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Abstract: The Singular Value Decomposition (SVD) is a fundamental algorithm used to understand
the structure of data by providing insight into the relationship between the row and column factors.
SVD aims to approximate a rectangular data matrix, given some rank restriction, especially lower
rank approximation. In practical data analysis, however, outliers and missing values maybe exist
that restrict the performance of SVD, because SVD is a least squares method that is sensitive to errors
in the data matrix. This paper proposes a robust SVD algorithm by applying an adjustable robust
estimator. Through adjusting the tuning parameter in the algorithm, the method can be both robust
and efficient. Moreover, a sequential robust SVD algorithm is proposed in order to decrease the
computation volume in sequential and streaming data. The advantages of the proposed algorithms
are proved with a financial application.

Keywords: Singular Value Decomposition (SVD); robustness; sequential data analysis;
financial application

1. Introduction

The Singular Value Decomposition (SVD) of a rectangular data matrix is a powerful method in
analyzing the data structure and the relationship between rows and columns. SVD has been applied
in many methods, such as biplot [1], correspondence analysis [2], and principal component analysis.
There are also many SVD applications, for example, image compression, gene data analysis, etc.

The SVD is a factorization of a real or complex matrix. Let M be a data matrix of order m× n.
The columns of M represent n attributes and its rows represent m instances.

The SVD of M is,
Mm×n = Um×pSp×pVT

p×n

where p ≤ min{m, n}, UTU = VTV = Ip (Ip is an identity matrix), and S = diag{λ1, . . . , λp},
λ1 ≥ . . . ≥ λp ≥ 0.

Writing ui and vi for the ith left and right eigenvectors, respectively, and λi for the ith

singular-value, the SVD can be written as,

M =
p

∑
i=1

λiuivT
i .

The summation of the first k (k < p) terms is the rank k approximation to M.

1.1. Alternating Approach

The conventional approach of calculating the SVD through a principal component analysis of
MTM and MMT requires the data matrix to be complete, which means that it cannot be performed for
the data matrix with missing elements. An alternative iterative approach introduced by Gabriel and
Zamir [3] addresses this problem.
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This approach is an alternating least square (ALS) algorithm that works iteratively and starts
with the leading eigentriple λ1, u1, and v1. It starts with an initial guess of u1. Then a least square
regression is applied to every column of M by using u1 to get λ1v1. At the end of the regression cycle
of columns, scaling the vector estimate to unit length can give v1, and the scale factor is λ1. After
getting the estimation of v1, the least square regression of every row of M is performed by using v1

to refine u1. Then, the estimation is normalized to get the new u1. These steps are repeated until
convergence. Until now, the estimation of the first eigentriple was achieved. After that, replace M by
M− λ1u1v1, and start a new iteration to get the second eigentriple λ2, u2, and v2.

1.2. The Effect of Noise on SVD

Since the SVD is a least squares procedure, it is highly susceptible to outliers. In practice, outliers
and abnormal values in the data matrix, which can not be solved by using the ALS algorithm.
In the extreme case, an individual cell can draw even the leading principal component toward itself.
Conventional SVD cannot remove outliers, and the effects of noise on SVD are significant. D. Hawkins et al.
introduced the AL1-SVD algorithm [4], which replaced the least square by the L1-norm. The AL1-SVD
is robust to noise in some extent, but the efficiency of handling a noise free matrix is decreased. A good
robust algorithm, however, should combine high robustness and high efficiency. Robustness means
the algorithm can be very resistant to outliers, and efficiency means the algorithm can be very accurate
in situations with less noise. The capacity of resisting noise of the AL1-SVD algorithm is fixed, which
means some information were lost (inaccurately estimated) when using AL1-SVD to estimate a data
matrix that has only a small portion of noise cells, or a bad estimation was made when estimating a
highly contaminated matrix. Practically, the noise levels are different among different data. Therefore,
a robust SVD method that can deal with most situations is needed.

This paper proposes an adjustable robust SVD algorithm, which minimize a myriad estimator,
that can perform well among different noise level situations. Then, a sequential robust SVD algorithm
is also proposed, which reduces the computation volume when calculating the sequential data matrix,
such as financial data. The proposed algorithm is proved robust under a noise condition and efficiency
under a noise free condition, which addresses the issue that the existing robust SVD algorithm cannot
adapt to a different noise level condition, especially the inefficiency problem under a light noise
condition. The advantages of the proposed algorithm is also shown in a financial application.

This paper begins by analyzing the robustness of different estimators including least square, L1,
and myriad. Then, a discussion of the selection for the tuning parameter K of the myriad estimator
is in Section 2. Section 3 illustrates the robust SVD algorithm and robust sequential SVD algorithm.
In Section 4, the proposed algorithm is applied to an application in finance field.

2. Robustness Analysis

The proposed Myriad Robust SVD (MySVD) algorithm replaces the least squares norm in ALS
(or L1-norm in AL1) by the myriad estimator. The myriad estimator is a robust and adjustable estimator
that is resistant to outliers by adjusting its tunning parameter K. This section focuses on the analysis of
robustness and efficiency for three different estimators, and also on how to select the tuning parameter
K in myriad estimation.

2.1. Robustness Analysis for Different Estimators

The Gaussian and Laplacian density functions lead to efficacious cost functions for the mean
estimator and the median estimator as ρ(x) = x2 and ρ(x) = |x|, respectively. The myriad estimator
belongs to the M-estimator and is derived from the α-stable distribution using the cost function
ρ(x) = log(K2 + x2), where the linearity tuning parameter K > 0 controls the impulse-resistance of
the estimator (a more detailed description of K selection is given in Section 2.2). Given a set of samples
x1, x2, . . . , xN , the cost functions and the outputs for the linear (least square or mean), median, and
myriad estimators are shown in Table 1.
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Table 1. Cost functions and outputs for various estimators.

Estimator Cost Function Output, θ

Linear ∑N
i=1(xi − θ)2 mean{x1, x2, . . . , xN}

Median ∑N
i=1 |xi − θ| median{x1, x2, . . . , xN}

Myriad ∑N
i=1 log(K2 + (xi − θ)2) myriad{x1, x2, . . . , xN}

The linear estimator is highly sensitive to outliers; in some extreme cases, even only one
sample value that is abnormal causes the final result to be dragged far away from the optimal value.
The robustness of the median estimator is explained by the heavy tails of the Laplacian distribution,
which makes the median estimator more resistant to outliers than the mean estimator. However,
the median estimator is not robust enough in some extremely impulsive situations, especially when
outliers change the samples’ order very much.Also, the median estimator is not accurate in the noise
free estimation. The myriad estimator, as a tunable estimator of location derived from the theory of
robust statistic, contains both robustness and efficiency. As explained in [5–7], the parameter K can
provide the myriad estimator with a rich variety of modes of operation that range from highly resistant
mode-type estimator to the very efficient class of linear estimator. The myriad estimator appears the
Linear Property when K → ∞. On the other hand, the myriad estimator also appears the Mode Property
when K → 0. The two properties, which are summarized as follows, explain the behavior of myriad
estimator while tuning the parameter K.

Property 1 (Linear Property). Given a set of samples x1, x2, . . . , xn, the sample myriad β̂K converges to the
sample average as K → ∞. This is

lim
K→∞

β̂K = lim
K→∞

myriad{K; x1, . . . , xn} =
1
N

N

∑
i=1

xi

Property 2 (Mode Property). Given a set of samples x1, x2, . . . , xn, the mode-myriad estimator, β̂0 is defined as

β̂0 = lim
K→0

β̂K,

The mode-myriad β̂0 is always equal to one of the most repeated values in the sample. Furthermore,

β̂0 = arg min
xj∈M

N

∏
i=1,xi 6=xj

|xi − xj|,

where M is the set of most repeated values.

Plainly, as seen in Figure 1 (the sample set is (x1, x2, . . . , x7) = (−7,−2, . . . , 6), GMy(θ) is the
myriad cost function) the larger the value of K, the closer the behavior of the myriad estimator to the
linear estimator. While decreasing the value of K, the myriad moves away from the linear estimator to
a more resistant estimator (in the limit case, the mode estimator, the optimal value towards the cluster
(2, 2.5, 3)). These properties made the myriad estimator a very powerful estimator.

The following example illustrates the robustness and efficiency for these three estimators.
Consider the observation set (noise-free) (x1, x2, x3, x4, x5) = (−2, 3, 2,−1, 6). The output for linear
estimator is θ2 = ∑5

i=1 xi/5 = 1.6 (here, using mean square error (MSE) as an evaluation criteria,
thus 1.6 is the optimal output), for median estimator is θ2 = median{−2,−1, 2, 3, 6} = 2. Since the
observations are noise free, a large value of K is needed to get an accurate output, K = 20. The output
for the myriad estimator is θMy = ∑5

i=1 log(202 + (xi − θ)2) = 1.604. Here, if choosing a lager K, such
as K = 50 and the output is 1.6, the output could be more close to the optimal value 1.6. In order to get
more insights of the behavior of these estimators, a graph is drawn where the x-axis represents the
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output θ and y-axis represents the cost function G. Here, G1(θ) = ∑N
i=1 |xi − θ| denotes median cost

function, G2(θ) = ∑N
i=1(xi − θ)2 denotes linear cost function, and GMy(θ) = ∑N

i=1 log(K2 + (xi − θ)2)

denotes the myriad cost function. The results are shown in Figure 2 with solid lines. Clearly, the result
shows that under the noise free situation, the linear and myriad estimators could achieve the optimal
output, however, the median estimator is not accurate enough.

θ

GMy(θ)

−7 −2−1 2 3 6

K = 20

K = 5

K = 0.1

Figure 1. Behavior of the Myriad Estimator Based on K.

θ

G2(θ)

−2−1 2 3 6 12

(a)median cost function

θ

G1(θ)

−2−1 2 3 6 12

(b)linear cost function

θ

GMy(θ)

−2−1 2 3 6 12

(c)myriad cost function

Figure 2. Effects of Outliers.

Then, the observed data is contaminated by replacing the value 2 of x3 by 12. As Figure 2 shows,
the function line is shifted right from the solid line to the dashed line. With the shifting, it’s easy to find
that the outputs are also shifted. For the linear estimator, the output is shifted from the optimal value
1.6 to θ

′
2 = ∑5

i=1 xi/5 = 3.6. The result shows that the linear estimator is very sensitive to outliers,
only one abnormal value made the output very deviated from the optimal value. Compared with
the linear estimator, the median estimator is more robust but the output still changed a little, from 2
to θ

′
2 = median{−2,−1, 3, 6, 13} = 3. The fact is that the effect of outliers is smaller for the median

estimator than the mean estimator. Besides, if the abnormal point did not change the statistic order
of the data, the median estimator would not be effected. For example, replacing 3 by 12 instead of
2, the output would still be 2. However, in reality, it is highly possible that the statistic order of the
data would be changed due to the random noise. Lastly, for the myriad estimator, under the noise
situation, the K value needs to be changed (based on the K selection method introduced in Section 2.2)
in order to fit the data and get an acceptable output. The output value of the myriad estimator is 2,
which is closer to the optimal value, which shows the myriad estimator is more robust than the other
two estimators. Now, based on the analysis of the properties and of the example, the conclusion can be
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made that the myriad is a very powerful estimator that contains both robustness and efficiency, so that
it is used in the proposed robust SVD algorithm.

2.2. The Selection of K

The linear and mode properties indicate the behavior of the myriad estimator, which is driven by
the key parameter K.

Figure 3 [5] shows how K drives the behavior of the myriad estimator. Since the myriad estimator
was derived from the α-stable distribution, the value of K is determined by the impulsiveness of noise,
proposed by [8]. The noise impulsiveness is derived by estimating the stability parameter α [9]. There
are several papers regarding the estimation of α, such as [10–12]. However, in order to get an accurate
α estimation, a large amount of samples is needed, which are not always easy to obtain in reality.
Therefore, from a practical point of view, it is necessary to find a more simple way to determine if the
value of K is large (or small) enough.

MEANMODE

K
(Cluster searcher)

Increased efficiency
in Gaussian noise

large K

Increased resistance
to outliers

small K

Figure 3. Functionality of the myriad as K is varied.

Looking at the myriad as the maximum likelihood location estimator generated by a Cauchy
distribution with dispersion K (geometrically, K is equivalent to half the interquartile range), shows
in Figure 4. When K is large, the generating distribution is highly dispersed. If all the samples are
considered as well-behaved (no outliers), K should be large enough to cover all the samples under
the generating distribution. It has been observed experimentally that values of K on the order of the
data range, K ∼ X(N) − X(1), (Here, x(i) denotes the ith order statistic of the sample.) often make
the myriad an acceptable approximation to the sample average [5]. On the other hand, when K is
small, the generating Cauchy distribution is highly localized. In this case, most of the data are treated
as outliers, only a small proportion under the range of distribution. In the small range, a desirable
estimator would tend to maximize the number of data inside the range, seeking for the data cluster .
In the limit case, K → 0, the only possible cluster is the repeated sample set. The fair approximation
to the mode property can be obtained if K is made significantly smaller than the distances between
sample cells. Empirical observations show that K on the order of K ∼ mini,j

∣∣Xi − Xj
∣∣ is often enough

to be considered a mode estimator.

Figure 4. The role of the linearity parameter K.
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The myriad behavior type needed in the real data analysis is neither mean nor mode. Since there
is always a proportion of noise in the data, an intermediate value of K is needed to make the myriad
estimator behave both for robustness and efficiency. For example, when K = 1

2

[
X( 3

4 N) − X( 1
4 N)

]
,

half the samples will be outside the interval and will be considered as outliers. Here the K selection
formula is defined as

K =
1
2

(
X((1−p)N) − X(pN)

)
where 0 ≤ p ≤ 1. Depending on the noise level, a proper value p is chosen to determine how many
samples should be considered. During the practical operation, a training set is used to find p and then
applied to the test set.

3. Adjustable Robust SVD Algorithms

3.1. Myriad Robust SVD (MySVD)

The MySVD replaces the linear estimator (or median estimator) by the criterion of minimizing the
myriad estimator ∑ log(K2 + x2) of the data matrix. The alternating MySVD also starts from the first
eigentriple (when calculating the myriad, we used the fast algorithm proposed by [13] (Algorithm 1)).

Algorithm 1 Calculate the first eigentriple λ1, u1, v1

Start with an initial guess of the leading left eigenvector u1 and a constant value p

repeat
for each column j do

Kc ← 1
2

(
Mj((1−p)N)

−Mj(pN)

)
aj ← arg minaj ∑n

i=1 log
(

K2
c +

(
mij − ajui1

)2
)

end for

λ1 ← ||a||2
v1 ← a/||a||2
for each row i do

Kr ← 1
2

(
Mi((1−p)N)

−Mi(pN)

)
bi ← arg minbj ∑m

j=1 log
(

K2
r +

(
mij − bivj1

)2
)

end for

u1 ← b/||b||2
until Convergence

There is no unique choice of a starting value of the leading left eigenvector. For the second and
subsequent of the SVD, replace M by a deflated matrix obtained by subtracting the most recently
found term in the SVD, M←M− λkukvT

k .

3.2. Sequential MySVD

Since the alternating approach is time consuming, a sequential robust SVD method is needed
to deal with the sequential data, such as financial data, in order not to calculate the whole process
repeatedly when new data arrives.

Follow the notation used in this paper, Mm×n represents the original data matrix. Then, the
MySVD method is applied to decompose the data matrix and get M = USVT . The new data matrix
Cm×c is added on to the original data, which becomes [M C]. Now, the problem becomes finding the
robust updated U

′′
, S
′′
, V
′′

for matrix [M C] = U
′′
S
′′
V
′′T without recalculating the robust SVD process



Data 2017, 2, 29 7 of 15

for the whole new data matrix [M C]. To solve the problem [14], let L = UTC be the projection of C
onto the orthogonal basis U. Let H = C−UL to be the component of C orthogonal to the subspace
spanned by U. Finally, let J be an orthogonal basis of H and let G = JTH be the projection of C onto
the subspace orthogonal to U. Now, the derived process is

[M C] = [USVT C]

= [U H/G]

[
S UTC
0 G

] [
V 0
0 I

]T

= [U J]

[
S L
0 G

] [
V 0
0 I

]T

.

Denote

[
S L
0 G

]
= Q, and apply SVD to Q. Then, get Q → U

′
S
′
V
′T . After that, updating the

original SVD as

U
′′ ← [U J]U

′

S
′′ ← S

′

V
′′ ←

[
V 0
0 I

]
V
′
.

Now, [M C] = U
′′
S
′′
V
′′T .

When doing robust sequential SVD, apply MySVD to the new data matrix C and get the robust
estimation Ĉ, using Ĉ in the sequential processes instead of C. The sequential MySVD algorithm can
be summarized as Algorithm 2.

Algorithm 2 Sequential MySVD

Known:
Original data M = USVT , new data C

Process:

1: Apply MySVD on C, and get robust estimation Ĉ

2: Let L = UTC, H = C−UL, G = JTH

3: Apply SVD on Q =

[
S L
0 G

]
= U

′
S
′
V
′T

4: Updated U
′′ ← [U J]U

′
, S
′′ ← S

′
, V

′′ ←
[

V 0
0 I

]
V
′

4. Application

SVD is widely used in many fields, such as, image processing [15], watermaking [16,17], network
analysis [18], and financial analysis, etc. In this section, an application of SVD in finance is introduced.
Besides that, a simulation example is also provided in Appendix A to directly show the efficiency of
MySVD. In reality, the SVD is used to extract financial factors in a factor model of stock returns. Factor
models of stock returns have had a profound impact in finance since the Fama and French three factors
model [19]. Factor models of stock returns decompose the returns into factor-related (systematic
component) and asset-specific returns (idiosyncratic component), which can help us analyze the
idiosyncratic risk of each stock. Therefore, the better factors we can estimate, the better analysis
results we will get. Factor models of stock returns can be divided into three types: macroeconomic,
fundamental, and statistical factor models, representing three different ways of finding factors [20].
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Here, this paper only focuses on the statistical factor model that derives their factors from SVD of the
panel data set of stock returns. The following subsections display how MySVD could improve the
performance of factor extraction.

4.1. Model Set Up

Multifactor models for stock returns have the general form

Rit = β1i f1t + · · ·+ βqi fqt + εit = β
′
ift + εit

ref [21], where Rit is the simple return of stock i (i = 1, . . . , N) in the time period t (t = 1, . . . , T). fmt is
the ith common factor (q = 1, . . . , Q). fqt in the statistical factor model can be expressed as the linear
combination of stock returns,

f1t = v11R1t + · · ·+ v1N RNt

f2t = v21R1t + · · ·+ v2N RNt

...

fQt = vQ1R1t + · · ·+ vQN RNt.

The v are linear parameters, βqi is the factor beta for stock i on the qth factor, and εit is
the stock specific factor. The factor realizations, ft, are stationary with unconditional moments
E(ft) = µ f , cov(ft) = E[(ft − µ f )(ft − µ f )

′
] = Ω f . Stock specific factor terms, εit, are zero mean

E(εit) = 0 and uncorrelated with each of the common factors, cov( fqt, εit) = 0, for all q, i and t. And εit
are serially uncorrelated and contemporaneously uncorrelated across stocks, cov(εit, ε js) = σ2

i for all
i = j and t = s, otherwise equals to 0.

The idea is that a trading portfolio is said to be market-neutral when the dollar amounts Di
(i = 1, . . . , N) invested in each of the stocks are such that [22]

βq =
N

∑
i=1

βqiDi = 0, q = 1, . . . , Q.

The coefficients βq correspond to the portfolio betas or projections of the portfolio returns on the
different factors. The intuition of a market-neutral portfolio is that the portfolio betas vanish and it is
uncorrelated with the common factors that drive the market returns. Then the portfolio returns satisfy,

N

∑
i=1

DiRi =
N

∑
i=1

Di

[
Q

∑
q=1

βqi fq + εi

]

=
N

∑
i=1

Di

[
Q

∑
q=1

βqi fq

]
+

N

∑
i=1

Diεi

=
Q

∑
q=1

[
N

∑
i=1

βqiDi

]
fq +

N

∑
i=1

Diεi

=
N

∑
i=1

Diεi.

Thus, the market-neutral portfolio is affected only by idiosyncratic returns. Therefore, a better
insight of the market-neutral portfolio returns and a better analysis of the idiosyncratic risk of each
stock will be achieved if it is possible to better estimate the market common factors, which include the
market common returns. A good estimation of the idiosyncratic information will give an analyst a
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better understanding of market risk for different stocks in order to minimize portfolio risk. The question
is how to use SVD to extract the market factors and how MySVD performs compare to the conventional
SVD while extracting factors.

4.2. Factor Extraction

In statistical factor models, the factor realizations ft are not observable and must be extracted from
the observable returns Rt using statistical methods. The approach here is using SVD for extracting
factors. This approach uses historical stock-price data on a cross-section of N stocks and T days. Let us
represent the return data on any given time t0 of stock i as

Rit = log(
Pi,t+1

Pi,t
), i = 1, . . . , N, t = 1, . . . , T,

where Pit is the price of stock i at time t. Now, each column of return matrix R represents each stock
cross the time, and the row represents all stocks’ return at one time t.

Apply SVD to the return matrix R. The meaningful information are singular-values λ, which
can describe the explanatory power [20] and right eigenvectors V. Since the sum of the square
of all singular-values is the total variance for the stocks’ return, the ratio of the sum of square of

selected singular-values to the total sum is used ∑n
i=1 λ2

i
∑total

i=1 λ2
i

(assuming we select n singular-values) as

the explanatory power that explains how much of the total variance is explained by the selected
singular-values. The eigenvectors corresponding to the selected singular-values are the linear
parameters in factor fqt. As pointed out by several authors [23], the dominant (first) eigenvector
is associated with the market portfolio, which means using the first eigenvector to construct a portfolio
that could mimic market returns. From the technique point of view, the reason is because the first
eigenvector explains most of the matrix information, and it is very close to the original matrix.
Therefore, we can construct the market portfolio as follows,

Di = wi =
v(1)i

∑ v(1)i

Ft =
N

∑
i=1

DiRit, t = 1, . . . , T,

where wi denotes the weight for each stock in the market portfolio, which can also been considered
as the amount of dollars invested in each stock Di. Ft represents the portfolio returns at each time t.
v1

i denotes the values in the first eigenvector, and only the portfolio constructed by the first eigenvector
can replicate the market return.

There are several advantages of using SVD for stock market factor analysis. Firstly, the factor
explains more information than the other two factor extracting methods, since the statistical factors are
extracted directly from the observable data, and they cannot be observed from the market. Secondly,
factors are strictly uncorrelated, which cannot be guaranteed by using traditional factor analysis
methods, since the eigenvectors calculated by SVD are orthogonal. Then, by using SVD to extract
the factors, the first factor (the most principal component) explains the most information from the
return matrix, and the following factors explain the rest, so that it is possible to construct a portfolio
that mimics market returns. Lastly, typical algorithms for factor analysis are not efficient for very
large problems, however, SVD can deal with large dataset. Normally, researchers use five factors [20],
however, there was several methods for determine the number of factors [24].
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4.3. Numerical Example

As discussed above, in order to get a better analysis of idiosyncratic stock risk it is important
to estimate factors as accurate as possible. Good factors mean that factors can represent market
returns very efficient, including all market effects and excluding idiosyncratic effects. Thus, there are
two criteria being used to measure the quality of factors. Firstly, the explanatory power of selected
singular-values. Secondly, how good the first eigenvector can represent market returns. Depending on
these two criteria, the comparison of conventional SVD and MySVD are shown.

The data used in this example is daily price data of 2658 stocks from New York Stock Exchange
(NYSE) in year 2015 (from January 1st to December 1st, 231 trading days), thus the return data matrix
is 230× 2658. In this example, data was acquired from Wharton Research Data Services (WRDS) and
analysis was programmed by MATLAB. The Log returns for each stock is show n in the Figure 5.
As shown in the figure, most returns are in the range from −0.2 to 0.2. However, since most stocks
traded in NYSE are included in this example, some of them were not traded during the whole example
period. Therefore, missing values and extreme returns exist, especially a few returns that exceed 1
(or −1). When using conventional SVD on the return matrix, those extreme values will highly effect
the result. The consequence would be that the factors contain more idiosyncratic information (returns
and risks). If the factor estimation is not accurate, the single stock risk analysis result will be highly
effected. Thus, the robust method that can eliminate those effects of outliers is very necessary. Both
conventional SVD and the MySVD (p = 0.3) were applied to the same return matrix, and the results
are shown below.

Figure 5. Log Returns for Stocks.

Table 2 shows the explanatory power for two SVD methods. Here, five factors were used as
previous research did [20]. Clearly, the result shows that after removing the effects of extreme returns,
the MySVD could explain more variance than conventional SVD, which can promise more accurate
factor estimation.

After that, we check the second criteria of how good the first eigenvector can represent the market.
The S&P 500 were used as benchmark, since S&P 500 are normally considered as a good representation
of market. Seen in Figure 6, the solid blue line is S&P 500 return and the red and yellow dashed lines
are market portfolio returns constructed by using MySVD and conventional SVD, respectively.

The mean square error (MSE) between the S&P 500 line and myriad robust line is 0.2149, and the
MSE between S&P 500 line and conventional SVD line is 2.0612, that clearly shows that the robust
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market portfolio return is more close to the market return. Based on the two criteria and the discussion
above, the MySVD outperforms the conventional SVD.

Table 2. Increase in Explanatory Power from Adding Each Factor.

Factors Conventional SVD Myriad Robust SVD (MySVD)

1 23.7% 34.8%
2 10.2% 14.6%
3 9.4% 8.4%
4 6.2% 6.3%
5 2.3% 2.0%

All Factors 51.8% 66.1%

Figure 6. S&P 500 returns and Market Portfolio returns constructed by MySVD and conventional SVD.

Another common used way to examine the factor efficiency is Fama–MacBeth regression [25].
The method works with multiple assets across time (panel data). The testing process has two steps:
first regress each return against the proposed risk factors to determine that asset’s beta for that risk
factor. Then, regress all asset returns for a fixed time period against the estimated betas to determine
the risk premium for each factor. After the second regression, check the statistics to determine which
factors explain the market return better.

As shown in Table 3, the estimation value of stock specific factor terms εit is smaller using MySVD
than conventional SVD, which are assumed to be zero based on asset pricing theory. The h-value and
p-value also shows that by using MySVD, the null hypothesis (εit = 0) should be accepted. On the
contrary, the null hypothesis should be rejected in the conventional SVD method. As for statistical
significance, the significance level is α = 0.05. The p-values for the MySVD and SVD are approximately
0.38 and 0.000002, respectively. Thus, the value of εit for MySVD is generally statistically close to
zero. The last statistic R2 shows that factors extracted by the MySVD method can explain more data
variations than the factors extracted by conventional SVD, the proportion explained are 69.59% and
67.41%, respectively. As we know, economists try to fully capture the market by using different
factors, and they think that if the stock specific factor terms εit is not zero under this circumstance that
means this stock is mispriced or under high individual risk. Therefore, the factors that can capture
more information from market would help economists to do forecast and stock risk identification.
The capability of extracting efficient factors of MySVD is proved.
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Table 3. Statistics for comparing two methods.

εit h-Value p-Value R2

MySVD −0.00078 0 0.3776 0.6959
SVD −0.0053 1 2.3× 10−6 0.6741

5. Conclusions and Future Research

Conventional SVD is a least square method that is very sensitive to outliers. In order to deal with
the noise in practical data, such as financial data, an adjustable robust SVD algorithm is proposed
in this paper that depends on the robustness power of myriad estimator. Robustness and efficiency
for different estimators are discussed and the superiority of the myriad estimator is proven. The
proposed MySVD method is also extended to the sequential SVD algorithm, as the proposed sequential
MySVD method. Lastly, a financial application shows how to apply the MySVD algorithm to real data,
especially financial data. The result shows that MySVD significantly outperforms the conventional
SVD method that can eliminate the effects from outliers and come up with a more accurate factor
estimation. Based on both theoretical and practical analysis, MySVD algorithm is proved powerful.

In the future study, since the capability of MySVD to handle different level of noise is proven,
it could be applied to much broader financial applications. For example, the case of financial crisis and
volatility clustering study. Financial crisis and volatility clustering are important financial anomalies
that researchers try to explain. With the help of MySVD, it is possible to ignore the noise brought
by crisis and extreme volatility in order to obtain a base market trend, which could help to better
understand the fundamental market movement. Other financial applications, such as macroeconomic
system analysis [26–29], may also be able to test the efficiency of MySVD algorithm, which we will be
considered in following studies. From the pure data analysis point of view, MySVD can also serve as a
data pre-screening method that cleans and eliminate outliers before training other data mining models.
Especially real time models, which need to be processed sequentially. The design and numerical test of
MySVD in this paper paves the way for potential future explorations.
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The author also appreciates the valuable suggestions from reviewers.
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Appendix A. A Simulation Example

We start by generating a 10 × 10 additive data matrix xij = µ + αi + β j + e, where
µ = 1, α = {−5,−4, . . . , 4, 5}, β = {−5,−4, . . . , 4, 5} and the random noise term e is N(0, 0.125).
This data matrix is of approximately rank two after the overall mean is removed. Second, we
contaminate the data by adding four outliers (add 15 to four randomly chosen cells in the data
table). The mean square error (MSE) for the contaminated data matrix is 289.7705. This example was
proposed in D. Hawkins’ paper [4] discusses biplot using AL1-SVD. In his discussion, they just went
to rank two approximation and no further discussions. However, in practice, we do not know the rank
when we first get a raw data matrix, which means we cannot simply choose rank-2 approximation
without showing what happened to the further eigenvalues. The correct process of choosing how many
ranks to use should first calculate all eigenvalues, and then pick those significantly large eigenvalues
used as approximation. We applied both SVD, AL1-SVD, and MySVD to this synthetic data matrix
(both original data and contaminated data), and calculated the eigenvalues that are shown in Figure A1.
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(a) (b) (c)

(d) (e) (f)

Figure A1

Figure A1 shows the total ten eigenvalues for SVD, AL1-SVD, and MySVD, respectively. On the
first row, Figure A1a–c are calculated under original data (noise-free), and Figure A1d–f are under
contaminated data. Because the data matrix is rank two, the first two eigenvalues are obviously
larger than the others. However, under the noise condition, only the first two eigenvalues generated
by MySVD that are significantly larger than the rest eight and very close to the values under noise
free condition, which indicates only MySVD has precisely detected the outliers and achieved a good
estimation. The other two SVD methods were effected by the noise to different extents, which makes
it difficult to decide how many eigenvalues to use to estimate the original data. In addition, another
commonly used approach for chosen rank is to look at the data variance explained percentage, which
are also calculated and shown in the Figure A2.

The first row in Figure A2 is also under the noise-free condition, and the second row is under the
noise condition. As we can see, if we only use two eigenvalues we cannot even have 90% and 80%
variance explained by using SVD and AL1-SVD, respectively. However, we are able to explain 99%
of variance by using MySVD. Therefore, it is reasonable to choose first two eigenvalues in MySVD.
However, it is not clear while using other two methods, which might be need four or five eigenvalues.
Obviously, two eigenvalues is the correct amount to use, and other two methods are disturbed by noise.
Moreover, we can further compare the estimation errors. The MSE for SVD, AL1-SVD and MySVD
are 190.4593, 6.3792, 4.1003, while using two eigenvalues to estimate, respectively. The estimation
results show that AL1-SVD and MySVD are robust under the rank two approximation but SVD is not.
However, while using five eigenvalues to do estimation, the MSE are 289.7404, 289.7691, and 1.1397,
respectively. Thus, we can see that the MySVD is more robust and more accurate than AL1-SVD.
Besides, in practical studies, MySVD is more reliable on eigenvalue selection. This simulation example
clearly shows the robustness and efficiency of MySVD algorithm.
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Figure A2
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