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Abstract: This work proposes an approach to analyze water quality data that is based on rough set
theory. Six major water quality indicators (temperature, pH, dissolved oxygen, turbidity, specific
conductivity, and nitrate concentration) were collected at the outlet of the watershed that contains
the George Mason University campus in Fairfax, VA during three years (October 2015–December
2017). Rough set theory is applied to monthly averages of the collected data to estimate one indicator
(decision attribute) based on the remainder indicators and to determine what indicators (conditional
attributes) are essential (core) to predict the missing indicator. The redundant attributes are identified,
the importance degree of each attribute is quantified, and the certainty and coverage of any detected
rule(s) is evaluated. Possible decision making rules are also assessed and the certainty coverage
factor is calculated. Results show that the core water quality indicators for the Mason watershed
during the study period are turbidity and specific conductivity. Particularly, if pH is chosen as a
decision attribute, the importance degree of turbidity is higher than the one of conductivity. If the
decision attribute is turbidity, the only indispensable attribute is specific conductivity and if specific
conductivity is the decision attribute, the indispensable attribute beside turbidity is temperature.
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1. Introduction

Since water quality is affected by complex factors like animal/human activities and weather
events, its continuous sampling and monitoring is of paramount importance for human health [1].
The United States Geological Survey (USGS) has been continuously monitoring the quality of surface
water across the U.S. over the past decades [2]. The most common water quality indicators suggested
by the USGS are temperature, specific conductance, dissolved oxygen concentration (DO), pH, and
turbidity. Collecting and analyzing water quality data is a challenging task. First off, water quality
monitoring techniques are different in different water bodies like streams, lakes, bays, and estuaries,
characterized not only by different microscopic and macroscopic organisms, but also by different
ecosystems, flow rate, and accessibility. Additional common challenges include uncertainty in water
quality observations and instrument failure. In the instance of instrument malfunctioning or stop
recording, one or more values in the time series may be missing. Popular methods to recover gaps
in time series are divided into two major groups: deterministic and stochastic [3]. Examples of
deterministic approaches are nearest-neighbor interpolation, polynomial interpolation, and methods
based on distance weighting. Regression methods, auto regressive methods, and machine learning
methods fall under the stochastic category [3].

Sampling water quality is further complicated by the development of an effective method to
analyze and evaluate the collected data. Water quality data are usually characterized by non-Gaussian
distributions. Also, the presence of outliers and missing values are very common [4]. As a result,
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finding an appropriate analytical method is key. Some popular classical methods are graphical
analysis (e.g., boxplots, scatter plots, and Q-Q plots), probability distribution analysis, and trend
analysis. However, when dealing with excessive amount of data, it is easy to miss hidden patterns
and information. In the past two decades, several studies have proposed novel approaches to analyze
water quality data, including fuzzy theory [5], maximum likelihood methods [6], principal component
analysis [7], cascade correlation artificial neural network [8], interactive fuzzy multi-objective linear
programming [9], linear regression [10], inexact chance-constrained quadratic programming [11], and
Dempster-Shafer methods [12]. All these methods have the ability to deal with large datasets and
investigate relationships among water quality indicators. However, to take advantage of the above
tools, prior and/or additional information about the data is needed. For example, the fuzzy set theory
requires a grade of membership (that defines how each data point is mapped to a membership value)
or a value of possibility (e.g., possible, quite possible, slightly possible, impossible). Similarly, the
Dempster-Shafer theory necessitates basic probability analysis [13].

Rough Set Theory (RST), introduced by Pawlak in 1982 [13], represents a valid alternative to
overcome these issues. RST is a powerful tool to deal with large amounts of information, does not
require preliminary or additional information about the data, and considers vagueness and uncertainty
in the dataset [14]. RST is commonly used in classification, ranking, multi-criteria decision analysis,
and decision rules [15]. One of the applications of RST is pattern recognition by attribute reduction.
By reducing unnecessary features, RST is capable of discovering hidden patterns in high dimensional
datasets [16]. The philosophy of rough set is based on the assumption that some information is
associated to every object in the universe. Objects sharing the same information are called indiscernible
and the indiscernibility relation is the mathematical basis of rough set theory [17]. This tool has been
successfully applied to areas like healthcare, banking, medicine, engineering, environmental science,
among others [17].

In this work, we investigate the potential of applying RST to water quality analysis. RST is
useful when dealing with complexity and vagueness in a dataset, which is always the case when
analyzing water quality field data. Although a few attempts exist in the field of environmental and
water resources engineering [18,19], the application of RST for assessing water quality indicators has
not been widely explored. For example, Shen and Chouchoulas [20] proposed a hybrid system called
fuzzy-rough estimator to assess the size of algae population based on water characteristics. Although
their attribute reduction method (going from eleven original attributes to seven) was demonstrated
to be successful, their approach was not capable of extracting high accuracy sets of rules. Another
application of RST in water resources engineering is the one investigated by Barbagallo et al. [21]
who studied reservoir operating rules. This study employed the integrated RST and Rose application,
a software developed by the University of Poznan in Poland [22], to provide the minimal condition
attributes and reveal the relevance of each attribute. Dong et al. [18] proposed a model to forecast
annual runoff from a reservoir using RST. Their results showed that the larger the samples was, the
more accurate the model. In a study performed by Ip et al. [23], RST was employed to identify the
significant water quality indicators in a decision-making system. Specifically, RST was able to reduce
the number water quality indicators and quantify the importance degree of each core indicator.

Other studies combined RTS with other approaches, such as the one by Pai and Lee [19] that
introduced the Multinomial Logistics Regression (MLR) model. MLR was used to investigate the
relationship between different degrees of water pollution and environmental factors, like the one
between the concentration of SO2 emitted by car and motorcycle exhausts and ozone density in the
atmosphere. This framework was shown to be capable of predicting water quality using environmental
factors rather than monitoring the processes of chemical elements. Another example is the work by
Karimi et al. [24] who employed the variable consistency dominance-based rough set approach to
explore the complex relationship between water quality and environmental indicators. They explored
the relationship between total dissolved solids (TDS) and environmental indicators used as explanatory
variables, such as precipitation, river water temperature, runoff, normalized difference vegetation
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index (NVDI), land surface temperature, river water temperature. Using a moving average filter in
the TDS data, they decreased the noise and reduced the width of the boundary region between the
lower approximation (all elements in a subset belong to the set) and upper approximation (all elements
possibly belong to the set).

The main goal of this work is to assess the efficiency of using RST to estimate one water quality
indicator based on given (known) indicators. Evaluating the overall quality of the stream water is
outside the scope of this work. What we consider here is a comprehensive approach that looks at
several water quality indicators rather than providing a generic assessment of the stream healthiness.
Our hypothesis is that, when observations in a time series are missing, RST is capable of providing
information regarding the missing indicator based on the other recorded indicators. RST also identifies
the dispensable indicators. By eliminating the dispensable (redundant) indicator or indicators, the
complexity of the dataset is reduced. The strength of each indicator in finding an unknown indicator is
assessed and dispensable attributes are identified to discover hidden patterns. Section 2 introduces the
basics of rough set theory and its application to a water quality dataset collected in Fairfax, VA during
2015 to 2017. Section 3 presents the results, whereas Section 4 discusses the results and summarizes
the main conclusions.

2. Materials and Methods

2.1. Rough Set Theory

In RST, data are represented by an information system or information table consisting of
non-empty sets of finite objects (rows) and non-empty finite set of attribute (columns). More formally:

S = (U, A) (1)

where S is the decision system, U is the universe, and A is an attribute.
The central concept in RST is the indiscernibility relation, a relationship between two (or more)

objects where all the values are identical (equivalent) with respect to a subset of considered
attributes [25]. The indiscernibility relation is defined as any subset B of A with a binary relation I
(B) on U. For every a ∈ A: (x, y) ∈ I(B) if and only if a(x) = a(y), where the value of attribute a is for
element x (or y).

Approximation is another fundamental concept in RST. On one hand, lower approximation refers
to the domain of objects that are known with certainty to belong to the subset of interest. The lower
approximation is also called B-positive region, posB(X). On the other hand, upper approximation refers
to objects that possibly belong to the subset of interest [26].

Suppose X ⊂ U, and B ⊂ A, the Blower and Bupper approximation of X, respectively, are:

Blower (X) = ∪ {B(x):B(x) ⊂ X} (2)

Bupper (X) = ∪ {B(x):B(x) ∩ X 6= ∅}. (3)

Therefore, the B-boundary region of X is defined as:

BNB(X) = Bupper (X) − Blower (X). (4)

If the boundary region is empty, then X is exact (or crisp). Otherwise, X is inexact and is classified
as rough. The approximation method is a valuable method to express data topological properties [14].
The decision-making (DM) rule is another helpful tool to discover hidden patterns in a dataset and is
defined as follows:

S = (U, C, D) (5)
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where C is a disjoint set of condition attributes and D is the decision attribute. For every x ⊂ U, there
exist C1(x), . . . , Cn(x), d1(x), . . . , dm(x). The decision rule induced by x in S is:

C1(x), . . . , Cn(x)→ d1(x), . . . , dm(x) or C→D. (6)

where the arrow implies the decision D is based on condition C. The importance degree of attributes
relative to the decision is calculated as:

γcd (c) = {|posc(D)|/|U|} − {|pos(c − {c})(D)|/|U|}. (7)

This way the most important attributes are selected and if the importance degree equals zero, the
attribute is unimportant. The larger γcd (c), the higher the attribute degree of importance is. Please
note that the importance degree is not a percentage and has no units. If |x| is the number of element
in a set (i.e., cardinality of x), then the support of decision is defined as:

suppx(C,D) = |A(x)| = |C(x) ∩ D(x)| (8)

and the strength of the decision is quantified as:

σx(C,D) = suppx(C,D)/|U|. (9)

In other words, the support of the decision corresponds to the number of times that a certain rule
is observed within the dataset and the strength of the decision is the support of the decision divided
by the total number of decision rules. So, if the support of a decision is high, it means that the number
of times that the specific decision rule is repeated is high and consequently, this decision rule is strong.

Also, the certainty of the decision rule is calculated as:

cerx(C,D) = [|C(x) ∩ D(x)|]/|C(x)| = suppx(C,D)/|C(x)| = σx(C,D)/π|C(x)| (10)

where π|C(x)| = |C(x)|/|U|. When cerx equals to one, then C→xD is a certain decision rule.
Another useful factor in the DM rule concept is the coverage of decision rule defined as:

covx(C,D) = [|C(x) ∩ D(x)|]/|D(x)| = suppx(C,D)/|D(x)| = σx(C,D)/π|D(x)| (11)

where π|C(x)| = |D(x)|/|U|. The coverage coefficient is the conditional probability of reasons for a
given decision.

When C→xD is a decision rule, then D→xC is called the inverse decision rule and can be used to
give explanations (reasons) for a decision. Please note that the certainty factors for inverse decision
rules are coverage factors for the original decision rule [14].

2.2. Study Area and Dataset

In this study, we evaluate the chemical and physical quality of water at the outlet of the
watershed that contains the George Mason University campus in Fairfax, VA. Figure 1 shows the
watershed boundaries and the location where water quality indicators were sampled. This urbanized
watershed contains two small creeks and one retention pond and is located within the larger Pohick
Creek Watershed. Moreover, it consists of generally flat to sloping topography with most drainage
(approximately 90%) flowing towards the south central portion of the campus and Pohick Creek.

A water quality monitoring instrument (the Eureka Manta2 Waterprobe) with six sensors
automatically records six water quality indicators (listed in Table 1): dissolved oxygen concentration
(DO), nitrate concentration, pH, specific conductivity, temperature, and turbidity. These water quality
indicators were chosen for several reasons. First off, they are listed by the Environmental Protection
Agency (EPA) to define water quality standards for surface water [27]. Secondly, since George
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Mason University complies with the Clean Water Act and EPA storm water regulations, its Facilities
Department monitors these indicators across the campus every year [28]. The water quality probe
recorded each indicator every hour from October 2015 to December 2017. However, the probe was out
for calibration and repairs occasionally and there have been some frequent network issues with the
data logger. As a result, only 14 months of data are used in this work.
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Figure 1. Location of study site.

Most data have been collected during 2016 and 2017. Both years are characterized by monthly
mean temperature and precipitation that are similar to the 30-year mean values for the region [29].
Specifically, the average temperature during the past 30-year in Fairfax, VA is 13 ◦C and the yearly
average temperature both in 2016 and 2017 is 14 ◦C. The average 30-year cumulative precipitation is
107 cm and the average precipitation for 2016 and 2017 is 90 cm and 104 cm, respectively. This indicates
that 2016 and 2017 are not anomalous years in terms of regional climatology [29]. The collected data,
summarized in Table 1, show that water temperature fluctuates from about 5 ◦C in winter to almost
30 ◦C in summer. The average pH is 6.75 and it falls in the range identified by EPA water quality
standards for the Commonwealth of Virginia [27]. The average DO is 6.14 mg/L and it is also within
the EPA water quality standards. The level of nitrate (average of 136.11 mg/L-N) shows that the
runoff water possibly traveled through lands with fertilizers. Another possible source of nitrate is the
atmosphere containing nitrogen compounds derived from automobiles [30]. According to EPA, the
natural level of nitrate from wastewater effluent can range up to 30 mg/L. Finally, the high standard
deviations in conductivity and turbidity are also common because of the frequent storms in this region.

The collected data are then discretized into three categories (low, medium and high): (i) any value
lower than the 25th quartile is classified as low (L); (ii) any value between the 25th and 75th quartiles
is classified as medium (M); and (iii) any value higher than the 75th quartile is classified as high (H).
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Table 1. Units, average, standard deviation, 25th and 75th quartiles of water quality indicators collected
during the study period at the location shown in Figure 1.

Dissolved
Oxygen

Nitrate
Concentration

Specific
Conductivity Temperature Turbidity pH

Symbol DO NO3 K T Tu pH
Units mg/L mg/L uS/cm ◦C NTU -
Average 6.14 136 342 20.7 40.9 6.75
St. Deviation 1.23 46.4 126 3.63 95.7 0.16
25th Quartile 5.58 128 280 18.4 5.67 6.65
75th Quartile 6.72 158 384 23.3 36 6.82

A plot of time series of all the water quality indicators during the study period is shown in
Figure 2. The inverse correlation between pH and temperature is clearly notable. However, it is
important to mention that correlations between water quality indicators (as shown in [31]) at monthly
scales are affected by several parameters, including environmental conditions and anthropogenic
factors (e.g., rainfall events, construction sites).
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(c) specific conductivity; (d) temperature; (e) turbidity; and (f) pH.

The shape of the frequency distributions for the water quality indicators considered in this study
demonstrates the difficulty of fitting a known distribution to these datasets (Figure 3). For instance,
the turbidity frequency distribution—shown in Figure 3e—is clearly non-normal and skewed towards
lower values, with a long tail at higher values. On the other hand, some indicators (e.g., DO, specific
conductivity) show more symmetrical distributions.
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(d) temperature; (e) turbidity; and (f) pH during the study period.

3. Results

The information table is set up to apply RST to the data collected at the Mason watershed outlet.
Specifically, five water quality indicators are chosen as the conditional attributes and the sixth one
as the decision attribute. The water quality probe reads each water quality indicator every hour.
However, in order to introduce rough set theory to water quality analysis, coarse resolution (monthly
average) data are examined. This not only helps with showing a limited amount of condition and
decision attributes in the following tables, but also helps to reduce the random noise in the data
sample. Numerical values are assigned to each of the 14 months and presented as time codes in Table 2.
The following analysis is based on the scenario in which pH is chosen as the decision attribute (D) and
the rest of the indicators as condition attributes (C). In set theory formalism, this corresponds to U = {1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}, C = {DO, NO3, K, T, Tu}, and D = {pH}, where C and D can be
either L, or M, or H.

The first step is to identify redundant (or identical) time codes. After analyzing each time code, {7}
and {8} are the only ones found identical, not only in terms of attributes, but also in terms of decision.
This means that every single conditional and decision attribute is the same for time codes {7} and {8}.
The fact that they are identical not only in terms of condition attributes but also in terms of decision
attributes shows that if DO and K are medium, NO3 and T are low, and Tu is high, pH is certainly
high. This is the first certain decision rule concluded from Table 2. No other time codes are found to be
identical in terms of condition and/or decision attributes. Thus, since all the other codes are unique in
terms of both condition and decision attributes, each one of them represents a unique rule. As a result,
13 unique rules are identified in Table 2.
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Table 2. Attributes and decision values where pH is the decision attributes and the other indicators are
condition attributes.

Time Code Date (M-Y) DO NO3 K T Tu pH

1 October-15 M M H L L M
2 April-16 H M H L H M
3 May-16 H M M L H M
4 June-16 M M M M M M
5 July-16 L M M H M M
6 August-16 M H M H M M
7 April-17 M L M L H H
8 May-17 M L M L H H
9 June-17 L L M M H L
10 August-17 L L L H M L
11 September-17 L L M M M L
12 October-17 L L M L H M
13 November-17 L L L L H L
14 December-17 L L L L M L

The second step explores the discernibility relation by eliminating one condition attribute at the
time. There are 6 tables in Table 3 and each table except the first one is missing one attribute. Firstly,
as discussed above, time codes {7} and {8} are identical and they are highlighted. Secondly, if DO,
NO3, and T were removed, discernibility would be the same, as shown in Table 3(b),(c),(e). As a result,
these three attributes are deemed dispensable. Thirdly, if K and Tu were removed, new decision rules
would appear. These new rules are highlighted in Table 3(d),(f) as well. In Table 3(d), time codes {2}
and {3} are identical both in terms of condition and decision attributes, however, time codes {12} and
{13} are just identical in terms of condition attribute. In Table 3(f), time codes {9} and {11} and time
codes {13} and {14} are alike in terms of condition and decision attributes. Hence, there is a change in
discernibility making both K and Tu indispensable.

The formal process of identifying dispensable attributes is further investigated in Table 4. The first
column represents the attribute that is removed, whilst the second column represents the unique
condition attribute combination in the absence of the corresponding attribute. When K and Tu are
removed, the unique condition attribute combinations are different than when other indicators are
removed in the other cases. In the third column, the unique decision making rules are displayed.
If column 3 is not identical to the rules found in the presence of all attributes (conditional and decision),
then the removed attribute is deemed dispensable (column 5). More specifically, the posc(D) is
equal to {(1), (2), (3), (4), (5), (6), (7,8), (9), (10), (11), (12), (13), (14)}. If column 3 does not match
posc(D), the removed attribute is indispensable. As a result of the analyses shown in Tables 3 and 4,
the indispensable attributes are specific conductivity and turbidity. Clearly, in the absence of K,
decision rules {2} and {3} are identical, in the absence of Tu, decision rules {9} and {11} are identical,
and decision rules {13} and {14} are also identical. These attributes are defined as the core attributes.
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Table 3. Analysis of the discernibility relation with identical time code highlighted for the following
cases: (a) all attributes; (b) DO eliminated; (c) NO3 concentration eliminated; (d) specific conductivity
eliminated; (e) temperature eliminated; (f) turbidity eliminated.

(a) (b)
Time Code DO NO3 K T Tu pH Time Code DO NO3 K T Tu pH

1 M M H L L M 1 M H L L M
2 H M H L H M 2 M H L H M
3 H M M L H M 3 M M L H M
4 M M M M M M 4 M M M M M
5 L M M H M M 5 M M H M M
6 M H M H M M 6 H M H M M
7 M L M L H H 7 L M L H H
8 M L M L H H 8 L M L H H
9 L L M M H L 9 L M M H L

10 L L L H M L 10 L L H M L
11 L L M M M L 11 L M M M L
12 L L M L H M 12 L M L H M
13 L L L L H L 13 L L L H L
14 L L L L M L 14 L L L M L
(c) (d)

Time Code DO NO3 K T Tu pH Time Code DO NO3 K T Tu pH
1 M H L L M 1 M M L L M
2 H H L H M 2 H M L H M
3 H M L H M 3 H M L H M
4 M M M M M 4 M M M M M
5 L M H M M 5 L M H M M
6 M M H M M 6 M H H M M
7 M M L H H 7 M L L H H
8 M M L H H 8 M L L H H
9 L M M H L 9 L L M H L

10 L L H M L 10 L L H M L
11 L M M M L 11 L L M M L
12 L M L H M 12 L L L H M
13 L L L H L 13 L L L H L
14 L L L M L 14 L L L M L
(e) (f)

Time Code DO NO3 K T Tu pH Time Code DO NO3 K T Tu pH
1 M M H L M 1 M M H L M
2 H M H H M 2 H M H L M
3 H M M H M 3 H M M L M
4 M M M M M 4 M M M M M
5 L M M M M 5 L M M H M
6 M H M M M 6 M H M H M
7 M L M H H 7 M L M L H
8 M L M H H 8 M L M L H
9 L L M H L 9 L L M M L

10 L L L M L 10 L L L H L
11 L L M M L 11 L L M M L
12 L L M H M 12 L L M L M
13 L L L H L 13 L L L L L
14 L L L M L 14 L L L L L
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Table 4. Calculating the discernibility and dispensability.

Attribute C U/Ind(C-{c}) Pos(c-{c})(D) Pos(c-{c})(D) = Posc(D)? Indispensability

DO
(1), (2), (3), (4), (5),
(6), (7,8), (9), (10),

(11), (12), (13), (14)

(1), (2), (3), (4), (5),
(6), (7,8), (9), (10),

(11), (12), (13), (14)
Y N

NO3

(1), (2), (3), (4), (5),
(6), (7,8), (9), (10),

(11), (12), (13), (14)

(1), (2), (3), (4), (5),
(6), (7,8), (9), (10),

(11), (12), (13), (14)
Y N

K
(1), (2,3), (4), (5), (6),
(7,8), (9), (10), (11),

(12,13), (14)

(1), (2,3), (4), (5), (6),
(7,8), (9), (10), (11),

(12), (13), (14)
N Y

T
(1), (2), (3), (4), (5),
(6), (7,8), (9), (10),

(11), (12), (13), (14)

(1), (2), (3), (4), (5),
(6), (7,8), (9), (10),

(11), (12), (13), (14)
Y N

Tu
(1), (2), (3), (4), (5),

(6), (7,8), (9,11),
(10), (12), (13,14)

(1), (2), (3), (4), (5),
(6), (7,8), (9,11),

(10), (12), (13,14)
N Y

The application of RST to the water quality data sampled at the Mason campus that was
discussed above identified the fundamental and redundant water quality indicators. Their importance
degree as conditional attributes in determining the other indicators (decision) is then quantified
using Equation (7). Table 5 shows the indispensable attributes for each decision attribute and their
corresponding importance degree. There are only two indispensable attributes identified for each
decision attribute. Specifically, two indispensable attributes are identified for pH, DO, T, and K,
whereas only one indispensable attribute is identified for Tu (i.e., specific conductivity). This also
means that several attributes are redundant and not necessary to fill in possible gaps in time series.
This kind of conclusion is extremely useful when obtaining ground observations is complicated by
impervious terrain, financing constraints, and/or extreme atmospheric conditions.

Results in Table 5 demonstrate that turbidity is equally important in every scenario considered in
the study with an importance degree of 0.14. Specific conductivity is the next important factor with
an importance degree of 0.07. If the decision attribute is turbidity, the only indispensable attribute is
specific conductivity and if the specific conductivity is the decision attribute, the indispensable attribute
beside turbidity is temperature. According to the foregoing analysis, if any of the six water quality
indicator needs to be retrieved because of a missed measurement, turbidity and specific conductivity
are the core values that would provide useful information about the missing information. Moreover,
the decision in every scenario is weighted towards turbidity since the importance degree of turbidity
is higher than the importance degree of conductivity.

Table 5. Importance degree of C attributes relative to the decision attribute D.

Decision Attribute Indispensable Attribute 1
(Importance Degree)

Indispensable Attribute 2
(Importance Degree)

pH Tu (0.14) K (0.07)
DO Tu (0.14) K (0.07)

NO3 Tu (0.14) K (0.07)
T Tu (0.14) K (0.07)

Tu K (0.07) -
K Tu (0.14) T (0.07)

There is a direct relationship between temperature and all the other water quality indicators.
Furthermore, conductivity has an effect on turbidity and turbidity influences dissolved oxygen
concentration, which also affects nitrate concentration. However, there is no direct relation between pH
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and other indicators. Therefore, we start our analysis by selecting pH as a decision attribute. Based on
the dispensability analyses shown above, conductivity and turbidity are the core condition attributes
(Table 6). There is a strong relationship between these two core attributes in stormwater runoff across
the Mason campus watershed, as previously shown by [32].

Table 6. Indicators of decision-making (DM) rules.

Decision Rule K Tu pH N Strength Certainty Coverage

1 H L M 1 0.07 1 0.14
2 H H M 1 0.07 1 0.14
3 M H M 2 0.14 0.4 0.29
4 M M M 3 0.21 0.75 0.43
5 M H H 2 0.14 0.4 1.00
6 M H L 1 0.07 0.2 0.20
7 L M L 2 0.14 1 0.40
8 M M L 1 0.07 0.25 0.20
9 L H L 1 0.07 1 0.20

Table 6 shows the DM rules together with their strength, certainty, and coverage, computed
according to Equations (9)–(11), respectively. Table 6 also shows the support of each DM rule (N).
As mentioned above, N is the number of times that each DM rule was recorded. Table 6 shows that N
is larger than 1 for DM rules 3, 4, 5, and 7. As a result, their strengths are higher than the strengths of
the rules for which N = 1.

If the conditional attributes are identical and the decision attributes are not equal, the certainty of
the DM rule is less than one. Thus, the certain DM rules are 1, 2, 7, and 9. In other words, if specific
conductivity is high and turbidity is either low or high, then pH is certainly medium (according to
DM rule 1 and 2). If specific conductivity is low and turbidity is either medium or high, then pH is
certainly low (according to DM rule 7 and 9).

In order to explain the decision attribute in terms of condition attributes, the conditions and
decision attributes need to be mutually replaced in every DM rule. The only certain inverse rule is DM
rule 5, which indicates that if pH is high, then turbidity is high and specific conductivity is medium.
Moreover, rule number 5 is a unique case. Since there is only one rule with a high pH value, the
coverage for this rule is equal to 1 and, as a result, the certainty for inverse DM rule 5 is one.

The same analysis is repeated five times by selecting a different attribute as a decision attribute
and setting the rest of the attributes as a condition attributes every time. Table A1 shows the DM rules
and strength, certainty, and coverage for all the other cases. The highest strength factor (0.29) belongs
to the rule in which the conditional attributes are specific conductivity and turbidity and the decision
attribute is temperature. On the other hand, five rules show a certainty factor equal to 1 when the
conditional attributes are specific conductivity and turbidity and the decision attribute is dissolved
oxygen. Moreover, the coverage factor equals to 1 in one of the rules when the specific conductivity
and turbidity are conditional attributes and the nitrate is decision attribute.

A similar analysis was performed also at weekly scale, by averaging the water quality indicators
for each week of the study period. However, because of the high temporal variability in water quality,
no redundant attribute was identified. Hence, at finer temporal resolutions, more attributes play an
important role. Since this work is meant as an attempt to apply rough set theory to water quality data
analysis, it would not be feasible to effectively display the step-by-step procedure using a larger dataset
(e.g., weekly). Nevertheless, the developed approach based on rough set theory could be applied to
data at any temporal resolution and to time series of any length.

The developed methodology can also be used to compare different months or the same month
in different years. For instance, the months of April, May, June, and August of 2016 (case 1) can be
compared to the same months in 2017 (case 2). In case 1, the indispensable attribute would be specific
conductivity. However, in case 2, there is no indiscernible attribute. This shows that indiscernible
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attributes may vary depending on environmental and/or anthropogenic conditions. This kind of
comparison highlights possible changes in the stream water quality conditions, whose sources can be
potentially investigated by the analyst.

4. Discussion

This study investigates the application of RST to water quality analysis. RST does not require
any prior information on the dataset and represents a powerful tool to deal with uncertainty and
vagueness in the sample. Moreover, RST is capable of finding indiscernible attributes and extracting
rules based on core attributes. This work presents the basic concepts of rough set theory and its
application to six water quality indicators collected during a 3-year-long study period at the George
Mason University campus in Fairfax, VA. More specifically, monthly averages for each water quality
indicator are calculated and 14 months are considered.

It is important to mention that the streamflow velocity at the watershed outlet where data were
collected is particularly high during and after rainfall events. As a result, the common relationships
among water quality attributes are not observed in this case study that focuses on the monthly scale.
For example, when water temperature is low, DO concentration is commonly high [33]. However, we
cannot observe this rule at the monthly resolution. When a storm happens, even during summer when
temperatures are high, the rapidly moving water contains more DO than stagnant water in winter
days (when the temperature is lower).

Coarse temporal resolution (i.e., monthly) data are selected here in order to present a novel
methodology in the field of water quality analysis. The coarse resolution helps with showing a
limited number of attributes and decision values. Six different scenarios are studied here and in each
scenario one attribute is assigned to be a decision attribute and the rest are reflected as conditional
attributes. In most cases, specific conductivity (with an importance degree of 0.07) and turbidity (with
an importance degree of 0.14) are the core conditional attributes. In addition, we generate DM rules
for each scenario and calculate the strength, certainty, and coverage of each rule. The certain rules
show that if specific conductivity is high and turbidity is either low or high, then pH is medium.
Also, if specific conductivity is low and turbidity is either medium or high, then pH is certainly low.
However, the coverage of these DM rules is the lowest among all DM rules. Five other possible DM
rules with certainty lower than one are identified as well. There is one DM rule with coverage factor of
one (DM 5), which means that there is only one DM rule with a unique pH value (high). As a result,
the certainty for the inverse DM rule 5 is one.

Overall, RST was proven capable of finding core indicators and discovering DM rules.
Considering more attributes and more data entries could increase the certainty of the identified
DM rules and possibly identify additional DM rules. RST-based DM rules can be of tremendous help
to planners and analysts in their decision making process. For instance, results from this study can be
useful for university facility managers that monitor water quality across campus. If applied to a larger
scale, the proposed methodology has the potential of providing timely, relevant, and essential water
quality information.

Future work should look at the raw data at their native resolution (one hour). Although no
difference in the DM rules was observed in the weekly analysis with respect to the monthly one,
increasing the resolution to one hour may result in higher certainty in the DM rules. Moreover, other
locations should be investigated to verify the efficiency of the proposed methodology and possibly
sampling additional indicators (i.e., conditional attributes). Further conditional attributes can be
related to atmospheric conditions, like the amount and duration of precipitation events and land
cover/land use.
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Appendix A

Table A1. DM rules for various scenarios, with different decision attributes: (a) DO; (b) Tu; (c) NO3;
(d) T; and (e) k.

(a) (b)
K Tu DO N Strength Certainty Coverage DO K Tu N Strength Certainty Coverage
H L M 1 0.07 1.00 0.20 H H H 1 0.07 1.00 0.14
H H H 1 0.07 1.00 0.50 H M H 1 0.07 1.00 0.14
M H H 1 0.07 1.00 0.50 L M H 2 0.14 0.50 0.29
M M M 2 0.14 0.50 0.40 L L H 1 0.07 0.33 0.14
M M L 2 0.14 0.50 0.29 M M H 2 0.14 0.50 0.29
M H M 2 0.14 0.40 0.40 M H L 1 0.07 1.00 1.00
M H L 2 0.14 0.40 0.40 L M M 2 0.14 0.50 0.33
L M L 2 0.14 1.00 0.40 L L M 2 0.14 0.67 0.33
L H L 1 0.07 1.00 0.20 M M M 2 0.14 0.50 0.33
(c) (d)
K Tu NO3 N Strength Certainty Coverage K Tu T N Strength Certainty Coverage
M M H 1 0.07 0.25 1.00 L M H 1 0.07 0.50 0.33
M H L 2 0.14 0.40 0.25 M M H 2 0.14 0.50 0.67
L M L 2 0.14 1.00 0.25 H L L 1 0.07 1.00 0.13
M H L 1 0.07 0.20 0.13 H H L 1 0.07 1.00 0.13
L H L 1 0.07 1.00 0.13 L H L 1 0.07 1.00 0.13
M H L 1 0.07 0.20 0.13 L M L 1 0.07 0.50 0.13
M M L 1 0.07 0.25 0.13 M H L 4 0.29 0.80 0.50
H L M 1 0.07 1.00 0.20 M M M 2 0.14 0.50 0.67
H H M 1 0.07 1.00 0.20 M H M 1 0.07 0.20 0.33
M H M 1 0.07 0.20 0.20
M M M 2 0.14 0.50 0.40
(e)

T Tu K N Strength Certainty Coverage

L L H 1 0.07 1.00 0.50
L H H 1 0.07 0.17 0.50
H M L 1 0.07 0.33 0.33
L H L 1 0.07 0.17 0.33
L M L 1 0.07 1.00 0.33
M M M 2 0.14 1.00 0.22
H M M 2 0.14 0.67 0.22
L H M 3 0.21 0.50 0.33
M H M 1 0.07 1.00 0.11
L H M 1 0.07 0.17 0.11
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