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Abstract: In the following study, total sugar concentrations before and during alcoholic fermentation,
as well as ethanol concentrations and pH levels after fermentation, of red and white wine grapes were
successfully predicted using Raman spectroscopy. Fluorescing compounds such as anthocyanins and
pigmented phenolics found in red wine present one of the primary limitations of enological analysis
using Raman spectroscopy. Unlike the spontaneous Raman effect, fluorescence is a highly efficient
process and consequently emits a much stronger signal than spontaneous Raman scattering. For
this reason, many enological applications of Raman spectroscopy are impractical as the more subtle
Raman spectrum of any red wine sample is in large part masked by fluorescing compounds present
in the wine. This work employs a simple extraction method to mitigate fluorescence in finished
red wines. Ethanol and total sugars (fructose plus glucose) of wines made from red (Cabernet
Sauvignon) and white (Chardonnay, Sauvignon Blanc, and Gruner Veltliner) varieties were modeled
using support vector regression (SVR), partial least squares regression (PLSR) and Ridge regression
(RR). The results, which compared the predicted to measured total sugar concentrations before and
during fermentation, were excellent (R2

SVR = 0.96, R2
PLSR = 0.95, R2

RR = 0.95, RMSESVR = 1.59,
RMSEPLSR = 1.57, RMSERR = 1.57), as were the ethanol and pH predictions for finished wines
after phenolic stripping with polyvinylpolypyrrolidone (R2

SVR = 0.98, R2
PLSR = 0.99, R2

RR = 0.99,
RMSESVR = 0.23, RMSEPLSR = 0.21, RMSERR = 0.23). The results suggest that Raman spectroscopy
is a viable tool for rapid and trustworthy fermentation monitoring.

Keywords: Raman spectroscopy; predictive modeling; machine learning; regression; enology;
winemaking

1. Introduction

The Raman effect, first observed by C.V. Raman in 1928, refers to inelastic light
scattering upon molecular interaction [1,2]. Elastic and inelastic light scattering are defined
as the maintaining or changing of photon frequency, respectively. Since the discovery of the
Raman effect, considerable advancements in technology, such as the invention of lasers [3]
and photon detection [4] have given rise to Raman spectroscopy. Raman spectroscopy
refers to the rapid evaluation of molecular attributes in a sample by observing frequency
shifts in a monochromatic light source upon molecular interaction. When the incident light
strikes a molecule, most of the photons undergo elastic scattering or Rayleigh scattering.
The remaining fraction of photons undergo inelastic scattering or Raman scattering. This
increase or decrease in the incident photon energy is detectable as an electromagnetic
(EM) shift, more commonly referred to as anti-stokes and stokes shifts, respectively. These
changes in photonic energy bring about changes in the associated EM spectrum and
are a result of intramolecular oscillations generated when the molecule interacts with a
photon. Specific chemical bonds generate specific peaks in the ultraviolet, visible, and

Beverages 2021, 7, 78. https://doi.org/10.3390/beverages7040078 https://www.mdpi.com/journal/beverages

https://www.mdpi.com/journal/beverages
https://www.mdpi.com
https://doi.org/10.3390/beverages7040078
https://doi.org/10.3390/beverages7040078
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/beverages7040078
https://www.mdpi.com/journal/beverages
https://www.mdpi.com/article/10.3390/beverages7040078?type=check_update&version=1


Beverages 2021, 7, 78 2 of 11

near-infrared spectra upon laser excitation, making the Raman spectra of a given molecule
unique. The combination of spectral fingerprinting with the expediency of Raman analysis
makes Raman spectroscopy an invaluable tool in a wide range of disciplines including
pharmaceuticals [5], protein analysis [6], DNA analysis [7], single-cell analysis [8], gemstone
identification [9], bone structure analysis [10], and many more.

Developing simple, rapid, and accurate measurement practices is of high importance
in any industry, including the wine industry. Enologically speaking, a variety of techniques,
including chromatographic [11,12] and spectrophotometric [13,14] methods, are available
each with their own drawbacks. In the first approach, beyond the prohibitive initial expense
of many chromatography systems, such as high-performance liquid chromatography
(HPLC) systems, a high level of expertise is required for proper operation and maintenance.
In the second approach, the cost of buffers can dramatically increase the operational
costs depending on the application, although that cost pales in comparison to that of
chromatographic systems. For this reason, spectrophotometric techniques have grown in
popularity in both enological research and industrial applications.

The Raman effect is inherently weak; consequently, traditional Raman spectrometers
typically cannot detect molecular concentrations less than a few grams per liter. This
makes Raman spectroscopy well suited to circumstances where high concentrations of
substrates and products are expected, such as converting sugars to ethanol during alcoholic
fermentation. While Raman spectroscopy is potentially advantageous over other instru-
mentation for alcoholic fermentation monitoring, substantial limitations in this application
were observed. The extraction of anthocyanins from red wine grapes during fermenta-
tion, as well as their interaction with other phenolic compounds and organic acids during
aging, leads to the formation of complex polymeric pigments [15]. In terms of Raman
spectroscopy, the presence of these complex polymers and their evolution over time is
a significant contributor to overall fluorescence upon laser exposure [16]. While current
work for baseline correction in Raman spectra is either mathematical [17] or not reliable for
quantification, phenolic removal such as that performed by Ranatunge [18] may prove to
be a valid method of fluorescence reduction in the Raman spectrum. Ranatunge effectively
and nondestructively reduced the presence of phenol-containing compounds in green
tea extracts by exposing samples to polyvinylpolypyrrolidone (PVPP); PVPP exposure is
applied to enological processes as well. Mattick and Rice [19] reported the use of PVPP for
the decolorization of wine in the colorimetric determination of tartaric acid.

While Raman spectroscopy is used in a wide variety of enologically relevant applica-
tions, including spoilage yeast identification [20], methanol and ethanol identification and
quantification [21,22], glucose identification and quantification [23], beverage adulteration
quantification [24], phenolic identification [25,26], sugar and ethanol quantification [27],
beverage aging [28], and wine authentication [29], Raman techniques are scarcely applied
directly to wine making. The goal of this study was twofold:

1. Explore ways in which Raman spectroscopy can monitor the alcoholic fermentation
of wine grapes;

2. Address ways in which Raman signal obstruction due to fluorescence might be mitigated.

2. Materials and Methods
2.1. Chemicals

Polyvinylpolypyrrolidone (PVPP) was purchased from Central Industrial Sales
(Richland, WA, USA).

2.2. Sample Collection

Sauvignon Blanc, Grüner Veltiner, Chardonnay, and Cabernet Sauvignon grapes
used in the fermentation component of this study were sourced from commercial and
research vineyards in Patterson, Washington, USA during the 2020 vintage. Alcoholic
fermentation for whites and reds was conducted at 20 ◦C and ambient winery temperatures,
respectively. Fermentation continued until total reducing sugars were below 0.5 g/L.
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During fermentation, 15 mL was collected from each tank several times per day and stored
at 5 ◦C. All samples were centrifuged for 5 min at 15,000 revolutions per minute (rpm)
prior to both Raman and reference analysis. Red wine samples used for phenolic reduction
included Cabernet Sauvignon, Merlot, Petit Verdot, Syrah, and blends. They were also
taken from both commercial (Columbia Valley) and research sources with vintages ranging
from 2015 to 2019. A total of 541 samples were collected in total.

2.3. Reference Analysis

A total of 254 alcohol concentrations of finished wines were referenced with an
Anton Paar Alcolyzer (Anton-Paar, Graz, Austria). A total of 287 total sugar (glucose plus
fructose) concentrations of juice and fermenting wines were measured using an Admeo
Y15 Automatic Analyzer (Admeo Inc., Angwin, CA, USA) that utilized enzymatic analysis
of glucose and fructose. A total of 258 pH values were recorded using a Mettler Toledo
SevenCompact S-230 pH meter (Columbus, OH, USA). For alcohol, system integrity was
monitored by performing a pass/fail water density check prior to every wine sample
run and periodically running a wine sample of known alcohol concentration to ensure
accuracy. Prior to each wine sample run, the system was first flushed with 35 mL of the
sample to be tested to avoid contamination. For total sugars the Y15 system (Admeo Inc.,
Angwin, CA, USA) was first calibrated with an external standard provided by Admeo. The
system was recalibrated every time a new standard was needed. For every run, the results
were compared to a multi-calibration standard provided by Admeo to ensure accuracy. For
pH, the system was first calibrated with pH standards (2, 4, 7, and 10) to ensure linearity.

2.4. Raman Analysis

Raman spectra were acquired with a portable B&W Tek i-Raman Plus source (Metrohm
group, Herisau, Switzerland) equipped with a 785 nm laser and a cooled charge-coupled
detector. A B&W Tek BCR100A accessory accompanied the Raman probe for liquid mea-
suring in a cuvette (1 cm × 1 cm OD). Approximately one milliliter of wine was placed in a
cuvette and the spectral acquisitions were recorded with BWSpec 4.11 software provided by
B&W Tek. Each spectrum was recorded by averaging five scans at a resolution of 4.5 cm−1

from 65–3350 cm−1. Acquisition time was between 100 to 8000 milliseconds at a constant
laser power of 340 mW.

2.5. Phenolic Reduction

Of the 254 alcohol reference samples, 137 were subsampled for PVPP exposure. Briefly,
120 mg of PVPP and 1.5 mL of red wine were added to a 1.5 mL microcentrifuge tube.
Samples were then vortexed for 10 min, centrifuged at 15,000 rpm, and filtered through a
0.45-micron nylon filter. The supernatant was extracted and all subsequent sampling was
measured using the Raman specifications described above.

2.6. Statistical Analysis

Training and validation for all data sets were conducted using the R Project (4.0.2)
for statistical computing and RStudio (version 1.3.1073, release name “Giant Goldenrod”).
Prior to model building, all spectral data were scaled using the scale function from the R
base package. After preprocessing, optimal values of cost, number of components, and
lambda for support vector regression (SVR), partial least squares regression (PLSR), and
ridge regression (RR) were determined, respectively. Briefly, training (80 percent of the
data) and test (20 percent of the data) subsets were divided after randomizing the full
dataset by row. Next training and testing for each possible parameter in a range of set
parameters for each algorithm (0.1 to 2.0 in increments of 0.1 for SVR, 2 to 21 in increments
of 1 for PLSR, and 0.01 to 0.2 in increments of 0.01 for RR) was executed. This process
was repeated five times for each possible parameter and the parameters that produced the
lowest root mean squared error and the highest coefficients of determination were used for
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further testing. After each model was optimized, models for total sugars and ethanol were
cross validated by randomizing training and testing sets twenty times.

2.7. Software

For Raman spectra acquisition, BWSpec version 4.11_1 from B&W Tek was used
(Metrohm group, Herisau, Switzerland). For all statistical analysis, the R Foundation for
Statistical Computing (Vienna, Austria) was used. For SVR, the e1071 package was used;
for PLSR, the pls package was used; and, for RR, the ridge package was used.

3. Results and Discussion
3.1. Algorithm Comparison and Feature Selection

Machine learning for quantification is a rapidly expanding field with an ever-expanding
number of available algorithms. The purpose of this work was not algorithm exclusion but
model integration. For a model to be considered trustworthy, the predictive results should
be similar regardless of the algorithm. All three algorithms gave similar predictions for
both total sugars and ethanol with neither algorithm outperforming the other exclusively.
Similar model performance across the compared algorithms emphasizes model integrity.

Beyond algorithm selection, Raman spectroscopy allows for some flexibility in terms
of data filtration. Unlike UV-visible spectroscopy, the Raman spectrum offers a very high
native resolution. For this work, different abbreviations for the spectral analysis of ethanol
(57:1796 cm−1 and 2803:3362 cm−1) and total sugars (57:847 cm−1) were used, as suggested
by Teixera et al. [30]. Another more general filtration was also applied (375:3362 cm−1) to
compensate for highly fluorescent samples that reached the maximum permitted value
cap of the BWSpec software. The more general filtration method performed slightly better
although the difference in performance between the filtration methods was negligible.
This suggests that the higher native resolution of the Raman effect also permits data to be
filtered mathematically by adjusting the parameters of the algorithm.

3.2. Ethanol and Total Sugar Model Performance

Table 1 shows a summation of model performance for ethanol and pH before exposure
to PVPP (left), ethanol and pH after exposure to PVPP (center), and total sugars (right). As
shown in the table, total sugar models were well-correlated with all measured values. As
sugar models were built prior to or during red wine fermentation, the background interfer-
ence due to the presence of fluorophores was minimal and any resulting spectral baseline
loss was negligible in terms of model performance. Figure 1 shows the Raman spectra
of Cabernet Sauvignon and Chardonnay at the initiation of fermentation (Figure 1a,b)
and after fermentation (Figure 1c,d), respectively. As shown in the figure, base line loss
due to fluorescence significantly increased after fermentation was complete in red wines
(Figure 1c).

Table 1. Summation of raw ethanol, raw pH, PVPP-exposed ethanol, PVPP-exposed pH, and total sugars model performance.

Algorithm Ethanol–Raw Spectra pH–Raw Spectra Ethanol–Post PVPP Spectra pH–Post PVPP Spectra Total Sugars

RMEP R2 RMEP R2 RMEP R2 RMEP R2 RMEP R2

SVR 1.35 0.51 1.16 0.62 0.23 0.98 0.12 0.79 1.59 0.96
PLSR 1.22 0.50 1.17 0.61 0.21 0.99 0.12 0.84 1.57 0.95

RR 1.19 0.50 1.16 0.67 0.23 0.99 0.12 0.82 1.57 0.95

SVR = Support Vector Regression; PLSR = Partial Least Squares Regression; RR = Ridge Regression; RMEP = Root Mean Squared Error of
Prediction; R2 = Coefficient of Determination.

Originally, sugar models were built to predict glucose and fructose separately. Un-
fortunately, these models did not perform well due to excessive spectral overlap between
the sugars (Figure 2, top). As described by Pierna et al. [31], glucose and fructose have
similar Raman spectra with several overlapping spectral peaks. This makes reliable quan-
tification much more difficult. Since total sugars calculates both fructose and glucose
combined, the effect of overlapping spectra is negated. Ethanol and total sugars on the



Beverages 2021, 7, 78 5 of 11

other hand gave enough unique spectral peaks to maintain their respective model integri-
ties (Figure 2, bottom).
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3.2.1. Post Fermentation Baseline Loss

Although ethanol gives a strong Raman signal with a 785 nm laser, many of its spectra
were largely masked in this experiment upon laser excitation due to the presence of fluo-
rophores extracted during red wine fermentation and developed as the wine aged [32,33]
(anthocyanins and polymeric pigments, respectively). This was not such an issue imme-
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diately after fermentation in either the red or white wines, as distinct Raman peaks were
still visible (Figure 1c) and the models could be transformed mathematically to yield more
accurate predictions.
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As red wine ages, anthocyanins bond with tannins and other phenolic compounds
to form polymeric pigments [34,35]. With increasing pigmentation, the probability of
noncovalent bonding between ethanol and the pigments also increases. Hydrogen bonding
between ethanol and the pigments potentially reduces the physical flexibility of the ethanol,
and hence reduces the probability of any molecular contortions needed to induce Raman
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scattering. Furthermore, maximum spectral intensities were somewhat positively corre-
lated with recorded polymeric pigment (PP) values but very negatively correlated with
wine age when laser exposure time was included as a factor (RPP = 0.51, RVintage = −0.91,
data not shown). In other words, as the wine aged and the red wine phenolics formed
pigments, their spectral intensities increased, not due to Raman scattering but rather to
fluorescence emission (Figure 3). In 2019, Silva et al. [36] reported a significant increase
in fluorescence for some anthocyanins upon their absorption onto sepiolite clay. The de-
creasing Raman intensity coupled with the increasing fluorescence intensity only served to
further reduce Raman peak visibility and predictive accuracy.
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Although the Raman effect is not directly related to pH, Raman spectroscopy coupled
with machine learning was suggested as a novel way to obtain pH values nonetheless [37].
Similar to ethanol, pH measurement accuracy was significantly affected by baseline loss
due to fluorescence (Table 1).

3.2.2. Fluorescence Reduction Using Polyvinylpolypyrrolidone (PVPP)

To compensate for baseline loss regardless of the age of the wine, Raman spectroscopy
can give reliable predictions for ethanol and pH in red wine if the samples are first filtered
with polyvinylpolypyrrolidone (PVPP). Figure 2 shows the effect of PVPP filtration on the
red wine Raman spectra at different concentrations of PVPP. As shown in the Figure 4,
at 67 mg/L of PVPP, baseline loss due to fluorescence is greatly reduced, yielding clearly
visible Raman peaks and highly accurate predictive models for both ethanol and pH
(Table 1).

Where the original work of Ranatunge et al. [18] used PVPP packed columns for
filtration, this work found that filtration results were more repeatable if the sample contain-
ing PVPP was placed in a micocentrifuge tube, vortexed, and only the supernatant was
used for Raman analysis. By using only the supernatant of the PVPP filtered samples, any
potential spectral interference or increase in standard deviation due to intermolecular or
intramolecular bonding between wine phenolics and PVPP was avoided.
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3.3. Limitations of Supervised Models

Ethanol, pH, and total sugar models were supervised models, meaning they were built
as a means of approximating some established form of measurement. For ethanol, models
were built using the Anton Paar Alcolyzer. The near-infrared (NIR) spectrum of ethanol [38]
as is utilized by a certain patented method with the Alcolyzer (https://www.laboaragon.
com/docs/marcas/anton-paar/Alcolyzer%20Wine.pdf, last accessed on 9 December 2021)
presents several potential overlaps with the NIR spectra of other compounds that may
be present in any given wine sample, including methanol [39], glucose, fructose, and
water [40]. While the Raman spectrum of ethanol does overlap at some points with sugars

https://www.laboaragon.com/docs/marcas/anton-paar/Alcolyzer%20Wine.pdf
https://www.laboaragon.com/docs/marcas/anton-paar/Alcolyzer%20Wine.pdf
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such as glucose and fructose, the native high resolution of the Raman spectrum allows
for the negation of overlapping peaks without sacrificing model accuracy. As for total
sugars, models were built with measurements obtained using a BioSystems Admeo Y15.
Beyond time constraints, the utilization of enzymatic reactions has a fairly low limit of
linearity (8 g/L), according to the website of the company (https://cdn.accentuate.io/4486
617071682/11567497445442/Enology-Brochure-19-v1585857897992.pdf, last accessed on
9 December 2021). While spontaneous Raman spectroscopy is admittedly insensitive, the
utilization of multivariate regression models allows for rapid, accurate sugar predictions
at a broader range than the enzymatic methods applied by BioSystems. As for pH, the
accuracy of the measurement using traditional meters can vary greatly depending on
electrode type, buffer type, and frequency of calibration [41]. The post PVPP Raman model
for pH which was tested here, offers reliable measurements (RMSEPSVR,PLSR,RR = 0.12)
with less potential error. While Raman spectroscopy is used for wine authentication [42]
and classification [43] purposes, this work suggests that Raman spectroscopy can also be
applied quantitatively to wine as well. Future work should focus on building unsupervised
Raman models for ethanol and sugar measurements as they will offer more accurate
measurements with a greater rapidity than the other methods currently in use.

4. Conclusions

Raman analysis of ethanol, pH, and total sugars in wine offers a low-latency alterna-
tive to other commonly used forms of analysis during and after fermentation. While the
detection limit for spontaneous Raman spectroscopy is well above the average concentra-
tions of common wine components such as organic acids, this is actually advantageous in
building predictive models for compounds in greater abundance, such as ethanol and total
sugars, as it avoids some spectral interference. Additionally, the high native resolution and
minimal sample preparation needed for Raman spectroscopy prioritizes the construction
of unsupervised Raman models for total sugars in fermenting wines, and ethanol and pH
levels in finished wines, as it avoids some potential spectral interference issues present with
some current methods. Red wines present a unique challenge in Raman modeling as pig-
mented phenolics are the primary source of fluorescence that masks the more subtle Raman
spectra. Moreover, the intensity of the fluorescence increases as the wine ages. This can
be easily overcome by removing large phenolic polymers with polyvinylpolypyrrolidone
(PVPP). In conclusion, while Raman spectroscopy is widely applied across many industries,
Raman spectroscopy for enological quantification is a budding field. Surface-enhanced
Raman spectroscopy (SERS), spatially offset Raman spectroscopy (SORS), ultraviolet (UV)
Raman spectroscopy, and photoacoustic Raman spectroscopy (PARS) represent only a
fraction of the many possible applications of vibrational spectroscopy that are yet to be
fully explored in both viticultural and enological applications.
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