaming records since last window

ds = ∑n
i=1 di, Kafka topic kt, DB server address da,

Output: : Updated knowledge base kb
1: kb← BatchComputationRule(db)
2: call SubscribeKafka();
3: for windowed dataset ds do

4: Spark consumes Kafka queue
5: Cs ← StreamComputationRule(ds)
6: B← Update(Cb, Cs) //update batch with stream
7: return kb //kb is persisted into distributed memory and HDFS in parts
8: end for

5.2. MALA K-Means Clustering

MALA k-means Clustering implements the logic by Equation (2). The batch version of k-means
algorithm provides an offset (or initial point) for the streaming learning to update the model iteratively.
The basic idea for an online version of k-means clustering is to divide the data stream into mini-batch
windows and to incorporate knowledge learned in the previous window into the following ones.
Hence, in streaming k-means clustering, the model is updated with each rolling window based on a
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combination of cluster centers computed from the preceding mini-batches and the current mini-batch.
The streaming algorithm is adapted from the most recent release of Apache Spark [19]. The algorithm
starts with initializing data points to their closest clusters. For every iteration, with a new data arrival,
we evaluate new cluster centers, then update each cluster using:

ct+1 =
ct ntα + xtmt

ntα + mt
(3)

nt+1 = nt + mt (4)

where, nt is the past data points and ct is the past cluster center. mt is the latest data points and xt is
the latest cluster center. α is the decay factor. With α = 0, only the most recent dataset is used; for α

= 1, all data is used from beginning. Apache Spark MLLib [19] libraries include a streaming version
k-means clustering.

In the context of e-commerce, we use streaming k-means clustering to detect any outlier for
any intrusion or other system failure which requires a quick turnaround time. Refer to Section 7 for
experimental results.

5.3. Recently Viewed Products

We have so far discussed several functionalities at the speed layer which demand a quick response
time. To this end, we analyze clickstream data at the Spark streaming layer to display recently viewed
products to each user, which influences the analytics at the batch layer.

Say a user ui successively viewed items a, b, c in the same session at time t1, t2, t3 where
t3 > t2 >t1. Recently viewed products for user ui would be the reverse chronologically ordered list of
products: c, b, a. The main challenge here is identifying each user uniquely even when they are not
logged in. In the absence of user ID, we create context ID for each user click datum. User context is
derived from the session object which is associated with each time a user newly opens the e-commerce
website. Each time, it is a new session and a new context to be captured. The context is a uniquely
derived object created from a session object created at the JavaScript layer. Context ID would then be
appended to each user click datum.

Furthermore, a recently viewed product list has an influence at the batch layer to determine the
final order of recommended products for each user, which is discussed in the following section.

6. MALA Batch Frameworks

The general notion of MALA is for simultaneous execution of batch and real-time view, which
often mixed with each another to present a more comprehensive, accurate view. Preceding sections
presented a number of functionalities under the real-time view pertaining to the e-commerce domain.
In this section, we present a very brief overview of a novel architecture of an e-commerce recommender
system under batch settings which uses MALA as its central concept. Recently viewed items by each
user are computed under streaming setting and will have an impact on the final recommendation
order, which is computed under batch settings. Also, the recommender system presented here does
not enforce users to log in to see recommendations; rather it identifies each user uniquely from the
application server-generated context ID, through users’ own click data.

This work refrains from divulging in detail the design of the recommender system and focuses on
the impact of stream data into batch modelling through the proposed algorithm. Readers may refer to
our previous work [20] for detailed coverage on building recommender engine.

6.1. Computing Recommended items

A weighted hybridization strategy combines the recommendations of two or more latent factors
by computing the weighted sums of their scores. This step is performed once items are filtered out
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based on similarity count by Equation (5). The overall recommendation score R can be calculated for a
user by the Equation (6):

Different latent factors are:

• Co-occurrence count
• User location
• User preferences
• Timestamp of the click data in the recently viewed table.

To filter out unrelated item pairs, we compute cosine similarity between items by comparing
identical features. Calculate the item similarity strength of product A and B at a scale of 0 to 1 by
Equation (5) and Algorithm 2:

SA,B = cos(θ) =
(A× B)
(|A||B|) =

∑n
i=1 Ai × Bi

∑n
i=1

√
A2

i ×
√

B2
i

(5)

SA,B is the similarity between product A and B, cos(θ) is the angle between edges A and B. Once
the items are filtered out based on similarity count, overall recommendation score R is calculated for a
user by Equation (6).

R =
n

∏
k=1

ωK (6)

ωK is the normalized form of each latent factor of weight ωk The normalization equation is
as follows:

ωK =
ωk

maxk (ωk)
(7)

where ωk is the view count of the kth product and maxk (ωk) is the maximum view count across all
categories which user viewed. For our experimental setting, view count is kept for a boundary period
of two weeks. ωK is the normalized for each latent factor of weight ωk

See Algorithm 2 for the complete flow of the recommender engine. Readers may refer to [20] for
the detailed steps for the recommendation engine.

Algorithm 2 Implicit Feedback-Based Recommender System

Input: Customer clickstream data, time-decay-factor
Output: : top n recommended product list

initialize item_timestamp_weight=x, item_decay_factor=y
1: for each customer C who viewed item Ii do

2: Record all the items recently viewed Ii (i=1 to n) in

reverse chronological order
3: for each recently viewed item Ii do

4: Record customer C also viewed related item RIi
5: for each item pair Ii ,RIi do

6: Filter pair Ii, RIi based on cosine similarity
7: Compute the co-occurrence count between pair Ii, RIi
8: Apply location factor
9: Apply user preferences

10: Apply Equation (6) to decide overall score
11: end for
12: item_timestamp_weight=item_timestamp_weight− time_decay_ f actor
13: end for
14: Compute and the final recommendation order of Ii
15: end for
16: return top n recommended product list
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7. Experiments

A real-world e-commerce dataset is obtained from e-commerce streaming data generation app
OpsDataGen.spl [21] and data.world [22] consisting of data from Indian e-commerce retailer Flipcart.

This section provides the proofs through comprehensive experiments carried out in Amazon
Cloud Services (AWS). In each subsection, we present the experimental outcomes for the topics
discussed in the preceding sections.

7.1. MALA Predictive Modelling

This section demonstrates results achieved through MALA collaborative mix processing
framework. The framework uses the batch and streaming linear regression APIs from spark.mlLib
libraries. The following results are presented here:

• Forecast chart for network traffic load for e-commerce portal. See Figure 5.
• Punch card view of user behavior in the e-commerce portal grouped by day of the week. See

Figure 6.
• Outlier chart for unusual buying patterns. See Figure 7.
• Rolling hourly prediction count of number of checkouts. See Table 1.

Figure 5. Forecast chart for network traffic load for e-commerce portal. Vertical green dotted line
differentiates past and future data projections. Confidence interval is 95%.

Figure 6. Punch card view of user behavior in the e-commerce portal grouped by day of the week. It
also reveals the chart conversion from item added to cart to final checkouts. Only a tiny percentage of
cart additions converts to checkouts. With MALA using a moving average of one week, graph can be
updated at the end of each week and predict future behavior.
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Figure 7. Outliers chart for unusual buying patterns. The x and y axes mark the data volume and
quantity of purchases. The algorithm finds the outlier for unusually high or low quantity of purchases
through the mix of stream and batch k-means clustering methods. Yellow dots mark the outliers.

Table 1. Moving hourly prediction count of number of checkouts.

Time Hour Actual Count Lower95 Prediction Count Upper95 Prediction Count

0:00 106 105.0630306 106.9369694
1:00 208 207.0629725 208.9370275
2:00 206 205.061734 206.9357845
3:00 186 185.0629788 186.9370212
4:00 206 205.0631755 206.9372127
5:00 208 207.0636578 208.9376911
6:00 206 205.064078 206.9381085
7:00 186 185.0649051 186.9389334
8:00 206 205.064087 206.9381136
9:00 206 205.0643379 206.938363
10:00 188 187.0652488 188.9392727
11:00 224 223.0635381 224.937561
12:00 188 187.065613 188.939635
13:00 206 205.0645522 206.9385736
14:00 206 205.0646471 206.9386678
15:00 206 205.0647169 206.938737
16:00 190 189.0656084 190.9396281
17:00 204 203.0646925 204.9387117
18:00 208 207.0645059 208.9385247

The table displays the prediction for moving average of one hour. Confidence interval is
95%. To counter the cold-start situations, MALA uses the historical batch data as initial
offset for stream engine to update incrementally.

7.2. Load Test

This section presents load test results for Cassandra DB in the architecture. Server setup is shown
in the Table 2 and database setup is presented in Table 3. Refer to Figures 8 and 9 for test results
obtained through Datastax OPSCenter. The results assert the scalability of the system under stress.

Table 2. AWS Instance Types.

Instance Type Instance Count vCPUs Memory Instance Storage EBS Optimized Bandwidth

m1.large 3 2 7.5 GB 500 GB Moderate

Table 3. Cassandra Setup.

Cassandra Vendor Number of Records Replication Factor

DSE 6 Million writes 3
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Figure 8. Statistics shown for write requests, write request latency, OS disk use. Write requests: the
count of writes per second on the coordinator system. Monitoring the number of requests over time
exposes system write load and usage patterns. Write request latency: The 90th and 99th percentiles,
min, median, max of a client node write. The period initiated with a node receives a client write
request and ends with the node responding back to the client. Considering the consistency setting and
replication factor, this includes the network delay from writing to the replicas. OS disk use: CPU time
used by disk I/O.

Figure 9. Statistics shown for OS load, Heap used, TP flushes completed. OS load: Operating system
load average. One-minute value parsed from /proc/loadavg on Linux systems. Heap used: Average
amount of Java heap memory used. TP flushes completed: Number of memtables flushed to disk since
the nodes start.

8. Results Summary and Discussion

8.1. Comparing efficiency of MALA Hybrid Learning

MALA is a collaborative consolidation framework for stream and batch data. Its real-time and
batch agents use Spark MlLib APIs. MALA offers the following key advantages over standalone batch
and stream frameworks:

Smart Collaboration: Interactive real-time and batch agents can collaborate, retrain, consolidate, and
exchange learning from individual domains to provide deeper analytical insights. The experimental
results illustrate the oracle performance significantly by low-latency processing at the speed layer and
providing comprehensive coverage at the batch layer. This is the key contribution for the model and is
highly appealing for the e-commerce administrators and managers looking for the optimization in
analytical insights.

Faster Training Time, Quick Adaptability, Horizontal Scalability, Infrastructure Cost Savings: When the
application cannot wait until the entire dataset is collected, an iterative approach can help train the
model with the available dataset. Training set can adapt much faster to match with the new updates in
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a raw dataset by re-training iteratively. The load test results assert the excellent scalability of the system
under different stress conditions. When it is not feasible to train the entire set due to large-size cluster
requirements, the incremental mode allows the model to be trained iteratively on a small amount of
data at a relatively modest infrastructure setting with commodity hardware.

Comparing Batch and Real-Time Module: One of the intriguing aspects of the LA model is measuring
the quality of real-time algorithm with respect to its batch counterpart. A streaming algorithm is called
α competitive if there exists positive constants α and γ such that:

vi ≤ αvb + γ (8)

vi is the cost for the real-time algorithm vb is the cost for the batch algorithm
From Equation (8) we can derive that an α competitive streaming algorithm A has cost no worse

than α times that of the optimal batch algorithm (vb) plus some initial advantages (γ) given to the
optimal algorithm based on the problem setup [23].

8.2. Limitations

The model has the limitation of keeping the code base in the stream and batch layers which
produces the same results. The stream layer often performs additional functionalities (such as recently
viewed products in the recommender system) but it still redoes all the major tasks by the batch layer.
This leads to a typical sync problem, wherein any changes made in one layer need to be mirrored to
the other. Also, having trained on the same volume of dataset, the accuracy of the proposed model
is no better compared to the batch-only model for certain functionalities, which does not involve
collaboration between two modules. Several e-commerce analytics, especially those not involving
large data chunks, may find the architecture over-complex.

9. Conclusions

We studied big-data hybrid-collaborative MALA for the e-commerce domain. The aim was
to provide an approach for an intelligent blend of historical batch data with a real-time stream.
MALA allows low-latency processing through real-time frameworks while simultaneously providing
comprehensive and accurate coverage though long-running batch frameworks. Graceful interaction of
the stream with historical batch data provides deeper insights at low latency. Proposed frameworks
provide a solution to the existing imitations of the Hadoop framework, which is inherently batch
oriented. High-velocity data integration with source to the processing engine is managed through
distributed message queues such as Kafka and Flume. Within the MALA framework for the
e-commerce domain, the streaming data can serve a number of functionalities in the speed layer,
including predictive analytics, identify buying patterns and detecting outliers. Within the scope of the
batch layer, we discuss a novel approach for the IFBRS. The novelty of this approach is in the use of
the contextual parameter with the collaboration of the multi-agent system for historical batch data
and near real time recently viewed data to predict recommendations accurately. Distinct advantages of
the proposed model over the Hadoop MR and Spark ML APIs are in terms of response time, reduced
training time, handling cold-start situations and significant infrastructure cost savings. The limitations
include inherent design complexity, sync issues, and functional redundancies of the two layers.
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MADM Multi-Agent Decision Making
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