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Abstract: In this paper, we propose an investigation of the properties of structural image recognition
methods in the cluster space of characteristic features. Recognition, which is based on key point
descriptors like SIFT (Scale-invariant Feature Transform), SURF (Speeded Up Robust Features), ORB
(Oriented FAST and Rotated BRIEF), etc., often relating to the search for corresponding descriptor
values between an input image and all etalon images, which require many operations and time.
Recognition of the previously quantized (clustered) sets of descriptor features is described. Clustering
is performed across the complete set of etalon image descriptors and followed by screening, which
allows for representation of each etalon image in vector form as a distribution of clusters. Due to
such representations, the number of computation and comparison procedures, which are the core of
the recognition process, might be reduced tens of times. Respectively, the preprocessing stage takes
additional time for clustering. The implementation of the proposed approach was tested on the Leeds
Butterfly dataset. The dependence of cluster amount on recognition performance and processing
time was investigated. It was proven that recognition may be performed up to nine times faster with
only a moderate decrease in quality recognition compared to searching for correspondences between
all existing descriptors in etalon images and input one without quantization.

Keywords: computer vision; structural recognition methods; set of characteristic features; descriptor;
quantization; clustering; competitive learning; recognition performance; recognition accuracy

1. Introduction

Structural image recognition methods, where visual objects on images are described as sets of
characteristic features (CF), are widely used due to the high efficiency associated with the practical
ability to perform recognition in the complex conditions related to geometric transformations,
background influences or even the partial absence of features [1–4]. The user of the computer vision
system independently determines which specific part of the available description is acceptable for
making a decision about the class of an object. Successful implementation of structural methods
dealing with problems of face recognition, animal recognition and recognition of a number of different
icon-type images, such as coats of arms, paintings, logos and brands, are known [4–7].

Feature detection methods and the space to make the decision are the main factors that determine
the effectiveness of recognition. The use of etalon information as a recognition core defines the quality
of learning (tuning) of the system for the specific initial data and their adaptation. Embedding of the
learning step not only allows for improved recognition performance by adaptation of the parameters,
but it also ensures versatility and function in relation to arbitrary image datasets [5,8].
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A way to increase the effectiveness of the structural recognition methods in terms of speed and,
in fact, without reducing the probabilistic characteristics, is by the use of vector quantization in the
space of structural dataset features [3,4,6]. Quantization implements an approximation in the space
of key point feature descriptors by splitting them into subsets of equivalent elements. Due to the
quantized representation and the creation of set-vector mapping, the features’ space is transformed and,
as a result, the relevance of the object descriptions can be interpreted as distance or vector similarity [3].

Applying quantization in the CF space of images allows subsets of similar elements associated
with a set of cluster centers to be obtained and used to recognize the image of an arbitrary visual object
globally [9]. Such models can be classified as structural and statistical at the same time. Formation of
the object’s CF by, for example, SURF (Speeded Up Robust Features), SIFT (Scale-invariant Feature
Transform) and ORB (Oriented FAST and Rotated BRIEF) detectors allows to reach invariance to
permissible geometric transformations [2,10,11].

Vector quantization and learning are often interpreted by researchers as a whole. However, in our
opinion, vector quantization itself is more objective, in terms of investigation object independence,
and learning, on specific features of an object, is more aimed at the meaningful management of the
adaptation process.

The “bag of features” [12,13] method is a “bag of words” analog, which is used in computer
vision applications to build strong descriptions of an image. This approach usually includes key point
feature detection (typically SIFT), quantization (clustering) of these features (typically with k-means)
and distribution of key point features in the space of cluster centers in the form of a histogram (we
refer to this procedure as “screening”). Recognition is usually performed by searching for a minimum
distance between histograms.

A lot of different modifications are proposed for the abovementioned common method, including
classification with support vector machines [13] and smart additional processing of key point
descriptions [13].

The TOP-SURF image descriptor [14] was introduced as a method to combine key point features
with visual word representation. Many features (over 33 million) were clustered in order to form up
to 500,000 clusters (the lowest amount was 10,000). The sequence of such clusters is called a “visual
word dictionary”. Separate weight was assigned to each word to take into account its frequency.
The recognition stage included the mapping of each key point feature of an input image to the closest
visual word forming the weighted histogram of words. Only top N words were left as a final image
descriptor; then, the distance between such descriptors could be computed to compare the images.
Having such huge visual word dictionaries makes possible the recognition of arbitrary datasets.

Different uses of clustering results were proposed in Reference [15] for the application of face
recognition. SURF features were transferred to other feature spaces using principal component analysis.
K-means clustering formed clusters for the calculation of local and global similarities between key
point features in all sub-cluster pairs for each pair of images.

Another example of a face recognition system was presented in Reference [16], where k-means
clustering of SIFT features was used to improve accuracy. Calculation time was also reduced by
comparison of cluster centroids instead of mapping the features directly.

Agglomerative clustering was investigated in Reference [17] as a counter tool to the most popular
k-means clustering method. Other benefits of its uses relate to the efficiency of searching for large
amounts of features and better recognition quality (SIFT descriptors are used).

The stability and quality of k-means clustering of SURF descriptors were investigated and
compared with mean shift clustering in Reference [18]. It was shown that k-means splits key
points better, thus it was more suitable. Hough transformation as a clustering tool was proposed in
Reference [19].

Despite the successful implementation and confirmation of significant performance improvements
due to the quantized representation of features for recognition, as in the investigations mentioned
above, the effectiveness of applying this approach to datasets with an essential inner-class variance like
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Leeds Butterfly dataset [20] is unclear. We find this dataset very challenging for structural recognition
methods though it contains only ten classes.

Some researchers, mentioned above, validate the use of methods involving huge datasets with
plenty of classes and features in order to build an extensive universal bag of features dictionary. Other
papers contain validation of datasets with rather small inner-class variance. Our contribution was an
investigation of method properties for such datasets, in which each representative of the class was
taken in different conditions (like illumination, light, etc.). We did not use quantization of CF to build
a huge bag of features dictionary in order to process a wide variety of images. On the contrary, the idea
was to keep the cluster amount to a minimal.

The goal of the work was to analyze and investigate the quantization effectiveness of the structural
recognition of images based on image descriptions in the form of sets of CF for a dataset with many
rather different etalons per class. The objectives of the investigation were the analysis of k-means
clustering of SURF features with a subsequent screening, the evaluation of the recognition accuracy and
analysis of the dependency between preprocessing and recognition time on different system options.

2. Quantizing Sets of Image Descriptors

Generally, we performed a discrete approximation of continuous input data from the set of
vectors W = {x|x ∈ Rn}, W ⊆ Rn using a predefined set of k encoding vectors M = {mi}k

i=1,
mi ∈ Rn, i = 1, 2, . . . , k [6,21,22]. Concurrent approximation of vector x ∈ W meant a search for the
value of υ closest to its vector mυ ∈ M (usually in terms of Euclid ρ(x, mi) metrics) in the space of
encoding vectors:

υ = arg min
i=1,...,k

ρ(x, mi). (1)

Equation (1) is known as concurrent Kohonen learning [21]. The idea of quantization is that the
formation of set M, on the basis of training set W accordingly, will optimize certain criteria.

All input vectors W should be normalized in order to reach an equivalent influence and training

stability: W = {x∗| x∗ = x/‖x‖, ‖x‖ =
√

∑i x2
i }, ‖x

∗‖ = 1. If the set of CF is formed by SURF
descriptors this condition is fulfilled automatically, so no additional processing is required.

Vector quantization can be formulated as a global optimization problem for the functional that
reflects the quality of the cluster system, while the total distances between the elements within the
clusters are minimized and the distances between the cluster centers are maximized.

Batch processing during quantization is implemented in the form of a computational scheme,
which is used in a situation where the complete set W is available at the beginning of learning and all
x ∈ W are considered to be equivalent. The k-means algorithm for batch processing arranges cluster
centers (centroids) so that the average values of the lists of elements within the clusters differ as much
as possible. K-means approximates the density distribution function of input samples by the criterion
of the minimum sum of squared deviations from cluster centers [22]

E = ∑ k
i=1∑ s(i)

υ=1ρ2(xυ, mi), (2)

where s(i) is a power of the i cluster.
The iterative k-means algorithm converges to a local minimum of error, E. The minimization of

Equation (2) promotes the quantization process to fit the training data in the best way.
With regard to the structural recognition problem based on formed CF clusters, the error solved

for in Equation (2) cannot be considered a key indicator, since the criterion for the probability of correct
recognition of objects (accuracy) is still the fundamental factor [1]; however, Equation (2) reflects the
quality of the data representation in a concentrated form so the learning process achieves the lowest
possible value.

Numerous modifications of k-means method are known, e.g., the k-median method—where the
median value, mi = med {xυ}s(i)

υ=1, is selected instead of the average in each cluster in order to remove
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anomaly values. The median is defined as an element of a set whose total distance to the remaining
elements is minimal [21]. Fuzzy classifier means [22] are applicable in cases when it is necessary to
analyze overlapping clusters where the values of the membership function for each of the clusters
are calculated.

In the case of online-learning, when CF x[t] ∈ W is processed one by one, the center, mυ, of the
cluster, which was the winner in Equation (1), was corrected in the following way:

mυ[t + 1] = mυ[t] + α[t](x[t]−mυ[t]), (3)

where the learning step is t = 1, 2, . . . , s, s = card W is the size of the training set (total quantity of
CF for the whole dataset) and α[t] is set up by the researcher and specifies learning speed assuming
α[t]→ 0 and t→ s . A huge variety of learning strategies and methods, based on Equation (3), have
been developed, including the modeling of the dynamics of network topology [6,22].

3. Properties of Structural Image Description Learning

The descriptor features were calculated with the use of some detectors applied to the image
brightness function and with vector size n (usually 32, 64 or 128). Structural descriptions of arbitrary
images were the finite set O ⊂ Rn

1 ,Rn
1 = {z|z ∈ Rn, ‖z‖ = 1}, where Rn

1 ⊂ Rn is a subset of the real
n-dimensional vectors with a norm of ‖z‖ = 1 [2]. In cases when CF descriptors were normalized, they
could be used in the learning procedures directly.

During the preprocessing stage, set Z = {Zj}J
j=1 of dataset image features, including all patterns

(Zj—is an etalon, J—is the amount of classes), were split on finite amounts of k clusters, M = {Mi}k
i=1,

in a way that Mi ∩Md = ∅, M = Z clusters were defined with the center m = {mi}k
i=1. Clustering

maps set of CF of the whole dataset into itself, Z → Z , each CF belonged to just one cluster. Case
mi /∈ W is possible as a result of clustering. After clustering was completed, we performed the
“screening” of each etalon pattern and, as a result, the description Zj of etalon took form:

H[Zj] = (h1, h2, . . . , hi, . . . , hk)
j, (4)

where hi = card{z|z ∈ Zj&z ∈ Mi}, hi ∈ C is the amount of elements of etalon Zj that belong to Mi
and cluster C is a set of integers. From the mathematical point of view, screening represents the voting
of each etalon feature for one of the cluster centroids, which seems more robust in comparison to
the centroids.

The special practical case was a quantization with the number of clusters equal to the number of
classes to recognize (k = J). At the learning stage, the “centers” of the attribute descriptions of the
class were formed for each etalon and we could directly perform the recognition of a visual object
in real time, even without going to the clusters; this was because the condition Zj = Mi was already
established. Here, the quantization worked as a tool for extracting the most significant distinguishing
features of the etalons.

Recognition of the visual object represented by the description O = {ol} for k = J could be
reduced to counting the number of voices of elements in accordance with the competitive rule of
optimal closeness in the cluster system

ol → Mi | arg min
d=1,...,J

ρ(ol , md) = i. (5)

As a result of Equation (5), ∀ol ∈ O, we obtained an integer vector of the class voices
q = (q1, q2, . . . , qJ) whose maximum component determined the class, d for description and O
for object:

d = arg max
j

qj. (6)
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At the same time, the use of the two methods described earlier [3,4] was possible. The first was
based on the construction of an integral vector representation for the object O, and the second was
based on the summation of the vectors of the specific weights of elements classified, according to the
rule of Equation (5), to the nearest of the clusters.

The essence of learning for the system of structural recognition reduced to such problems as the
construction of a cluster system for a set of attributes in the image database, rational enough from
the recognition efficiency point of view, and the estimation of optimal threshold parameters for the
classification of objects.

The possibility of applying a more efficient batch mode (the complete set W was available) could
be claimed as a feature of learning in the CF space, as well as the potential of using training with the
teacher, since the membership of the CF of etalons from dataset was known, and each of the etalons
forms its own class. Other features of recognition included the requirement to filter out improper
characteristic features (e.g., noise), as well as the equalization (normalization) of the number of features
in the descriptions of etalon images.

The general scheme of the approach is shown in Figure 1. The upper part contains the stages of
preliminary etalon image preprocessing, which include the formation of a set of descriptors (based on
SURF), clustering (based on k-means) and screening, Equation (4), which forms the descriptions of
clusters. In the lower part of Figure 1, the stages of input image recognition are presented: formation
of descriptors, screening with Equation (4) through etalon clusters and classification based on the
comparison (minimization of distance) of cluster descriptions with input one.
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Figure 1. Recognition based on a system of clusters scheme.

4. Experiment Section

Modeling and experimental investigations were performed on Leeds Butterfly [20,21] dataset,
which contains 832 images of 10 butterfly species (55–100 images of representatives of each class), text
descriptions of classes (not used in modeling) and a binary mask for each image that displayed the
localization of the points of the foreground butterfly object. All the sizes of the initial images were
preserved. Figure 2 shows an example of one image for each of the 10 classes, an image of one of the
etalons and the form of its binary mask; the coordinates of SURF key points are shown as red dots on
the last image.

Two-fold cross-validation was used during modeling, in which the existing set of images was
randomly divided into training and test subsets of the nearly same size. When training was complete
and verified on the test subset, the substitution was performed—the training subset became the test
subset and vice versa. The results of these two experiments were aggregated (averaged) and repeated
for different random partitions. Thus, each image during the experiment was involved in either the
learning or the validation process.

The implementation stages included k-means clustering on a set of etalon CF with an
experimentally determined effective number of clusters, k, and screening of each pattern according to
Equation (4) with subsequent normalization of H[Zj] (using division by max

i=1,k
hi). The screening based

on Equation (4), formation of vector H[Zj] and its normalization were also performed for each input
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image, after which a class from the closest (in terms of minimum distance) etalon description vector
was determined. The Euclidean distance was chosen as the metric.
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detected SURF characteristic features (red dots).

Figure 3 shows the dependence of the average preprocessing time (including the clustering time)
on the number of clusters on a random partition of the entire image set. Modeling was performed
using two different thresholds, δ1 = 0.001 and δ2 = 0.002, which regulate the required minimal level
of response of SURF descriptors. The average number of descriptors per image on the thresholds δ1

and δ2 was 233 and 164 respectively. Clustering was performed quickly. The total amount of features
was about 77,000 for δ1 and 55,000 for δ2 respectively.

One can see that some clustering cases (e.g., k = 100) required much more time compared to
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The best result in terms of recognition accuracy (Figure 4) for this partition was 87% and was
obtained using 100 clusters and a larger number of descriptors (δ1). Moreover, the maximum values in
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Figure 3 correspond to the ones in Figure 4, which means that the quality of clustering directly defined
recognition accuracy. Additionally, the recognition quality after clustering with a different amount of
clusters (e.g., k = 10 and k = 100) may be nearly the same (in this case 65%).
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The data presented in Figure 5 show the time of full processing (including detection of
characteristic points) of the image when it is recognized. It is worthwhile to note, that neither the
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Figure 5. Dependence of recognition performance on the quantity of clusters.

Let us compare the recognition properties with the ones obtained by applying the traditional
method. It was implemented with the voting of each CF in the image being recognized for one of the
etalon classes. This required comparison of each CF in an input image with all existing CF in etalons.
A decision about etalon class was made according to the maximum number of accumulated votes. This
method in our modeling was characterized by sufficiently high accuracy, an acceptable speed in the
formation of the set of CF and a relatively slow recognition process, due to the number of comparisons.
The preprocessing stage, in this case, only involved searching for descriptors and was executed about
20 times faster than the slowest clustering case, shown in Figure 3. The recognition accuracy was about
95% in both experiments with different threshold values for δ1 and δ2.
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Note, however, that the number of etalon CF significantly affected the recognition speed. Making
decision about class of input image using δ2 threshold and traditional method is approximately six
times slower compared to the described approach. Recognition with δ1 threshold is nine times slower.

Five-fold processing of the whole set of images was performed in order to make our results
comparable to other published results on the Leeds Butterfly dataset. The average accuracy for a full
comparison of key point descriptors is 97.19%, the average recognition time is 9.58 s per image and
the average preprocessing time is 453 s. The method, based on descriptor quantization with k = 100
clusters and δ1 shows the following results: an average accuracy of 87.77%, an average recognition time
of 0.68 s per image and an average preprocessing time of 15,387 s. As one can see, a fast preprocessing
stage with slow recognition was swapped with a much slower (34 times) preprocessing stage with
faster (14 times) recognition.

Previously published results are presented in Table 1. It is possible to achieve positive, but not
state of the art, results using the clustering options we found empirically (k = 100, δ1 = 0.001).

Table 1. Averaged accuracy comparison with other papers.

Paper Result

[23] 87.95%
[24] 96.4%
[25] 99.0%

Full CF comparison 97.19%
k = 100, δ1 87.77%

The key factor on which recognition efficiency depends in the abovementioned approach is the
distribution of descriptors over the cluster system, as well as the distribution of cluster elements within
each etalon. This composition depends on the clustering method and the learning technology. On the
one hand, uniform distribution across clusters provides an equivalent representation of points in the
course of decision making. On the other hand, the diversity of the distribution structure, due to the
predominance of the composition of some clusters over others, contributes to the improvement of the
quality of distinguishing objects from their descriptions.

Concerning the comparison between the effectiveness of the use of SURF and ORB detectors,
according to the results of the experiments, we note that the ORB, as a rule, released about twice as
many CF, however, their dimensions were smaller (32, versus 64 for SURF). Many SURF detectors
“cover” the image of the object in more detail, displaying the features of its shape, while the ORB
signs are grouped tightly and often focus on the boundaries of the object. The experiments showed
that the implementation of the ORB detector using OpenCV [26] and C ++ is about 10–20 times faster
compared to SURF and is about 0.006 s for one image. The choice of detector is entirely determined by
the requirements for the application.

5. Conclusions

Quantization of the key point feature space by clustering allowed us to reduce the dimension of
the recognition problem and provide an adaptation of the recognition method to the applied dataset.
The proposed constructional approach of the structural image recognition methods based on the
structural description clustering and the transition to space of vectors based on cluster center has
the prospect of being used because of higher speed and maintenance of a sufficient level of correct
recognition. The suggested method allowed us to recognize images much faster than the traditional
approach while increasing the time of one-time preprocessing and slightly reducing recognition
accuracy. Performance increased when the amount of CF and etalons grew.

The difficulties of the approach relate to the necessity of searching for an effective number
of clusters and implementing high-quality clustering, which was confirmed by the experiments
detailed above.
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Further development of the described approach can be achieved with the construction of a cluster
system and the implementation of training procedures within each etalon image. This should provide
a better account of their unique properties and improve the degree of separation between visual objects
being processed. Prospective research in this area may also be related to the possibility of making
a decision based not on the single minimum value of distance, but on the basis of the closest similar
classes voting.

Another topic of research for image datasets with multiple etalons of a single class is that of the
investigation and extraction of the most significant properties by analyzing the set of representatives
of a particular class. A single image of the class can be constructed based on the whole set of such
representatives. After analysis of the Leeds Butterfly database, we saw that the amount of images
per class varied, between 55 and 100, which blurred information in the feature space. Moreover,
it increased the intersection of areas of image descriptions from different classes. In situations where
the etalon was represented by a single image, the recognition accuracy for the matching of all key
point features and the proposed method was nearly the same [4,6].
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