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Abstract: A standardized descriptive ontology supports efficient querying and manipulation of data
from heterogeneous sources across boundaries of distributed infrastructures, particularly in federated
environments. In this article, we present the Open-Multinet (OMN) set of ontologies, which were
designed specifically for this purpose as well as to support management of life-cycles of infrastructure
resources. We present their initial application in Future Internet testbeds, their use for representing
and requesting available resources, and our experimental performance evaluation of the ontologies in
terms of querying and translation times. Our results highlight the value and applicability of Semantic
Web technologies in managing resources of federated cyber-infrastructures.
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1. Introduction

Cloud computing supports many distributed applications that are vital to the economy and to
the advancement of science. The rising popularity of cloud computing and the diversity of available
resources create an urgent need to match those resources optimally to the requests of end-users.

The desired level of self-serve operation within the cloud obviates the need for intervention
by IT departments, allowing end-users direct and independent access to the computational
infrastructure. As a result, end-users can deploy the necessary infrastructure and software
solutions rapidly. Toward this end, accurate modeling of the infrastructure must support abstract
representation of various resources, simplify interactions with them, and expose the right levels of
information. The next frontier in cloud computing lies in supporting widely distributed clouds and
the various aspects of the architectures needed to manage resources across multiple administrative
domains. These problems are also closely related to future Internet research in academia, as well as to
emerging commercial technologies like the Internet of Things (IoT) [1].
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Modeling cloud infrastructures in a manner that supports effective matching of users’ requests
with available resources is a challenging task. The issue becomes even more complex in the context
of distributed cloud systems with multiple infrastructure owners. In the academic research the same
problem is encountered when trying to describe computational resources, scientific instruments
and testbeds, which belong to different institutions and must be used by inter-disciplinary and
inter-institutional collaborative teams. In such environments each infrastructure owner may model
resources using their particular information and data modeling approach to set up the system quickly
and attract users. The end-result, however, is user lock-in and inability to easily leverage available
resources if they belong to different owners. Thus, resource matching and recommendation based on
common models becomes of great importance.

This paper describes Open-Multinet (OMN) [2], a set of ontologies that rely on Semantic Web
(Semantic Web) [3] technologies. It was designed by an international team of academic researchers
who are intimately familiar with the related problems. The OMN researchers are also involved in
multiple efforts to design a federation of Future Internet and cloud testbeds spanning the US and
the EU, to be used for at-scale experimentation with novel concepts in networking and distributed
systems. While we briefly introduced the ontology set in [2] and presented a preliminary description
of its application in the context of a federated cloud environments in [4], in this paper we complement
our previous work by an extended description of the OMN ontology set and we further added new
evaluation results of the overall OMN framework.

Motivation for our work comes largely from our experience with the growth of academic
networking, including the proliferation of cloud testbeds. Their ad hoc attempts to federate with each
other, i.e., to make their resources available to wider communities of users through common interfaces,
suffer from a lack of common models to describe available resources. Testbed owners use such models
chiefly to provide their users with information about available resources, e.g., compute nodes, storage,
network switches, and wireless access points. Each user, in turn, employs similar models to request
resources from the testbeds, describing in some detail the exact configuration of available resources
needed from the testbed.

Most testbeds are small when they first launch. Their designers often spend little time thinking
through the information model that they wish to use to present resource information to users. Testbeds
frequently rely on home-brewed solutions utilizing syntactic schema specifications serialized using
XML or JSON, sometimes referred to as RSpecs, although RSpec is also a name of a specific XML dialect
used by a subset of testbeds in the US. Documents expressed in those languages are passed between
the users and the testbed management software in order to describe the available resources and to
request specific configurations of resources for the experiments. While the built-in mechanisms in those
languages allow for straightforward verification of document syntax, few mechanisms are available
for validation of semantic correctness. These solutions typically rely on structure-implied semantics to
validate correctness by associating semantic meaning rigidly with the position of information elements
within the document.

These approaches tend to work in early phases of the design. As the diversity of resources grows,
however, and as the sophistication of users increases, the need arises for extension mechanisms.
Demand emerges for more powerful resource descriptions. The extension mechanisms then inevitably
relax the structure-implied semantics, thus making validation of documents progressively more
difficult. We observed this development first-hand in the case of US Global Environment for
Network Innovations (GENI) [5] and EU Future Internet Research and Experimentation (FIRE) [6]
testbed-federation efforts. XML schema extensions were introduced to allow different federation
members to describe the unique attributes of their cloud testbeds. The extensions, we found, made it
possible to create syntactically valid but semantically invalid documents requesting resources from
a testbed, e.g., by requesting that a particular operating-system image be attached to a network
interface instead of to a compute node.
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Informed by these experiences, we decided to adopt Semantic Web technologies, which provided
us with a number of advantages:

• A common standardized model is used to describe cloud and testbed infrastructures.
The extensibility of this model is built into it from the start in the form of additional ontologies
that describe new types of resources. The machinery to deal with extensions is built into standard
semantic web toolkits, leaving the designers free to think about the information model while
affixing the data model.

• Different resources and descriptions easily can be related and connected semantically. Semantic
web mechanisms intuitively represent computer network graph structures. Network topologies
are embedded into the RDF graph using graph homeomorphisms and then are annotated with
additional information, addressing structural and semantic constraints in a single structure.

• Model errors can be detected early, before testbed resources are provisioned, by using many
standard inference tools.

• Rules can in particular be used to complement queries. Rules for harmonizing relationships should
to be defined and applied on the federation level. This is where specialties and commonalities
of the involved testbeds are known and this approach lifts the burden from users to formulate
complex queries.

• The annotation process, i.e., the conversion from XML-based RSpecs to RDF-based graphs,
is automatic and configurable to take testbed specific extensions and federation-wide agreements
into account.

• Using standard Semantic Web tools, complex queries can be formulated to discover resources.
A common way for testbeds to operate is by ingesting JSON/XML or other encoding of the user
request or resource advertisement and then converting it into a non-portable native form on
which queries and embeddings are performed. Semantic web tools allow us to store testbed-state
information natively in RDF and to operate on that information using a multitude of native
inference and query tools, thus simplifying and abstracting many parts of testbed operations.

• Once cloud resources are described semantically, they can be interlinked to other Linked Open
Data (LOD) [7] cloud data sets. These linkages provide additional information about resource
availability or constraints and help to link resources, e.g., to policies governing their allocation.

• Semantic resource descriptions support convergence from multiple syntactic-schema based
representations of testbed resources to a single semantically enriched representation that combines
information from multiple sources. Such sources include various RSpecs describing testbed
resources, out-of-band knowledge that may be encoded in resource names or contained in
human-readable online Web pages, an approach consistent with Ontology-based Data Access
(OBDA). Encoding this information in a structured way into a single representation prepares it for
direct analysis, without need of an intermediate representation. Answers are derived by matching
resources required by the user to those available at one or more different testbeds, federating the
testbeds automatically, with minimal human intervention.

We believe that our approach represents an interesting application of OBDA to a novel area of use
that combines information search and retrieval with active infrastructure-resource management.

The OMN development effort consisted of several phases, starting with the upper ontology
design, followed by the design of several critical subordinate ontologies for, e.g., resource monitoring.
We relied heavily on previous work in this area, directly incorporating, for instance, the Infrastructure
and Network Description Language (INDL) [8,9] ontology for describing computer networks and
the Networking innovations Over Virtualized Infrastructures (NOVI) [10] ontology for federated
infrastructures. We then started developing tools that utilize the ontology, including converters from
the various testbed resource description formats to OMN, inference rules for knowledge extension to
complement the conversion process, and rule sets for semantic validation of the documents. We also
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developed standard queries that assist the testbed resource-matching algorithms in extracting needed
information from the testbed resource descriptions.

The remainder of the paper is structured as follows. We give a brief overview of related work in the
context of (federated) heterogeneous computing infrastructures in Section 2. In Section 3, we present
the OMN ontology set. Section 4 shows how we extract information from RSpecs and annotate it
using additional knowledge extraction from out-of-band information. Querying and validation using
traditional semantic web stools are then performed by the tools built on this framework. Section 5
shows the performance and applicability of our tools. Finally, we close in Section 6 with conclusions,
considerations, and a description of future work.

2. Related Work

Many application disciplines shifted the focus from tree-based data models (e.g., XML-based
syntactic schemas) to semantic models. This change is reflected in development of ontologies to
support, for example, the operation of Grids, Clouds, and now the Internet of Things. These efforts
have informed our own OMN development. In the coming section, we provide an overview of
these efforts.

2.1. Semantic Models For Grids, Clouds and IoT

In the context of Grid Computing, the Grid Laboratory for a Uniform Environment (GLUE) [11]
schema was started 15 years ago to support interoperability between Grid projects by defining
a schematic vocabulary with serializations to XML, LDAP, and SQL [12]. A lack of formalism and
a consequent inability to perform logical operations on data motivated the transition to Semantic Open
Grid Service Architecture (S-OGSA) [13].

Semantic Web service discovery [14,15] addresses the automated discovery of Web services that
satisfy given requirements. The discovery process uses a matchmaking algorithm to find potential
Web services that might solve the problem at hand. Such methods, however, are inadequate to
handle the complex interconnected computing infrastructures addressed by our work. Research on
matching concentrates mainly on Web services [16], specifically, on semantic similarities between
input and output parameters of various services. Our resource-matching involves more than matching
available resources to the requirements of the end-user. We also need to identify homeomorphic
embeddings of requested topologies within available resource topologies. The combination of such
semantic and structural constraints leads to a substantially greater challenge. Pedrinaci et al. introduced
Linked USDL (Linked USDL) [17], a vocabulary that applies research conducted on Semantic Web
services to USDL [18,19]. Linked USDL provides comprehensive means to describe services in support
of automated processing. It focuses only on services, and is unsuited to the description of cloud
infrastructures. Ontologies such as the Semantic Markup for Web Services (OWL-S) [20] or Good
Relations (GR) [21], however, are of interest to our work, and are referenced in part in our ontology.

In the domain of Cloud Computing, researchers are working to ensure interoperability on
a semantic level. Since 2008, work has progressed in the development of ontologies and of tools
for semantic cloud computing [22–24]. Haase et al. [25], for example, introduced an approach to
administration of enterprise cloud environments, using semantic Web technologies. They proposed
a Semantic Web-based product called eCloudManager, which incorporates an ontology to model
its cloud data. However, the system and its ontology only focus on the management aspect of
cloud systems, and the data are not open for usage. In another example, Haak et al. [26] proposed
an ontology-based optimization methodology that enables cloud providers to detect the best resource
set to satisfy a user’s request. Their framework handles only a single administrative domain, whereas
we seek to cover a distributed set of provider domains.

A paradigm shift is in progress in favor of Intercloud Computing. For instance, 20 approaches
to this new challenge are presented in [27]. Within this context, Manno et al. proposed the use of
the semantic Federated Cloud Framework Architecture (FCFA) [28] to manage resource life cycles
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based on formal models. In contrast, the Intercloud architecture developed within the Institute of
Electrical and Electronics Engineers (IEEE) Standard for Intercloud Interoperability and Federation
(P2302) [29,30] Working Group uses graphs to describe and to discover cloud resources based on the
existing Open-Source API and Platform for Multiple Clouds (mOSAIC) [31] ontology. Both approaches
are being considered as domain-specific extensions to our work. In addition, Santana-Pérez et al. [32]
proposed a scheduling algorithm that was suitable for federated hybrid cloud systems. The algorithm
applies semantic techniques to scheduling and to matching tasks with the most suitable resources.
The information model is based on the Unified Cloud Interface (UCI) project ontologies, which cover
a wide range of details but which cannot handle Intercloud systems. Le and Kanagasabai [33,34]
also proposed ontology-based methodologies to discover and to broker cloud services. They use
Semantic Web technologies for user requirements and for cloud provider advertisements, and then
apply an algorithm to match each requirement list to advertised resource units. Multiple levels of
matching are defined, ranging from an exact match to no match. These methodologies concentrate
only on Infrastructure as a Service (IaaS) provisioning. Moreover, they typically neither export their
data nor provide a SPARQL Protocol And RDF Query Language (SPARQL) [35] endpoint, thereby
hindering reuse of and access to data.

Interest has soared recently in the uses and challenges of the Internet of Things in which many
heterogeneous devices from different administrative domains communicate with each other. Semantic
models are needed for the IoT. The European Research Cluster on the Internet of Things (IERC) has
established Activity Chain 4—Service Openness and Interoperability Issues/Semantic Interoperability
(AC4) [36], and semantic models such as the Semantic Sensor Network (SSN) [37] ontology have
been developed. Support for semantics in Machine-To-Machine Communication (M2M) [38] has
received further attention [39]. The primary applicable standardization activity from the European
Telecommunications Standards Institute (ETSI) M2M Working Group has identified the need for
a semantic resource descriptions in [40]. The successor, oneM2M (http://onem2m.org) [41], already
has established the OneM2M Working Group 5 Management, Abstraction and Semantics (MAS).
With the recent establishment of the World Wide Web Consortium (W3C) Web of Things (WoT) [42]
Working Group, semantic vocabularies will be developed to describe data and interaction models.

2.2. OMN Background

Development of our approach, the OMN ontology set, started within the Federation for FIRE
(Fed4FIRE) [43] project. The aim was to extend and to harmonize related work for the FIRE initiative,
which has been developed within the context of federated networks and e-infrastructures. Our main
motivation was the state of the art in the Future Internet (FI) experimentation context, which considers
only simple schema-based models. The Slice-based Federation Architecture (SFA) [44] is the de-facto
standard Application Programming Interface (API) for testbed federation. It uses XML-based RSpecs to
describe, to discover, and to manage resources in a simple declarative way. However, it cannot support
complex queries combining structural and semantic constraints or knowledge analysis. OMN ontology
design reuses concepts previously defined in RSpecs, but also leverages significant prior efforts to
define ontologies targeting cyber-infrastructure management.

The Open Grid Forum (OGF) Network Mark-Up Language (NML) [45] is a well established
ontology for modeling computer networks. It provides a framework for definition and description
of topologies ranging from simple networks comprising a few nodes and connections to massive,
complex networks with hundreds or thousands of nodes and links. The model underwent a thorough
review and definition process, finally becoming an OGF standard. While NML lacks concepts and
properties required to describe federated infrastructures, OMN adopts NML in order to model the
networking aspects of the infrastructure.

In comparison with NML, the INDL addresses virtualization of resources and services.
It supports description, discovery, modeling, composition, and monitoring of those resources and
services. The INDL actually imports NML to describe attached computing infrastructures in a manner

http://onem2m.org
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that is independent of technology and vendor. It offers the capacity to extend coverage to emerging
network architectures. The INDL, however, does not support infrastructure federation, in which
several different testbeds are interconnected experimentally.

Semantic models developed within the European NOVI and GEYSERS [46] projects have been
used to describe federated infrastructures, user requests, policies, and monitoring information.
They also support virtualization concepts for computing and networking devices. They have been
adopted by OMN where their incorporation is appropriate. In the first project, the proposed
Information Modeling Framework (IMF) [47] represents resources from the same or from different
infrastructure providers.

In parallel to this, within the GENI initiative, the Network Description Language based on the
Web Ontology Language (NDL-OWL) [48–51] model specifies capabilities to control and to manage
complex networked testbed infrastructures. Lessons learned from live deployments of NDL-OWL in
GENI proved informative in OMN modeling discussions.

Efforts related to describing APIs via OWL-S or DAML-S are not applicable directly to our problem,
since they focus on the description of Web-service APIs. The testbeds in our research converged on
a set of simple API calls like createSlice (requesting that a desired network topology be created)
or listResources (requesting information about available infrastructure resources). The complexity
lies in the parameters passed in those calls, not in the diversity of types of parameters serving as
inputs or outputs to the APIs. Those parameters often are represented by XML documents describing
requested or available testbed resource topologies. Our goal is to replace those syntactic-schema-based
representations with semantic-web based views. We want them to include enough information to
support native querying based on both structural and semantic constraints, either by the users or by
testbed management algorithms.

3. Open-Multinet Ontology Set

Following Noy and McGuiness[52], the first step for defining a formal information model is
to determine the specific domain and scope of the proposed ontology. As stated in Sections 1
and 2, the initial objective was to support resource management in federated infrastructures for
experimentation. The related phases to this management effort are depicted in Figure 1. Each step
embodies a wide range of requirements and challenges. We particularly highlight the first phase in
this paper; however, our approach was to provide a hierarchical set of ontologies to cover the whole
resource life-cycle.

Discovery Reservation Experiment Termination

Resource
Information
Model

Topology 
Scheduling 
Model

Automated /
Manual Resource 
Control

Data Storage 
and Resource 
Release

Requirements

Topology
Selection
Description

Provisioning

Direct or
Orchestrated
Instantiation

Monitoring

Resource or 
Experiment 
Measurement

Identity Management
Authorization

Trustworthiness

APIs

Figure 1. The experiment life-cycle phases and protocols.

3.1. Design

After identifying the scope of the reusable work (cf. Section 2), we have defined the significant
concepts and properties. Consequently, our ontology bundle consists of nine ontologies, specifically
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the omn upper ontology and eight descendant ontologies (cf. Figure 2): omn-federation; omn-lifecycle;
omn-resource; omn-component; omn-service; omn-monitoring; omn-policy; and domain-specific extensions
called omn-domain-xxx.

omn

omn-
federation

omn-
lifecycle

omn-
resource

omn-
component

omn-
service

omn-
monitoring omn-policy

omn-
domain-sdnomn-
domain-sdnomn-
domain-xxx

Figure 2. Open-Multinet ontology hierarchy [4].

These ontologies can be used to describe formally a federation of e-infrastructures, including types
and attributes of resources as well as services available within the federation. Ontologies also describe
the life-cycle phases of usage. The various ontologies extend the upper OMN ontology (solid lines),
which contains common concepts used within the other models. To describe concrete resources within
a particular infrastructure, domain-specific ontologies might need to be defined that use and extend
selected subsets of the OMN ontologies (dotted lines, see Section 3.1.9).

3.1.1. OMN Upper Ontology

The omn upper ontology defines the abstract terms required to describe federated infrastructures
in general.

It includes a set of classes representing concepts providing general terms to model federated
infrastructures, along with their respective components and services. These concepts are as follows:

• Resource: a stand-alone component of the infrastructure that can be provisioned, i.e., granted to
a user such as a network node.

• Service: is a manageable entity that can be controlled and/or used via either APIs or capabilities
that it supports, such as a SSH login.

• Component: constitutes a part of a Resource or a Service, such as a port of a network node.
• Attribute: helps to describe the characteristics and properties of a specific Resource, Group, Resource,

or Component, such as Quality of Service (QoS).
• Group: is a collection of resources and services, for instance, a testbed or a requested network

topology logically grouped together to perform a particular function.
• Dependency: describes a unidirectional relationship between two elements such as Resource, Service,

Component, or Group. It may define, for example, an order in which particular resources need to
be instantiated: first, a network link, and then, the compute nodes attached to it. This class opens
up the possibility of adding more properties to a dependency via annotation.

• Layer: describes a place within a hierarchy to which a specific Group, Resource, Service, or Component
can adapt. Infrastructure resources naturally fall into layers, with resources at higher layers
requiring presence of resources at lower layers in order to function.

• Environment: the conditions under which a Resource, Group, or Service is operating, as in,
e.g., concurrent virtual machines.

• Reservation: a specification of a guarantee for a certain duration. Hence, it is a subclass of the
”Interval” class of the W3C Time ontology [53].
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The OMN upper ontology has 23 properties, of which the following are the most significant:

• hasAttribute: the Attribute associated with a Component, Resource, Service, or Group; e.g., CPU speed,
or uptime.

• hasComponent: links a Component , Resource, or Service to its subcomponent.
• hasGroup: connects a Group to its subgroup; it is the inverse of isGroupOf.
• hasReservation: relates Group, Resource or Service to its Reservation.
• hasResource: declares that a specific Group has a Resource.
• hasService: declares that a Group, Resource or Service provides a Service.
• withinEnvironment: defines the ”Environment” in which a Group, Resource, Service, or Component

operates. An example of environment is the operating system under which a resource works.

To support rich querying and inferences, inverse counterparts have been declared for most
properties. Figure 3 illustrates the key concepts and properties of the OMN ontology.
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Figure 3. The key concepts and properties of the omn upper ontology.

3.1.2. OMN Federation

A crucial part of the developed ontology set is the formal description of the relationship between
the involved e-infrastructures (see Figure 4). This allows to describe how resources relate to each
other from the highest organizational level and depicts the starting point to discover capabilities and
offered services. Federated providers maintain their autonomy in making resource-allocation decisions;
however, they inter-operate with some federation-level functions, such as identity management or
resource advertisement. To model these aspects, the omn-federation ontology introduces the concepts
of a Federation, FederationMember, and Infrastructure, along with properties hasFederationMember and
isAdministeredBy. The first two are subclasses of the schema:Organization class, which allows them
to be described by properties of the Schema vocabulary. The latter concept relates infrastructures to
a federation or to its members, and finally subclasses the Group concept which allows infrastructures
to expose services with endpoints, such as an SFA Aggregate Manager (AM).

3.1.3. OMN Life Cycle

Another important ontology is the omn-life cycle, which addresses life-cycle management of
a collection of resources and services (e.g., a requested network topology) that are grouped together
to perform a particular function (e.g., to conduct an experiment or to deploy a service architecture).
The life-cycle of the resources is described by a set of allocation and operational state changes such as
Allocated, Provisioned, Unallocated, Pending, Ready, Started, and Stopped. The life-cycle of the collection of
resources reflects the first four phases of Figure 1:
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1. the infrastructure provider advertises an Offering describing the available resources;
2. the user forms a Request defining the required collection of resources to the infrastructure provider;
3. the Confirmation contains an agreement by the provider, termed bound (tied to a specific set of

physical resources) or unbound, to provide the requested resources;
4. and, finally, a Manifest describes the provisioned resources and their properties.

Each of these stages is represented as a subclass of the Group concept.

omn:
Infrastructure

omn:
Federation

schema:
Organization

rdfs:subClassOf

omn:
FederationMember

rdfs:subClassOf

omn:isAdministeredBy

omn:partOfFederation

owl:inverseProperty

owl:inverseProperty

omn:hasFederationMember

omn:administers

Figure 4. Open-Multinet (OMN) Federation Ontology.

3.1.4. OMN Monitoring

It describes the main concepts and relations to support monitoring services within federated
infrastructures. It includes, therefore, multiple classes and properties that define measurement Metrics,
their Data, Unit, Tool, and further Generic-Concepts. The monitoring ontology therefore comprises
an upper-level ontology. It describes the common, basic concepts and properties, which then are
reused and specialized in the subjacent ontologies.

3.1.5. OMN Resource

The OMN Resource ontology deals with the networking aspect of the infrastructure. It supports
the creation of complex networks of interconnected resources. It include concepts and properties,
e.g., Node, Link, and IPAddress, which are required for defining complex networks. It also supports
defining single or bi-directional links, which can be utilized for defining the direction of packet flow
across the link(s).

3.1.6. OMN Component

This ontology describes any entity that is part of a Resource or a Service; however, in itself, it is not
a Resource or a Service. The OMN Component ontology describes concepts that are subclasses of the
Component class defined in the OMN Upper ontology. It covers several classes to describe a set of
basic entities in any Information and Communication Technology (ICT) infrastructure such as CPU,
and Memory. Any class or instance of these can be the range of the property hasComponent that has
a Resource, Service, or even another Component as a domain.

3.1.7. OMN Service

This ontology deals with ICT services. Any entity that delivers a value for its user is considered
by the OMN Service ontology as a service. Examples can be services that offer APIs or login
capabilities such as SSH. This ontology includes a set of classes to describe those services being
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used in ICT infrastructures. The current version covers a set of services being used and implemented
by OMN ontology within the context of the application area addressed in this paper, namely the
FI experimentation.

3.1.8. OMN Policy

This ontology will cover policy-related concepts and relations. We consider the NOVI policy
ontology as a starting point for its design, as it supports [10]:

• Authorization policies that specify authorization rights of users within the federation.
• Event-condition-action policies that enforce control and management actions upon certain events

within the managed environment.
• Role-based-access control policies that assign users to roles, with different permissions/usage

priorities on resources.
• Mission policies that define inter-platform obligations in a federation.

3.1.9. OMN Domain Specific

OMN provides a way to define domain-specific ontologies, which customize the definition of
concepts and relations for a particular ICT application. This allows a set of concepts and relations
that are specific to a particular domain to be grouped along with some concepts and relations from
other OMN ontologies to form a domain-specific ontology. Examples of these ontologies include,
for instance, OMN Wireless ontology and OMN Cloud ontology, used to define the behavior of wireless
networks and of cloud infrastructures, respectively. Another example includes the specification of
an operating system (OS) version within a disk image, using omn-domain-pc:hasDiskimageVersion.

3.2. Use of Existing Ontologies

As described in Section 2 the OMN ontology set is inspired by and based on a number of existing
formal information models. As an indicator, in Listing 1 a list of referenced vocabularies are shown that
are used within the upper OMN ontology. An OMN Service, for example, has relationships to novi:Service,
dctype:Service, gr:ProductOrService, service:Service, schema:Service, nml:Service, and owl-s:Service.

Listing 1: Used ontologies within omn.ttl
1@prefix : <http://open−multinet.info/ontology/omn#> .
2@prefix cc: <http://creativecommons.org/ns#> .
3@prefix dc: <http://purl.org/dc/elements/1.1/> .
4@prefix gr: <http://purl.org/goodrelations/v1#> .
5@prefix nml: <http://schemas.ogf.org/nml/2013/05/base#> .
6@prefix owl: <http://www.w3.org/2002/07/owl#> .
7@prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
8@prefix xml: <http://www.w3.org/XML/1998/namespace#> .
9@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
10@prefix foaf: <http://xmlns.com/foaf/0.1/> .
11@prefix indl: <http://www.science.uva.nl/research/sne/indl#> .
12@prefix move: <http://www.ontologydesignpatterns.org/cp/owl/move.owl#> .
13@prefix novi: <http://fp7−novi.eu/im.owl#> .
14@prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
15@prefix time: <http://www.w3.org/2006/time#> .
16@prefix vann: <http://purl.org/vocab/vann/> .
17@prefix voaf: <http://purl.org/vocommons/voaf#> .
18@prefix color: <http://geni−orca.renci.org/owl/app−color.owl#> .
19@prefix owl−s: <http://www.daml.org/services/owl−s/1.0DL/Service.owl#> .
20@prefix dctype: <http://purl.org/dc/dcmitype/> .
21@prefix schema: <http://schema.org/> .
22@prefix dcterms: <http://purl.org/dc/terms/> .
23@prefix service: <http://purl.org/ontology/service#> .
24@prefix collections: <http://geni−orca.renci.org/owl/collections.owl#> .
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3.3. Implementation

We selected OWL2 to encode the OMN ontology suite due to its expressiveness, wide acceptance,
and available tools. To ensure quality, changes to the ontologies are automatically checked using
Apache Jena Eyeball inspectors; other validators such as the OntOlogy Pitfall Scanner (OOPS) [54] are
executed manually.

As part of the design process we are taking steps to ensure the broadest possible dissemination of
the ontologies. As a result, we are using Dublin Core (DC), Vocabulary for Annotating Vocabulary
Descriptions (VANN), and Vocabulary of a Friend (VOAF) vocabularies to describe the associated meta
information. We are publishing the files by following best practices (http://www.w3.org/TR/swbp-
vocab-pub/). The URL http://open-multinet.info/ontology/omn provides both a human-readable
documentation and machine-readable serializations. We have registered the permanent identifier https:
//w3id.org/omn and published the root ontology to the Linked Open Vocabulary (LOV) repository
(http://lov.okfn.org/dataset/lov/vocabs/omn). Additionally, we have registered the omn name space
(http://prefix.cc/omn). The source code of, and an issue tracker for, the ontologies are publicly
available (https://github.com/w3c/omn).

In order to make the work recognizable to the international community, we established the
Open-Multinet Forum, which is named after the ontology, and created the W3C OMN Community
Group (https://www.w3.org/community/omn).

4. Information Querying and Validation

4.1. DBcloud Application For Federated Experimental Infrastructures

Most of the requirements for the development of OMN are rooted in research issues within
the life-cycle management of resources across federated experimental infrastructures. In such
a distributed environment, resource discovery is highly constrained, as it is based on (multi-)
attribute matching. It requires an increased level of coordination between users and infrastructure
providers as well as among infrastructure providers in the federation. For this purpose, we essentially
propose a federation-wide knowledge layer over the federated infrastructures to support semantic
representation of such information and to facilitate semantic-based resource discovery.

A large amount of semistructured information is available describing the GENI and FIRE
testbed federations, including details about the testbeds involved and about the heterogeneous
resources offered, reservation information, and monitoring data. This information is encoded mainly
as human-readable text on websites as well as in the forms of JSON and XML trees via secured API
calls. To extract this information and to make it semantically accessible on the Web, we previously
introduced the OMN extraction framework [4].

In essence, the OMN extraction framework (Figure 5) follows the design of the DBpedia extraction
framework [55]. Information is retrieved from the infrastructures, calling periodically according to
methods of the SFA AM API (http://groups.geni.net/geni/wiki/GAPI_AM_API_V3_DETAILS).
The downloaded documents are translated into a semantically annotated Resource Description
Framework (RDF) [56] graph using the OMN translator and the OMN ontology suite. To extend
the knowledge encoded in this graph, the Apache Jena inference engine is used within this process by
applying infrastructure-specific rules (Section 4.2).

Finally, the resulting knowledge graph is written in an in-memory triplet database (Sesame v.2.8.6)
and in a Turtle (TTL) [57] serialized file (DBcloud Dump). A SPARQL endpoint on top of the triplet
data store implements a federation-wide lookup service that enables resource discovery by end-users.
The result is currently available at http://lod.fed4fire.eu using, among others, the Vocabulary
of Interlinked Datasets. The knowledge base currently describes approximately 100 aggregates,
3000 nodes, 30,000 links, and about 25,000 interfaces. This consists of 4.1 million statements, with the
potential to grow substantially as new testbeds join the federation.

http://www.w3.org/TR/swbp-vocab-pub/
http://www.w3.org/TR/swbp-vocab-pub/
http://open-multinet.info/ontology/omn
https://w3id.org/omn
https://w3id.org/omn
http://lov.okfn.org/dataset/lov/vocabs/omn
http://prefix.cc/omn
https://github.com/w3c/omn
https://www.w3.org/community/omn
http://groups.geni.net/geni/wiki/GAPI_AM_API_V3_DETAILS
http://lod.fed4fire.eu
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The OMN translator is a Java-based extensible translation mechanism introduced in [2], allowing
the automated transformation of semi-structured data into an OMN based knowledge graph.
It translates statelessly between GENI, Resource Specifications (RSpecs), and OMN; applies inferencing
rules for validation and knowledge injection; and has been extended to support Topology and
Orchestration Specification for Cloud Applications (TOSCA) [58] and Yet Another Next Generation
(YANG) [59] data models as well.

Public
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Endpoints

Private
SFA AM
APIs
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federation

Fed4FIRE
federation

mapping 
rules &

metadata

omnlib
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of XML
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documents
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Export

Web
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RDF monitoring streams

Figure 5. OMN extraction framework and lookup service (based on [4,55]).

The implementation of the translation tool follows a Test Driven Development (TDD) approach,
is included in a Continuous Integration (CI) environment with test coverage analytics, and is offered as
a Java-based open-source library (“omnlib”) in a public maven repository. It uses the Java Architecture
for XML Binding (JAXB) and Apache Jena to map between XML, RDF, and Java objects. It supports
a number of APIs: (i) a native API to be included in other Java projects; (ii) a CLI to be used within
other applications; and (iii) a REST-based API to run as a Web service.

The OMN translator parses the XML tree and converts the tags and attributes to their
corresponding classes or properties. To give a better understanding of this translation process,
we provide an illustrative example for the conversion of a GENI Advertisement RSpec used to
publish available resources within a federation of experimental infrastructures.

The example in Listing 2 shows a single node of type PC that can provision the sliver type
PLAB-VSERVER (virtual server for PlanetLab). Traditionally, hardware type and sliver type used
to be simple strings, but unique Uniform Resource Identifiers (URIs) are used here to provide
machine-interpretable information.

Listing 2: RSpec Advertisement (excerpt)
1<rspec xmlns="http://www.geni.net/resources/rspec/3" type="advertisement">
2<node component_manager_id="urn:publicid:IDN+ple+authority+cm"
3component_id="urn:publicid:IDN+ple:netmodeple+node+stella.planetlab.ntua.gr"
4exclusive="false" component_name="stella.planetlab.ntua.gr">
5<hardware_type name="http://open−multinet.info/ontology/resources/pc#PC"/>
6<sliver_type name="http://open−multinet.info/ontology/resources/plab−vserver#PLAB−VSERVER"/>
7<available now="true"/>
8</node>
9</rspec>

Node Name
Hardware Type

Provisions Sliver Type

Listing 3 shows the converted graph, serialized in Turtle. The overall approach is to define
an omn:Topology (the subclass omn-lifecycle:Offering is used in this case) that contains pointers to the
offered resources. Each resource is an individual of a specific type that can implement (i.e., can provision)
one or more specific sliver types.
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Listing 3: OMN Offering
1<urn:uuid:7eb7b551−7566−4d3c−ac5f−f41a63236baa>
2a <http://open−multinet.info/ontology/omn−lifecycle#Offering> ;
3<http://www.w3.org/2000/01/rdf−schema#label> "Offering" ;
4<http://open−multinet.info/ontology/omn#hasResource> <urn:publicid:IDN+ple:netmodeple+node+stella.planetlab.ntua.gr> .
5
6<urn:publicid:IDN+ple:netmodeple+node+stella.planetlab.ntua.gr>
7a <http://open−multinet.info/ontology/omn−resource#Node> ,
8<http://open−multinet.info/ontology/resources/plab−vserver#PLAB−VSERVER> ,
9<http://open−multinet.info/ontology/resources/pc#PC> ;
10<http://www.w3.org/2000/01/rdf−schema#label>
11"stella.planetlab.ntua.gr"^^<http://www.w3.org/2001/XMLSchema#string> ;
12<http://open−multinet.info/ontology/omn#isResourceOf>
13<urn:uuid:7eb7b551−7566−4d3c−ac5f−f41a63236baa> ;
14<http://open−multinet.info/ontology/omn−lifecycle#canImplement>
15<http://open−multinet.info/ontology/resources/plab−vserver#PLAB−VSERVER> ;
16<http://open−multinet.info/ontology/omn−lifecycle#hasComponentName>
17"stella.planetlab.ntua.gr" ;
18<http://open−multinet.info/ontology/omn−lifecycle#managedBy>
19<urn:publicid:IDN+ple+authority+cm> ;
20<http://open−multinet.info/ontology/omn−resource#hasHardwareType>
21<http://open−multinet.info/ontology/resources/pc#PC> ;
22<http://open−multinet.info/ontology/omn−resource#hasSliverType>
23<http://open−multinet.info/ontology/resources/plab−vserver#PLAB−VSERVER> ;
24<http://open−multinet.info/ontology/omn−resource#isAvailable>
25true ;
26<http://open−multinet.info/ontology/omn−resource#isExclusive>
27false .
28
29<http://open−multinet.info/ontology/resources/plab−vserver#PLAB−VSERVER>
30a <http://open−multinet.info/ontology/omn−resource#SliverType> ;
31<http://open−multinet.info/ontology/omn−lifecycle#hasSliverName>
32"http://open−multinet.info/ontology/resources/plab−vserver#PLAB−VSERVER" .
33
34<http://open−multinet.info/ontology/resources/pc#PC>
35a <http://open−multinet.info/ontology/omn−resource#HardwareType> ;
36<http://www.w3.org/2000/01/rdf−schema#label>
37"http://open−multinet.info/ontology/resources/pc#PC" .

Offering

Implements Sliver Type

Node Hardware Type

4.2. Knowledge Extension and Information Querying

Having described the framework for semantic-based resource discovery in the context of federated
experimental infrastructures, we will now focus on the specifics of the discovery process. Given a user
request (query) and the aforementioned knowledge base, the resource-discovery problem amounts
to automatically finding the resources from the triplet data store that match the query requirements
along with policies set by infrastructure providers, since a request can be expressed at different levels
of abstraction (Resource Matching). The adoption of the OMN ontology suite provides the necessary
flexibility of expression as well as tools for querying and inference that simplify the typical problems
encountered in the process of resource matching. Rules can capture domain background knowledge or
infer resource requirements from the request model; specifically regarding the latter these are added as
additional information to the initial request model. In addition, they can be used to check the request
model’s validity [49]. These benefits are highlighted in the following text.

4.2.1. Knowledge Extension

Background knowledge captures additional knowledge about the domain. This information can
be used in matching a request with available resources. Knowledge is expressed in terms of rules that
use the vocabulary of the ontology to add axioms. The knowledge graph can be extended by applying
such rules.

For example, infrastructure providers in the federation do not advertise explicitly the hardware
configurations of their resources in the RSpec XML documents provided. Such data are not translated
into RDF. Instead, the information is encoded in each resource’s hardware type, arbitrarily set by the
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infrastructure provider as highlighted in the advertisement excerpt provided in Listing 2, (i.e., hardware
type: PC).

In Table 1, we provide sample hardware specifications for a subset of the federated experimental
infrastructures as they are described by the corresponding infrastructure providers, namely,
NETMODE (http://www.netmode.ntua.gr/testbed) and Virtual Wall 2 (http://doc.ilabt.iminds.be/
ilabt-documentation/virtualwallfacility.html) testbeds.

Table 1. Resource Specifications.

HW Type Description

alix3d2 500 MHz AMD Geode LX800, 256 MB DDR DRAM, 1 GB flash card storage
pcgen3 2x Hexacore Intel E5645 (2.4 GHz) CPU, 24 GB RAM, 250 GB harddisk

Figure 6 depicts a rudimentary offering (advertisement) excerpt from the NETMODE infrastructure
provide. For the sake of readability, only a single advertised resource is depicted (omf.netmode.node1).
Moreover, the diagram does not show all the details of the resource description, although it
identifies the distinct OMN ontologies used for this purpose, in the upper part the figure.
In the excerpt provided the offered resource omf.netmode.node1 is managedBy the infrastructure
provider omf:netmode (AMService) and is part of (isResourceOf ) the offering (advertisement) identified
by urn:uuid:c9c34c9c-08d6-4dc6-91e2-2e5fac9dd418. The resource is related via the object property
hasHardwareType to the HardwareType individual with the label alix3d2. It is associated (hasSliverType)
to the SliverType individual, with the label miniPC, attributed with specific Disk Image properties
(e.g., OS Voyage). As noted in this example, infrastructures advertise node capacities by their hardware
type name (alix3d2 in this case).

Figure 6. Partial NETMODE offering.

A simple example of background knowledge on the context of the “hardware type” is provided
in Listing 4. The listing represents a subset of the rules used to expand the knowledge base with
CPU-related information regarding pcgen3 nodes listed in Table 1. Such information can be used in
the resource matchmaking process. In the specific application, it is the responsibility of the federator,
which maintains/provides the extraction framework, to apply such rules.

http://www.netmode.ntua.gr/testbed
http://doc.ilabt.iminds.be/ilabt-documentation/virtualwallfacility.html
http://doc.ilabt.iminds.be/ilabt-documentation/virtualwallfacility.html


Data 2017, 2, 21 15 of 26

Listing 4: Infrastructure knowledge 1 (excerpt)
1[rule1:
2(?node omnres:hasHardwareType ?hwtype)
3(?hwtype rdfs:label ?label)
4regex (?label , "pcgen0?3.*")
5makeTemp(?cpuComp)
6−>
7(?cpuComp rdf:type owl:NamedIndividual)
8(?cpuComp rdf:type omncomp:CPU)
9(?cpuComp rdfs:label "Intel E5645 CPU")
10(?cpuComp omn:hasModelType "Intel E5645")
11(?cpuComp rdfs:label "Hexa Core Processor")
12(?cpuComp dbp:fastest "2.4"^^xsd:double)
13(?cpuComp dbp:fastUnit <http://dbpedia.org/resource/GHZ>)
14(?cpuComp omncomp:hasCores 6)
15(?cpuComp dbp:arch <http://dbpedia.org/resource/X86−64>)
16(?node omn:hasComponent ?cpuComp)
17]

For every compute node with a hardware

type that has a label matching “pcgen0?3.*

Insert standard information about this node

type: CPU Type, Core Count, CPU Frequency

Link new information to the compute node

In our second example, shown in Listing 5, rules 1 to 3 mandate that each node identified by
hardware type alix3d2 have the hardware capacity described in Table 1 in terms of CPU, memory,
and storage. Rules 4 to 6 link this information to the node.

Listing 5: Infrastructure knowledge 2 (excerpt)
1[rule1: uriConcat(omncomp:,"alix3d2_mem", ?memComp) noValue(?memComp rdf:type owl:NamedIndividual)−>
2(?memComp rdf:type owl:NamedIndividual)
3(?memComp rdf:type omncomp:MemoryComponent)(?memComp omnmonunit:hasValue "256000000"^^xsd:integer) ]
4[rule2: uriConcat(omncomp:,"alix3d2_cpu", ?cpuComp) noValue(?cpuComp rdf:type owl:NamedIndividual)−>
5(?cpuComp rdf:type owl:NamedIndividual)
6(?cpuComp rdf:type omncomp:CPU) (?cpuComp omnmonunit:hasValue "500000000"^^xsd:integer) ]
7[rule3: uriConcat(omncomp:,"alix3d2_sto", ?stoComp) noValue(?stoComp rdf:type owl:NamedIndividual)−>
8(?stoComp rdf:type owl:NamedIndividual)
9(?stoComp rdf:type omncomp:StorageComponent)(?stoComp omnmonunit:hasValue "1000000000"^^xsd:integer) ]
10[rule4: (?node omnres:hasHardwareType ?hwtype) (?hwtype rdfs:label "alix3d2"^^xsd:string)
11uriConcat(omncomp:,"alix3d2_mem", ?memComp) −> (?node omncomp:hasComponent ?memComp) ]
12[rule5: (?node omnres:hasHardwareType ?hwtype) (?hwtype rdfs:label "alix3d2"^^xsd:string)
13uriConcat(omncomp:,"alix3d2_cpu", ?cpuComp) −> (?node omncomp:hasComponent ?cpuComp) ]
14[rule6: (?node omnres:hasHardwareType ?hwtype) (?hwtype rdfs:label "alix3d2"^^xsd:string)
15uriConcat(omncomp:,"alix3d2_sto", ?stoComp) −> (?node omncomp:hasComponent ?stoComp) ]

4.2.2. Information Querying

Having applied the rules in Listing 4, a user may make a request for cloud resources with,
for example, specific CPU requirements. In the sample SPARQL query provided in Listing 6, the user
submits a request for two virtual machines with a specific number of CPU cores and OS type,
e.g., Fedora:6cores. The results are shown in Listing 7.

Listing 6: SPARQL query 1
1SELECT ?resource1 ?resource2 WHERE {
2?resource1 rdf:type omnres:Node .
3?resource2 rdf:type omnres:Node .
4?resource1 omnres:hasSliverType/omndpc:hasDiskImage/omndpc:hasDiskimageOS ?os1.
5?resource2 omnres:hasSliverType/omndpc:hasDiskImage/omndpc:hasDiskimageOS ?os2.
6?resource1 omn:hasComponent ?cpuComp1.
7?cpuComp1 rdf:type omncomp:CPU.
8?cpuComp1 omncomp:hasCores ?cpuvalue1.FILTER (?cpuvalue1 = "6"^^xsd:integer).
9?resource2 omn:hasComponent ?cpuComp2.
10?cpuComp2 rdf:type omncomp:CPU.
11?cpuComp2 omncomp:hasCores ?cpuvalue2.FILTER (?cpuvalue2 = "6"^^xsd:integer).
12FILTER (xsd:string(?os1) = "Fedora"^^xsd:string).
13FILTER (xsd:string(?os2) = "Fedora"^^xsd:string).
14FILTER (?resource1 = ?resource2)limit 1 ! !

Find me two hosts, resource1 and resource2

Both with 6 cores

Both running Fedora

Just one answer, please
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Listing 7: Query results
1RESULTS
2urn:publicid:IDN+wall2.ilabt.iminds.be+node+n095−05a
3urn:publicid:IDN+wall2.ilabt.iminds.be+node+n096−02
4TIME EXECUTION: 0.016sec

In a more complex example, a user may submit a request for two nodes running a Linux distribution,
with specific hardware requirements; e.g., 256MB of RAM and storage capacity greater than 500 MB. The query
is described in Listing 8. The resource-matching process is not straightforward, as it was in the previous
case, even if we apply the rules in Listing 5. In most cases, Infrastructure Providers advertise the exact
Linux Distribution (e.g., Voyage in Figure 6). Thus, the condition for Linux OS variant needs to be either
incorporated into the request requirements or advertised explicitly by the testbeds. We follow the
first approach in this case; additional rules are added to infer automatically the resource characteristics,
e.g., acceptable Linux distribution, without explicit statements needed from the user, as proposed
in [60]. The rule set is an appropriately defined set of axioms from which additional implicit information
can be derived. A sample rule used is provided in Listing 9 stating Linux compatibility (Voyage is
a Linux-variant OS).

Listing 8: Initial SPARQL query 2
1SELECT ?node1 ?node2 WHERE {
2?node1 rdf:type omn_resource:Node.
3?node2 rdf:type omn_resource:Node.
4?node1 omn:hasComponent ?memComp1.
5?node2 omn:hasComponent ?memComp2.
6?memComp1 rdf:type omn_component:MemoryComponent.
7?memComp2 rdf:type omn_component:MemoryComponent.
8?memComp1 omn_monitoring_unit:hasValue ?mvalue.
9FILTER (?mvalue >= "256000000"^^xsd:integer)
10?memComp2 omn_monitoring_unit:hasValue ?mvalue.
11FILTER (?mvalue >= "256000000"^^xsd:integer)
12?node1 omn:hasComponent ?stoComp1.
13?node2 omn:hasComponent ?stoComp2.
14?stoComp1 rdf:type omn_component:StorageComponent.
15?stoComp2 rdf:type omn_component:StorageComponent.
16?stoComp1 omn_monitoring_unit:hasValue ?svalue1.
17FILTER (?svalue1 >= "500000000"^^xsd:integer)
18?stoComp2 omn_monitoring_unit:hasValue ?svalue2.
19FILTER (?svalue2 >= "500000000"^^xsd:integer)
20?node1 omn_resource:hasSliverType/omn_domain_pc:hasDiskImage/omn_domain_pc:hasDiskimageOS ?os1.
21?node2 omn_resource:hasSliverType/omn_domain_pc:hasDiskImage/omn_domain_pc:hasDiskimageOS ?os2.
22FILTER (xsd:string(?os1) = "Linux"^^xsd:string)
23FILTER (xsd:string(?os2) = "Linux"^^xsd:string)
24FILTER (?node1 = ?node2)LIMIT 1

Find me two hosts, node1 and node2

Both with RAM greater than 256 MB

Both with disk storage greater than 500 MB

Both running Linux

Listing 9: IT background knowledge (excerpt)
1[rule7:(?node rdf:type omn−resource:Node)
2(?node omn−resource:hasSliverType ?stype)
3(?stype omn−domain−pc:hasDiskImage ?dimage)
4(?dimage omn−domain−pc:hasDiskimageOS "Voyage"^^xsd:string) −>
5(?dimage omn−domain−pc:hasDiskimageOS "Linux"^^xsd:string)]

Once the rules are applied, OR-AND clauses are built and added to the initial request [60].
Given the additional information injected into the graph, Listing 10 shows the new, expanded SPARQL
query, with OR-AND clauses included in Lines 22–25. The results are restricted to one feasible matching
solution, which is shown in Listing 11.
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Listing 10: SPARQL query 2
1SELECT ?node1 ?node2 WHERE {
2?node1 rdf:type omn_resource:Node.
3?node2 rdf:type omn_resource:Node.
4?node1 omn:hasComponent ?memComp1.
5?node2 omn:hasComponent ?memComp2.
6?memComp1 rdf:type omn_component:MemoryComponent.
7?memComp2 rdf:type omn_component:MemoryComponent.
8?memComp1 omn_monitoring_unit:hasValue ?mvalue.
9FILTER (?mvalue >= "256000000"^^xsd:integer)
10?memComp2 omn_monitoring_unit:hasValue ?mvalue.
11FILTER (?mvalue >= "256000000"^^xsd:integer)
12?node1 omn:hasComponent ?stoComp1.
13?node2 omn:hasComponent ?stoComp2.
14?stoComp1 rdf:type omn_component:StorageComponent.
15?stoComp2 rdf:type omn_component:StorageComponent.
16?stoComp1 omn_monitoring_unit:hasValue ?svalue1.
17FILTER (?svalue1 >= "500000000"^^xsd:integer)
18?stoComp2 omn_monitoring_unit:hasValue ?svalue2.
19FILTER (?svalue2 >= "500000000"^^xsd:integer)
20?node1 omn_resource:hasSliverType/omn_domain_pc:hasDiskImage/omn_domain_pc:hasDiskimageOS ?os1.
21?node2 omn_resource:hasSliverType/omn_domain_pc:hasDiskImage/omn_domain_pc:hasDiskimageOS ?os2.
22FILTER (xsd:string(?os1) = "Voyage"^^xsd:string ||xsd:string(?os1) = "Fedora"^^xsd:string || xsd:string(?os1) = "Ubuntu"
23^^xsd:string || xsd:string(?os1) = "Linux"^^xsd:string)
24FILTER (xsd:string(?os2) = "Voyage"^^xsd:string ||xsd:string(?os2) = "Fedora"^^xsd:string || xsd:string(?os2) = "Ubuntu"
25^^xsd:string || xsd:string(?os2) = "Linux"^^xsd:string)
26FILTER (?node1 = ?node2)LIMIT 1

Find me two hosts, node1 and node2

Both with RAM greater than 256 MB

Both with disk storage greater than 500 MB

Running Linux

Variant

Listing 11: Query results
1RESULTS
2:node1=> <urn:publicid:IDN+omf:netmode+node+node18>,
3:node2=> <urn:publicid:IDN+omf:netmode+node+node14>
4TIME EXECUTION: 0.299sec

4.3. Validation

Documents created using OMN vocabularies can be validated semantically in part by using
traditional OWL entailments, which verify that the domains and ranges of properties used in
a particular model match those defined in the vocabulary. We found, however, that the expressivity
of those mechanisms was not always sufficient to validate the user requests being sent to the
testbed. Procedural verification is not portable. It is hard to ensure correctness and consistency
across implementations. To supplant traditional OWL mechanisms, we developed Datalog rule-sets
that trigger inference errors when processing a document that either lacks specific information or is
semantically ambiguous. In this section, we explore several examples of such rules.

For instance, if a user is attempting to request a network connection that loops to the same node on
which it started, a request may be represented by a valid OMN model; however, semantically, it doesn’t
make sense to the resource-matching algorithm that is attempting to reproduce the topology. To guard
against cases like this, we validate the user’s request using the following Datalog rule in Listing 12.

Listing 12: Validating self-looping links in requests
1(?Z rb:violation error(’Connection Validation’, ’Connection cannot loop on itself’, ?Y))
2<− (?X rdf:type pc:PC), (?X nml:hasOutboundPort ?P1), (?X nml:hasInboundPort ?P2),
3(?Y rdf:type nml:Link), (?P1 nml:isSink ?Y), (?P2 nml:isSource ?Y) ]

In some requests by end-users, every Virtual Machine (VM) node must specify an OS image to
be booted. At the same time, a VM -server node does not need an image, since it operates using only
a pre-determined image. The pc : hasDiskImage property is defined for all PC types, including VM
Servers and VMs, so a cardinality restriction cannot be used in this case. This request validation rule is
expressed as follows in Listing 13.
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Listing 13: Validating presence of OS image in VM requests
1(?Z rb:violation error("Validating that VM nodes have OS images", ?R)) <− (?R rdf:type pc:VM),
2noValue(?R, pc:hasDiskImage, ?I)

It is important to emphasize that the set of the rules that we use continues to evolve with
the schema and with the resource-matching algorithms used to allocate CI resources for the users.
For example, as the algorithms become more sophisticated, they are able to function without some
of the guards protecting them from poorly formed requests, reducing the need for some rules.
Nonetheless, the designing of resource-matching and of embedding algorithms in testbeds is an active
field of study. The availability of declarative rule-based semantic validation significantly simplifies the
continuing evolution of these algorithms by clearly associating a particular algorithm with its own set
of validation rules that prevent errant executions and simplify the algorithm code.

5. Performance Evaluation

By adopting formal information models and semantically annotated graphs, our approach allows
operations to link, relate, enhance, query, and conduct logical manipulations of heterogeneous data,
all of which would be impossible otherwise.

One of the most important measure for the applicability of our work is the amount of time required
to translate and to query resources using our ontology. This time needs to range in a practicable span
for the given context. Our initial work [4] looked at the sizes of the advertisements for testbeds in the
FIRE and GENI projects and evaluated the performance of the translation to RDF of the respective
XML files. The novel work we present in this paper show a more comprehensive comparison of the
queries performance; namely, we look at the time needed to translate resource information to the one
needed to list resources, as well as the performance of queries of different complexity.

We have analyzed the result of the ListResources method call of the 99 SFA AMs that are monitored
(https://flsmonitor.fed4fire.eu/) within the Fed4FIRE project. This list contains 82 valid XML based
GENI RSpec replies with 762.634 XML elements in total, of which 3.043 are Nodes, 31.155 are Links,
and 25.493 Interfaces. Figure 7 shows the side of the RSpec advertisements in the testbeds we considered.
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Figure 7. Size distribution of RSpec Advertisements (logarithmic).

https://flsmonitor.fed4fire.eu/
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To estimate the time needed to translate the advertisements, the actual RSpecs from these testbeds
has been downloaded. The XML files were then translated to TTL serialized RDF graphs using the OMN
translator. Of great importance to the potential scalability of our approach is the time taken for such
translations, particularly with regard to the number of XML elements involved. 100 Advertisement
RSpecs had been extracted, of which six contained errors, e.g., not adhering to the RSpec XML
Schema Definition (XSD) file, and could not be translated without manual changes. Tests were run
on a MacBookPro with OS X Yosemite, a 2.8 GHz Intel Core i7 processor, and 8 GB of RAM. Running
a translation over all correct RSpecs produced median values of 24 milliseconds from XML to Java
Architecture for XML Binding (JAXB) and 20 milliseconds from JAXB to RDF, yielding a total median
translation time of 44 milliseconds from XML to RDF. As shown in Figure 8, translation times appear
to be roughly linearly correlated with the number of XML elements translated, with a median of
180 elements and a maximum of 159,372 translated. This linear correlation indicates upwards scaling
should be possible, although more data are required to confirm this point. At this stage, no major
limiting factors have been identified, and, given appropriate processing power, translation should be
possible in most foreseeable use cases.

Figure 8. JAXB to RDF translation times versus number of XML elements [4].

To put the duration needed for the translation of an RSpec Advertisement into relation with the
duration of the underlying function call needed in the FI experimentation context, we quantified the
query and translation time for a single testbed. As indicated in Figure 7, about 95% of the testbeds
expose fewer than 20.000 XML elements; therefore, we have used the CloudLab Wisconsin testbed
(https://www.cloudlab.us), which exposes 19.371, for our measurements. The results in Figure 9 show
that the average translation time of 583 ms ± 9 ms (95% CI) would add about 10% to the average
response time of 5453 ms ± 131 ms (95% CI). This effect, however, could be mitigated by translating
in advance or by distributing the work load. The delay of over 5 seconds for listing resources using
a single API call, is influenced by mainly two factors. First, the available bandwidth to transmit the
resulting XML document from the testbed to the caller. Second, the testbed internal communication
architecture to gather the required information, as CloudLab is a distributed infrastructure itself that is
composed by three different sites.

https://www.cloudlab.us
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Figure 9. Listing/translating resource information.

Assuming that a testbed accepts the potentially enhanced response time, in favor of the added
value of merging its information into a global linked data set, its resources can be found by applying
the aforementioned resource-matching queries. The translation of all available tree data structures into
an RDF-based graph, using our OMN vocabulary and rules, resulted in a set of 2.911.372 statements.
It builds the basis for our conclusion that adding further rules, infrastructures, and other data sources
will increase the potential for significant growth.

In Figure 10, the duration of Listing 10 against this graph is shown. To assess the performance
impact of the complexity of the query, it has been compared with a simpler one, which is shown in
Listing 14 together with its result in Listing 15. While finding the three largest aggregates took on
average 129 ms ± 3 ms (95% CI), the matching query took on average 168 ms ± 1 ms (95% CI) and
therefore took about 30% longer, yet much less time than a single ListResources call in a single testbed.
Finally, we have summarized our findings in Table 2.
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Figure 10. Performance comparison of queries.
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Listing 14: Finding the largest aggregate via query
1SELECT (COUNT(?am) as ?fre) ?am WHERE {
2?node omn−lifecycle:managedBy ?am .
3} GROUP BY (?am) ORDER BY DESC (?fre) LIMIT 3

Listing 15: Largest aggregates
1?fre ?am
2719 <urn:publicid:IDN+emulab.net+authority+cm>
3326 <urn:publicid:IDN+utah.cloudlab.us+authority+cm>
4255 <urn:publicid:IDN+ple+authority+cm>

Table 2. Results of the performance evaluation.

Median Duration [ms] Phase

24 Translation from XML to JAXB (on average)
20 Translation from JAXB to RDF (on average)

583 Translation of 19.371 XML elements (CloudLab)
5453 Listing resources (CloudLab)
129 Querying three largest aggregates (Listing 10))
168 Matching resources (Listing 14)

6. Conclusion and Future Work

The OMN set of ontologies that we presented in this article has been developed to support resource
management in federated and distributed computing infrastructures. OMN provides a federation-wide
knowledge layer that eases the process of resource selection and matching.

In this article, we described the OMN framework, which allows the extraction of underlying
information from tree-based data structures. It exposes this information in the form of OMN triples
to interested parties via the Web. DBcloud is an application developed in support of the federation
of experimental cyber-infrastructures which relies on OMN translators that automatically transform
semi-structured data into OMN graphs. An important aspect that we have assessed is the performance
of such translations, as this is crucial to OMN usability and adoption. We have shown that the
translation and query times require additional time (on the order of 10% in our experiment),
which, however, we expect to be acceptable to all resource providers given the added value of
merging information.

We have also shown how users can query OMN information that represents the resources available
in the underlying infrastructures and match them with their own computational requirements. In such
case, we evaluated the time needed to find matching resources. We have shown that more complex
queries complete within times that are acceptable to end-users.

In the long run, we expect that our contributions will outlive the specific use case of the cloud
testbed resource management. We believe that it will be accepted by the broader community of
academic and commercial cloud providers. It will help to create an ecosystem of flexible, extensible
tools and mechanisms that will see the use of cloud platforms become even more pervasive. We expect
it to open up the marketplace to competing cloud providers, large and small, catering to specific
market niches. We are also promoting adoption of OMN in new domains such as the Internet of Things
(IoT). As a specific Industrial Internet of Things (IIoT) [61] example, things, services and data can
be connected between federated manufacturing facilities. As an analog to the federation of testbeds
the involved facilities, the digital factories, their available APIs and services, have to be described
formally to allow for matchmaking capabilities required for the envisioned autonomous production
within the fourth industrial revolution. Our ontology set could act as a basis. Following discussions
within the German initiative Plattform Industrie 4.0 (PI4.0), linking information based on the LOD
paradigm and using interfaces such as the W3C WoT could build a technological base for implementing
this vision. Another focus area for the OMN ontologies is the integration with ontologies defining
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data-access policies among cooperating entities that make use of the cloud infrastructures. The support
provided by OMN for the definition of complex usage of heterogeneous resources will be the backbone
for novel kinds of open data services, both in industrial and commercial settings, as well as in the
scientific community.
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Abbreviations

The following abbreviations are used in this manuscript:

AC4 Activity Chain 4—Service Openness and Interoperability Issues/Semantic Interoperability
AM Aggregate Manager
API Application Programming Interface
DC Dublin Core
ETSI European Telecommunications Standards Institute
FCFA Federated Cloud Framework Architecture
Fed4FIRE Federation for FIRE
FI Future Internet
FIRE Future Internet Research and Experimentation
GENI Global Environment for Network Innovations
GLUE Grid Laboratory for a Uniform Environment
GR Good Relations
IaaS Infrastructure as a Service
ICT Information and Communication Technology
IEEE Institute of Electrical and Electronics Engineers
IERC European Research Cluster on the Internet of Things
IIoT Industrial Internet of Things
IMF Information Modeling Framework
INDL Infrastructure and Network Description Language
IoT Internet of Things
JAXB Java Architecture for XML Binding
JSON JavaScript Object Notation
LDAP Lightweight Directory Access Protocol
LOD Linked Open Data
M2M Machine-To-Machine Communication
MAS OneM2MWorking Group 5 Management, Abstraction and Semantics
mOSAIC Open-Source API and Platform for Multiple Clouds
NDL-OWL Network Description Language based on the Web Ontology Language
NML Network Mark-Up Language
NOVI Networking innovations Over Virtualized Infrastructures
OGF Open Grid Forum
OMN Open-Multinet
OOPS OntOlogy Pitfall Scanner
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OWL-S Semantic Markup forWeb Services
P2302 Standard for Intercloud Interoperability and Federation
PI4.0 Plattform Industrie 4.0
QoS Quality of Service
RDF Resource Description Framework
RSpec Resource Specification
S-OGSA Semantic Open Grid Service Architecture
SFA Slice-based Federation Architecture
SPARQL SPARQL Protocol And RDF Query Language
SQL Structured Query Language
SSH Secure Shell
SSN Semantic Sensor Network
TOSCA Topology and Orchestration Specification for Cloud Applications
TTL Turtle
UCI Unified Cloud Interface
URL Uniform Resource Locator
VANN Vocabulary for Annotating Vocabulary Descriptions
VOAF Vocabulary of a Friend
VoID Vocabulary of Interlinked Datasets
W3C WorldWide Web Consortium
WoT Web of Things
XML Extensible Markup Language
XSD XML Schema Definition
YANG Yet Another Next Generation
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