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Abstract: Grapevine red blotch virus (GRBV), the causative agent of red blotch disease, causes signif-
icant decreases in sugar and anthocyanin accumulation in grapes, suggesting a delay in ripening
events. Two mitigation strategies were investigated to alleviate the impact of GRBV on wine com-
position. Wines were made from Cabernet Sauvignon (CS) (Vitis vinifera) grapevines, grafted onto
110R and 420A rootstocks, in 2016 and 2017. A delayed harvest and chaptalization of diseased grapes
were employed to decrease chemical and sensory impacts on wines caused by GRBV. Extending the
ripening of the diseased fruit produced wines that were overall higher in aroma compounds such as
esters and terpenes and alcohol-related (hot and alcohol) sensory attributes compared to wines made
from diseased fruit harvested at the same time as healthy fruit. In 2016 only, a longer hangtime of
GRBV infected fruit resulted in wines with increased anthocyanin concentrations compared to wines
made from GRBV diseased fruit that was harvested at the same time as healthy fruit. Chaptalization
of the diseased grapes in 2017 produced wines chemically more similar to wines made from healthy
fruit. However, this was not supported by sensory analysis, potentially due to high alcohol content
masking aroma characteristics.

Keywords: red blotch; virus; mitigation; winemaking; disease expression

1. Introduction

Grapevines (Vitis spp.) are among the most widely grown fruit crops globally, with
the United States being one of the top grape-growing and wine-producing countries. Like
many other crops, pathogens threaten the economic status of grapevines by lowering
yields or decreasing the quality of the grapes and the resulting wines. Currently, with over
70 viruses identified, grapevines contain the highest number of pathogens to infect a single
crop [1]. In 2012, a new circular, single-stranded DNA virus was identified in grapevines
and is currently known as grapevine red blotch virus (GRBV) [2,3].

GRBV has been identified in the United States, Canada, Switzerland, South Korea,
Mexico, India, and Argentina [4–10] and is known to infect white and red wine grape
cultivars and table and raisin grapes, and it is interspecific of hybrids and rootstocks. GRBV
is the causative agent of grapevine red blotch disease (GRBD) [11], with foliar symptoms
consisting of red blotches on leaf blades and margins and reddening of the primary,
secondary, and tertiary veins in red grape cultivars [12–14]. GRBV causes increases in sugar
and anthocyanin concentrations in leaves of red grape cultivars, with consistent decreases of
both in the grape berry [14–16]. The impact of GRBV on the secondary metabolites in grapes
is variable and dependent on genotypic and environmental factors [14,17]. However, little
research has been done on the impact of GRBV on the final wine composition and quality.

Previous studies observed that GRBD causes a delay in grape maturation and can
potentially impact the final wine quality, producing wines with lower ethanol, phenolic,
and aroma content. Research indicated that a trained sensory panel was able to differentiate
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between wines made from GRBV infected fruit and wines made from healthy fruit, which
was driven by differences in alcohol and mouthfeel attributes [18]. Recently, a study
indicated that the low inclusion of GRBD fruit during winemaking still impacted the
chemical and sensorial parameters of the final wine [19]. However, no mitigation strategies
have been investigated to alleviate the effects of GRBV on final wine composition.

It is well known that when the grape berry has reached full maturation, flow from
the phloem decreases, slowing down the transport of water and solutes from leaves to the
berry [20]. Therefore, extending ripening past the typical ripening point of grapes corre-
lates to decreases in metabolite biosynthesis in the berry [21]. Instead, metabolites, such as
sugars and phenolics, begin to concentrate in the berry through transpiration [20,22,23].
Although research has indicated that a longer hangtime can increase phenolic concentra-
tion in the berry through dehydration [24], other studies have demonstrated a decrease in
anthocyanin levels in overripe berries due to degradation [25]. However, the maximum
level of anthocyanins in the grape did not correlate with maximum extractability in the
final wines, where a longer hangtime resulted in greater anthocyanin extractability during
winemaking [25]. Additionally, fruit maturity impacts volatile accumulation in grapes such
as terpenes and esters [26–28]. Bindon et al. investigated the relationship between fruit ma-
turity, wine composition, and sensory characteristics. They found that later harvested fruit
correlated to dark fruit attributes, whereas earlier picked fruit correlated with vegetative
characteristics [29].

Phenolic extraction during fermentation is also impacted by ethanol production [30].
In general, higher ethanol concentrations during fermentation increase phenolic content in
final wines [31,32], which have been correlated to higher sensory quality scores by wine
judges [33]. However, additional studies have indicated that higher ethanol concentrations
during fermentation do not increase the extraction of monomeric phenolics but increase
polymerization and produce darker wines that are perceived by a sensory panel [34]. This
study indicated that wine alcohol content is positively correlated to fruity characteristics in
final wines and negatively correlated to green or vegetal aromas [28,34].

As previous research has shown that GRBV has led to delay ripening events in grapes,
resulting in wines with lower ethanol content and phenolic concentrations, the current
study investigated two mitigation strategies to reduce the impact of GRBV on resulting
wine quality. In 2016 and 2017, diseased fruit was harvested first when the healthy fruit
reached 25 ◦Brix, and a second time once the diseased fruit reached 25 ◦Brix. Additionally,
in 2017, a sub-portion of the first harvested diseased fruit was also chaptalized to match the
sugar content of healthy fruit must. Both mitigation strategies increase the sugar content of
grape musts, consequently increasing the ethanol content of final wines. Therefore, it is
hypothesized that the two mitigation strategies employed in this project will result in a
wine made from diseased fruit being chemically and sensorially similar to a wine made
from healthy fruit.

2. Materials and Methods
2.1. Grape Harvest and Winemaking

Cabernet Sauvignon (Vitis vinifera), grafted onto 110R and 420A rootstocks, grapevines
were used for this investigation, from Oakville Experimental Station (Napa County, CA,
USA). Details of the vineyard and viticultural practices were previously described in
Rumbaugh et al. [17] and Martínez-Lüscher et al. [15]. GRBV symptoms in this vineyard
block were monitored for several years prior to this study. A 100% correlation between
qPCR testing for GRBV and symptoms in grapevines was shown. Due to the number
of vines needed for winemaking, only a subset of vines was retested for GRBV [17].
At harvest, 240 symptomatic (RB(+)) vines and 120 asymptomatic (RB(−)) vines were
harvested simultaneously once RB(−) reached 25 ◦Brix. In addition, a second harvest
of diseased fruit (RB(+) 2H) was performed once they reached 25 ◦Brix. In general, this
harvest occurred one to two weeks after the first harvest (Table 1). However, the second
harvest of CS 420A grapevines on 17 October 2017, occurred after the Northern California



Beverages 2021, 7, 76 3 of 19

wildfires and heavy smoke exposure. Therefore, these wines were excluded from the
sensory analysis due to smoke impact.

Table 1. Chemical analysis of grape musts after destemming–crushing and sugar addition (when applicable) across years
and rootstocks (n = 3).

Sample Harvest Date ◦Brix pH TA (g/L) YAN (mg/L) Malic Acid (mg/L)

CS110 RB(−) 20 September 2016 25.6 ± 0.1 a 3.62 ± 0.0 a 3.84 ± 0.3 b 81.1 ± 7.1 b 1460.0 ± 55.1 c
CS110 RB(+) 20 September 2016 21.7 ± 0.1 c 3.45 ± 0. b 4.75 ± 0.1 a 121.8 ± 9.8 a 2275.0 ± 48.6 a
CS110 RB(+)

2H 27 September 2016 23.8 ± 0.1 b 3.59 ± 0.0 a 4.49 ± 0.2 a 127.2 ± 7.1 a 1970.3 ± 29.5 b

CS420 RB(−) 20 September 2016 24.3 ± 0.1 a 3.50 ± 0.0 b 4.23 ± 0.1 b 99.7 ± 2.5 a 1625.7 ± 48.0 c
CS420 RB(+) 20 September 2016 22.1 ± 0.1 b 3.48 ± 0.0 b 4.53 ± 0.1 a 83.6 ± 17.8 a 1852.0 ± 13.9 b
CS420 RB(+)

2H 27 September 2016 23.7 ± 0.1 a 3.55 ± 0.0 a 4.56 ± 0.2 a 104.3 ± 3.2 a 1953.3 ± 56.3 a

CS110 (–) 26 September 2017 25.5 ± 0.1 b 3.62 ± 0.0 b 3.97 ± 0.0 c 145.9 ±0.6 b 2649.3 ± 45.7 b
CS110 (+) 26 September 2017 23.4 ± 0.0 d 3.57 ± 0.0 b 4.87 ± 0.1 a 150.2 ±1.8 b 2779.0 ± 68.6 ab

CS110 (+) S 26 September 2017 28.2 ± 0.5 a 3.57 ± 0.1 b 4.83 ± 0.1 a 143.7 ±6.8 b 2831.7 ± 140.4 ab
CS110 (+) 2H 6 October 2017 24.7 ± 0.2 c 3.86 ± 0.0 a 4.18 ± 0.1 b 164.0 ±1.4 a 2971.7 ± 47.7 a

CS420 (–) 6 October 2017 25.3 ± 0.1 a 3.56 ± 0.0 b 4.62 ± 0.2 a 127.9 ±15.9 a 2201.0 ± 34.7 c
CS420 (+) 6 October 2017 23.6 ± 0.3 b 3.51 ± 0.0 b 4.82 ± 0.0 a 106.3 ± 4.1 a 2870.0 ± 21.0 a

CS420 (+) S 6 October 2017 25.9 ± 0.6 a 3.51 ± 0.0 b 4.82 ± 0.1 a 111.0 ± 13.5 a 2823.7 ± 16.4 a
CS420 (+) 2H 17 October 2017 24.2 ± 0.1 b 3.70 ± 0.0 a 4.05 ± 0.0 b 117.1 ± 2.4 a 2477.0 ± 39.0 b

TA = titratable acidity, YAN = yeast assimilable nitrogen, CS110 = Cabernet Sauvignon 110R, CS420 = Cabernet Sauvignon 420A, RB = red
blotch, (−) = negative, (+) = positive, 2H = second harvest, S = chaptalization. Difference in lettering indicates a significant difference
between treatments in each rootstock/season combination after applying Tukey’s HSD test (p < 0.05).

Wines were made at the UC Davis LEED Platinum Teaching and Research Winery
(University of California, Davis, CA, USA) using standard experimental protocols for
red wines in 200 L research fermenters [18]. In 2016, the following fermentations were
performed in triplicate: RB(−), RB(+), and RB(+) 2H. In 2017, due to observed differences
between RB(+) and RB(+) 2H in 2016, chaptalization was performed to determine if sugar
content (therefore ethanol content) was the main driver of phenolic extraction in wines.
Thus, during the first harvest, RB(+) grapes either had no sugar added or sugar (sucrose)
added aiming for similar total soluble-solids (TSS measured in ◦Brix) of RB(−) grape must.
The following fermentations were performed in 2017 in triplicate: RB(−), RB(+), RB(+)
sugar addition (S), and RB(+) 2H. Prior to yeast inoculation, ◦Brix, titratable acidity (TA
measured as tartaric acid equivalents), pH, malic acid concentration, and yeast assimilable
nitrogen (YAN) were measured for all treatments and are shown in Table 1. Fermentations
were performed as in Girardello et al. [18].

Upon completion of primary fermentation (eight to nine days to reach <2.0 g/L
residual sugar), wines were pressed using a basket press and returned to the research
fermenters to settle. According to the manufacturer’s protocol, the wines were inoculated
for malolactic fermentation (MLF) with Viniflora® Oenococcus oeni (Chr. Hansen A/S,
Hørsholm, Denmark). When needed, re-inoculation with Lalvin MBR VP 41 Oenococcus
oeni (Lallemand, Bakersfield, CA, USA) was performed. This was the case with RB(−) and
RB(+) S in 2017 due to higher final ethanol content. These wines took around two to three
months longer to finish, potentially causing differences in secondary metabolites [35,36].
Once MLF was complete, the wines were racked into stainless steel containers, adjusted
to 30 mg/L of free SO2, and stored at 15 ◦C. Before bottling, ethanol concentrations were
measured using an infrared spectrophotometer (Anton Paar USA Inc., Ashland, VA, USA),
whereas residual sugar, acetic acid, free and bound SO2, pH, and TA were measured as in
Iland and coworkers [37]. During bottling, wines were sterile filtered in Bordeaux-style
bottles with Saranex screw caps (Saranex/Transcendia, Franklin Park, IL, USA). Wines were
stored at 14 ◦C until further analysis. Three months after bottling, two bottles from each
fermenter replicate were randomly selected for a total of six replicates for each analysis.
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2.2. Phenolic Analysis
2.2.1. Phenolic Extraction through Fermentation

The progression of phenolic extraction was analyzed for each of the wine treatments for
each rootstock. A 2 mL sample was taken each day of alcoholic fermentation to track the ex-
traction of total phenolics, total anthocyanins, and total tannins. Samples were centrifuged
at 4 ◦C at 4000 rpm for 15 min with an Eppendorf 5403 centrifuge (Westbury, NY, USA). An
aliquot was taken and placed into a 1.5 mL tube and shaken to minimize CO2 production.
Samples were analyzed based on a modified protein precipitation method [38–40] using a
Genesys10S UV–Vis Spectrophotometer (Thermo Fisher Scientific, Madison, WI, USA) at
280–520 nm, and data were processed using the program Wine-XRAY with VESUVVIO
software (Napa, CA, USA).

2.2.2. Wine Phenolic Analysis

Wine samples were collected at the time of sensory analysis and frozen until chemical
analysis. Samples were thawed and centrifuged at 15,000 rpm for 5 min with an Eppendorf
5424 centrifuge (Westbury, NY, USA). Large polymeric pigments (LPP) and small polymeric
pigments (SPP) were measured as in Harbertson et al. [40], whereas a modified protein
precipitation assay [41] was used to determine total tannins. Using a Genesys10S UV–Vis
Spectrophotometer, total tannins were measured at 510 nm absorbance and expressed as
catechin equivalents (CE); SPP and LPP were measured at 520 nm absorbance. Relative
concentrations of tannins were expressed as CE, and absorbance units of SPP and LPP were
calculated as in Harbertson et al. [41].

Wine phenolic profiles were determined by RP-HPLC using an Agilent 1260 Infinity
(Agilent Technologies, Santa Clara, CA, USA) equipped with a diode array detector, with a
temperature controlled autosampler maintained at 8 ◦C. Chromatographic separation was
carried out with a PLRP-S 100 A 3 µM 150 × 4.6 mm column stored at 35 ◦C. The sample
(20 µL) was injected onto the column with the mobile phase flow rate set at 1 mL/min. The
chromatographic method is described in Peng et al. [42]. To monitor the eluted compounds,
the wavelengths 280 nm, 320 nm, 360 nm, and 520 nm were used. Calibrations curves were
constructed for gallic acid, (+)-catechin, (−)-epicatechin, caffeic acid, quercetin, quercetin-
rhamnoside, p-coumaric acid, and malvidin-3-O-glucoside chloride to quantify compounds.
Other compounds identified were quantified as described in Girardello et al. [18]. All data
processing was completed with Agilent® CDS ChemStation software version D.04 (Agilent
Technologies, Santa Clara, CA, USA).

2.3. Volatile Profile Analysis

Two bottles were randomly selected from each fermentation replicate for each treat-
ment (a total of six bottles per treatment). To an amber vial containing 3 g of NaCl, 10 mL
of the wine sample was added. In 2016, each vial was spiked with 50 µL of 50 mg/L
2-octanol, and in 2017, each vial was spiked with 50 µL 10 mg/L of 2-undecanone as an
internal standard. The vials were capped with crimp caps (Supelco Analytical, Bellefonte,
PA, USA). Each bottle replicate from each fermentation replicate was analyzed in triplicate.
The volatile profiles of each wine treatment were analyzed via HS-SPME-GC–MS. The wine
samples were extracted and injected onto the GC-MS model 7890A (Agilent Technologies,
Santa Clara, CA, USA) via a Gerstel Muli-purpose Sampler (version 1.2.3.1, Gerstel Inc.,
Linthicum, MD, USA). The analysis was carried out similarly as in Hendrickson et al. [43],
with the exception that the carrier gas, helium, was set at a constant pressure of 5.53 psi
in 2016 (retention-time locked to 2-octanol) and 7.03 psi in 2017 (retention-time locked to
2-undecanone). Each sample was semi-quantitatively analyzed using relative peak areas by
normalizing with the peak area of the internal standard. Compounds were analyzed using
Mass Hunter software version B.07.00 (Agilent Technologies, Santa Clara, CA, USA) and
identified by retention time and confirmation of mass spectra ion peaks using the National
Institute of Standards and Technology database (NIST) (https://www.nist.gov (accessed
on 9 July 2020)).

https://www.nist.gov
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2.4. Sensory Evaluation

In 2016, for both rootstocks and all treatments, three fermenter replicates were evalu-
ated for a total of 18 wines. Due to noticeable differences in one of the fermenter replicates
in each treatment, only two replicates were chosen in 2017. Cabernet Sauvignon 420A
RB(+) 2H wines were not evaluated through descriptive analysis (DA) due to a smoky and
ashy aftertaste from the wildfires in 2017, leaving seven treatments and 14 wines to be
analyzed in 2017. DA was performed in triplicate for aroma, taste, mouthfeel, and color in
May 2017 and June 2018, three months after bottling, in the J. Lohr Wine Sensory Room,
at the University of California in Davis, California. Eleven panelists (five male and six
female) were recruited for sensory analysis of both 2016 and 2017 wines by advertising
within the University of California, Davis. Panelists gave informed consent before the
study and were not aware of the research purpose or how many different samples they
were evaluating. For DA and color evaluation of the wines, similar methods as in Lawless
and Heymann [44] and Casassa et al. [24] were used, respectively.

Training for the panel consisted of seven one-hour sessions over four weeks. Panelists
saw each wine at least three times. In those sessions, panelists generated a list of sensory
attributes with related reference standards (Supplemental Tables S5 and S6) after blindly
tasting the wines. Following the training sessions, panelists assessed the wines in triplicate
in one-hour evaluation sessions over two weeks in individual sensory booths. In 2016,
panelists evaluated six wines in each of the nine evaluation sessions, with a 30-s break
between each wine evaluated. A five-minute break was given between wines three and
four. Similarly, in 2017 panelists evaluated seven wines in each of the six sessions with a
five-minute break between wines four and five. Prior to each evaluation session, panelists
completed a reference standard test where they were asked to identify aroma standards
blindly. The wines were served (40 mL) in a black ISO (ISO-3591:1977) wine tasting glass
coded with a randomly generated three-digit code. Wine samples were randomly presented
in a Williams Latin Square complete block design calculated by the FIZZ software (FIZZ
network, version 2.47 B, Biosystèmes, Couternon, France). The evaluation sessions were
performed in a booth with red lighting at room temperature, where the panelists were
asked to evaluate each wine in attribute intensity on a 10 cm anchored line scale (“not
present” and “high” for all attributes besides viscosity, for which the anchors were “watery”
and “very viscous”). Panelists expectorated each wine and cleansed their palates with
ambient temperature water and unsalted crackers during a 1-min break between wine
samples to limit carry over.

Afterward, panelists were directed to another booth to evaluate the color of each wine.
The wine poster Les couleurs du vin (Bouchard Ainé & Fils) was used to assess each wine as
described in Casassa et al. [24]. The panelists were asked to blindly match each wine with
one of the 42 red wine color examples on the poster. Wines were analyzed under vertically
mounted halogen lights at a 45◦ angle and in the direct line of sight. Panelists were asked
to compare each wine side by side with the poster. All sensory data were collected using
FIZZ software.

2.5. Statistical Analysis

Sample means and standard deviations were calculated using Microsoft Excel (Mi-
crosoft, Redmond, Washington, DC, USA), and all other statistical analysis was performed
using R (RStudio version 1.2.5042, R version 3.6.1 https://www.rstudio.com (accessed on
26 November 2021)) with an alpha of 0.05. Chemical analysis was conducted through a
one-way analysis of variance (ANOVA) and a post-hoc Tukey Honest significance (HSD)
test. For sensory analysis, significance was tested by multivariate analysis of variance
(MANOVA) for the overall treatment effect, and then by a three-way ANOVA with two-
way interactions. If there was a significant wine to judge interaction and wine to replication
interaction, a pseudo-mixed model ANOVA was performed to determine if the wine effect
was truly significant in the sensory analysis. Principal component analysis (PCA) was used

https://www.rstudio.com
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to determine the variance in the volatile analysis. Multiple factor analysis (MFA) was used
to determine the variance between samples for chemical and sensory analysis.

3. Results
3.1. Basic Grape Chemical Composition at Harvest

In Table 1, the harvest dates and basic chemical composition for each treatment (RB(−),
RB(+), RB(+) S and, RB(+) 2H) are shown. In 2017, CS 420A RB(+) 2H grapes were harvested
after the Northern California wildfires and 10 days of smoke exposure, which potentially
led to smoke impacted wines. It was observed that in all cases but CS 420A in 2017, RB(+)
2H grapes were significantly higher in TSS than RB(+) grapes, which were harvested at
the same time as healthy fruit (RB(−)). However, CS 110R RB(+) 2H grapes in both years
were not able to meet similar TSS as RB(−) grapes. In general, pH was lower, and TA and
malic acid were higher in RB(+) compared to RB(−) grape juice, corresponding to a delay
in ripening. The RB(+) 2H grape juice, in general, showed higher pH values and decreased
TA and malic acid concentrations when compared to RB(+). No significant trend for YAN
levels was observed.

3.2. Phenolic Extractability

The graphs of total anthocyanin and total tannin concentrations are respectively shown
in Figure 1a,b for all wine treatments for CS 110R and 420A in 2016. Figure 1c,d respectively
portray total anthocyanin and total tannin concentrations for CS 110R and 420A in 2017.
Significant differences among treatments were calculated for anthocyanin concentrations
(Supplemental Table S1) and tannin concentrations (Supplemental Table S2). In general,
total anthocyanin concentrations in RB(−) grape musts were significantly higher than the
other treatments towards the end of fermentation across season and rootstock (Figure 1a,c
and Supplemental Table S1). The anthocyanin profile of fermenting grape musts (Figure 1
and Supplemental Tables S1 and S2) indicated that a delayed harvest of diseased fruit
increased the extractability of anthocyanins when compared to RB(+) fruit.

It was observed for RB(+) 2H grapes that dehydration in the berry led to significantly
smaller berry mass and increases in sugar content (data not shown). It was hypothesized
that the higher sugar concentration, resulting in higher alcohol content during fermen-
tation, led to higher extraction of anthocyanins into the final wines. Therefore, in 2017,
chaptalization was performed, aiming for the TSS of the RB(−) grapes, to investigate this
possibility. However, as indicated by Figure 1, chaptalization of diseased grape must did
not increase anthocyanin extraction and was statistically similar to RB(+) wines at the end
of fermentation.

Overall, RB(−) wines were significantly higher in tannin concentrations at the end of
fermentation when compared to the other treatments, which were all similar. Although
the harvest date was one to two weeks later, tannin concentrations for RB(+) 2H and RB(+)
wines were generally statistically similar through fermentation, except for CS 110R in 2016.

3.3. Final Wine Composition
3.3.1. Chemical Parameters at Bottling

Table 2 depicts the percentage alcohol (% v/v), pH, TA, and residual sugar (RS) for
all wine treatments in both years. As expected, with the starting TSS values of the grape
must, RB(−) was highest in alcohol content in 2016, followed by RB(+) 2H and then RB(+).
Similar observations were made in 2017; however, RB(+) S wines were significantly higher
in percentage alcohol than all other treatments. In general, RS was significantly lower in
RB(+) than other treatments except for CS 420A in 2017.
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Figure 1. Total anthocyanin and tannin concentrations during fermentation via Wine X-ray analysis for wines in 2016 and
2017 (n = 3). (a) Total anthocyanin concentrations through fermentation in 2016; (b) total tannin concentrations through
fermentation in 2016; (c) total anthocyanin concentrations through fermentation in 2017, and (d) total tannin concentrations
through fermentation in 2017. CS110 = Cabernet Sauvignon 110R, CS420 = Cabernet Sauvignon 420A, RB = red blotch,
(−) = negative, (+) = positive, 2H = second harvest, S = chaptalization, ME = malvidin-3-glucoside equivalents, and
CE = catechin equivalents.

3.3.2. Phenolic Compound Composition

Tables 3 and 4 portray the phenolic profiles of the individual wine treatments. Total
tannin, SPP, and LPP values from the protein precipitation assay are supplemental to
the values of polymeric pigments and phenols from RP-HPLC analysis. In 2016, it was
observed that total flavan-3-ols were significantly higher in RB(+) and RB(+) 2H wines than
RB(−) wines for both rootstocks. The concentrations of flavanols and anthocyanins were
generally lower in RB(+) wines than in other wine treatments. Additionally, polymeric
pigment, polymeric phenol, and SPP values were significantly higher in RB(−) and RB(+)
2H wines than RB(+) wines for both rootstocks in 2016.
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Table 2. Chemical compositions of final wines in 2016 and 2017 (n = 6).

2016

110R 420A

Bottling
Chemical

Parameters
RB(−) RB(+) RB(+) 2H RB(−) RB(+) RB(+) 2H

% Alcohol
(% v/v) 15.10 ± 0.20 a 11.99 ± 0.24 c 13.54 ± 0.09 b 14.07 ± 0.18 a 12.12 ± 0.18 c 13.66 ± 0.09 b

pH 3.55 ± 0.07 b 3.6 ± 0.01 ab 3.65 ± 0.03 a 3.44 ± 0.04 b 3.47 ± 0.01 b 3.59 ± 0.05 a
TA (g/L) 6.79 ± 0.21 a 6.45 ± 0.12 a 6.61 ± 0.13 a 7.13 ± 0.21 a 6.86 ± 0.04 ab 6.51 ± 0.20 b
RS (g/L) 0.27 ± 0.03 a 0.17 ± 0.01 c 0.22 ± 0.00 b 0.20 ± 0.01 a 0.19 ± 0.01 b 0.20 ± 0.01 a

2017

110R 420A

Bottling
Chemical

Parameters
RB(−) RB(+) RB(+) S RB(+) 2H RB(−) RB(+) RB(+) S RB(+) 2H

% Alcohol (%
v/v) 15.42 ± 0.12 b 13.77 ± 0.15 d 16.06 ± 0.03 a 14.72 ± 0.06 c 15.01 ± 0.09 b 14.02 ± 0.18 c 15.51 ± 0.16 a 14.30 ± 0.02 c

pH 3.78 ± 0.05 b 3.88 ± 0.01 a 3.92 ± 0.04 a 3.88 ± 0.03 ab 3.58 ± 0.02 b 3.67 ± 0.03 a 3.71 ± 0.02 a 3.70 ± 0.03 a
TA (g/L) 6.74 ± 0.12 a 5.83 ± 0.11 b 6.06 ± 0.11 b 5.94 ± 0.10 b 6.41 ± 0.16 a 6.05 ± 0.21 a 6.42 ± 0.16 a 6.21 ± 0.21 a
RS (g/L) 0.74 ± 0.15 a 0.23 ± 0.10 b 0.96 ± 0.03 a 0.42 ± 0.10 b 0.87 ± 0.45 a 0.47 ± 0.15 a 0.61 ± 0.18 a 0.24 ± 0.02 a

TA = Titratable Acidity, RS = residual sugar, 110R = Cabernet Sauvignon 110R, 420A = Cabernet Sauvignon 420A, RB = red blotch, (−) =
negative, and (+) = positive, 2H = second harvest, S = chaptalization. Difference in lettering indicates a significant difference between
treatments of 110R and 420A respectively, after applying Tukey’s HSD test (p < 0.05).

Table 3. Phenolic profile of wines in 2016 analyzed using HPLC-DAD and spectrophotometrically (n = 6). Values for SPP,
LPP, and Tannin were obtained through a modified protein precipitation assay. All other values were obtained through
HPLC-DAD.

2016

110R 420A

Phenolic Compound RB(−) RB(+) RB(+) 2H RB(−) RB(+) RB(+) 2H

Total Flavan-3-ols (mg/L) 29.14 ± 0.60 b 32.93 ± 0.95 a 33.99 ± 0.96 a 30.00 ± 0.77 b 33.86 ± 0.65 a 34.47 ± 0.29 a
Total HCA (mg/L) 33.34 ± 0.50c 35.57 ± 0.06 b 38.58 ± 0.92a 42.79 ± 2.84 b 47.68 ± 3.74 a 45.41 ± 1.64 ab

Total Flavonols (mg/L) 70.64 ± 5.37 a 47.66 ± 2.45 b 75.74 ± 1.76 a 82.45 ± 1.38 a 73.00 ± 2.41 b 79.16 ± 1.89 a
Total Anthocyanins

(mg/L) 334.42 ± 16.07 b 295.61 ± 15.86 c 365.64 ± 8.56 a 370.96 ± 4.96 a 329.98 ± 20.1 b 346.31 ± 23.24 ab

Gallic Acid (mg/L) 7.73 ± 0.28 c 10.03 ± 0.20 b 10.88 ± 0.44 a 7.22 ± 0.37 b 9.29 ± 0.06 a 9.63 ± 0.47 a
Polymeric Pigments

(mg/L) 20.97 ± 4.12 a 10.16 ± 2.07 b 18.03 ± 1.90 a 18.48 ± 0.22 a 14.03 ± 0.06 c 16.29 ± 1.44 b

Polymeric Phenols
(mg/L) 233.81 ± 44.59 a 136.41 ± 24.48 b 250.05 ± 32.61 a 232.59 ± 10.83 a 198.46 ± 9.55 b 237.22 ± 22.76 a

SPP (Au520) 2.34 ± 0.08 a 1.30 ± 0.11 c 1.64 ± 0.01 b 1.60 ± 0.06 a 1.15 ± 0.05 c 1.39 ± 0.06 b
LPP (Au520) 0.72 ± 0.21 a 0.29 ± 0.18 a 0.70 ± 0.12 a 0.55 ± 0.21 a 0.50 ± 0.06 a 0.55 ± 0.05 a

Tannin (mg/L CE) 173.53 ± 77.14 ab 154.77 ± 19.76 b 405.14 ± 87.81 a 386.77 ± 41.76 a 456.08 ± 26.96 a 488.43 ± 41.87 a

HCA = hydroxycinnamic acids, SPP = short polymeric pigments, LPP = long polymeric pigments, CE = catechin equivalents, 110R =
Cabernet Sauvignon 110R, 420A = Cabernet Sauvignon 420A, RB = red blotch, (−) = negative, and (+) = positive, 2H = second harvest, S =
chaptalization. Difference in lettering indicates a significant difference between treatments after applying Tukey’s HSD test (p < 0.05).
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Table 4. Phenolic profile of wines in 2017 analyzed using HPLC-DAD and spectrophotometrically (n = 6). Values for SPP, LPP, and tannin were obtained through a modified protein
precipitation assay. All other values were obtained through HPLC-DAD.

2017

110R 420A

Phenolic Compound RB(−) RB(+) RB(+) S RB(+) 2H RB(−) RB(+) RB(+) S RB(+) 2H

Total Flavan-3-ols (mg/L) 37.98 ± 1.05 c 46.45 ± 1.28 a 37.93 ± 0.29 c 42.26 ± 1.66 b 41.94 ± 1.20 a 42.14 ± 0.86 a 37.65 ± 1.90 b 42.01 ± 1.43 a
Total HCA (mg/L) 26.89 ± 1.41 a 27.39 ± 0.46 a 26.22 ± 1.25 a 17.17 ± 1.59 b 28.99 ± 1.45 a 24.03 ± 1.99 b 21.55 ± 2.25 b 16.40 ± 1.64 c

Total Flavonols (mg/L) 36.51 ± 2.71 ab 41.38 ± 2.29 a 34.04 ± 2.38 b 41.70 ± 7.43 a 45.60 ± 3.27 ab 47.36 ± 1.90 a 44.14 ± 1.26 ab 38.79 ± 4.47 b
Total Anthocyanins

(mg/L) 92.74 ± 26.48 b 214.11 ± 11.70 a 100.47 ± 28.10 b 189.61 ± 29.54 a 170.35 ± 11.66 a 185.50 ± 5.43 a 143.27 ± 28.5 b 182.85 ± 16.75 a

Gallic Acid (mg/L) 16.38 ± 0.17 c 19.71 ± 0.86 a 19.11 ± 0.11 a 17.83 ± 0.17 b 14.69 ± 0.19 b 15.89 ± 0.39 a 15.05 ± 0.69 b 15.79 ± 0.44 a
Polymeric Pigments

(mg/L) 38.05 ± 11.50 a 19.54 ± 0.65 b 40.46 ± 4.45 a 17.43 ± 6.63 b 27.22 ± 5.40 ab 22.17 ± 0.73 bc 31.85 ± 2.64 a 19.94 ± 5.57 c

Polymeric Phenols
(mg/L) 379.98 ± 98.00 a 253.26 ± 2.36 b 417.65 ± 25.17 a 217.08 ± 81.58 b 341.40 ± 38.37 ab 298.81 ± 16.46 bc 380.55 ± 31.61 a 245.89 ± 68.18 c

SPP (Au520) 3.14 ± 0.30 a 1.50 ± 0.01 c 2.53 ± 0.07 b 1.74 ± 0.35 c 2.49 ± 0.24 a 1.47 ± 0.03 c 2.00 ± 0.06 b 2.00 ± 0.40 b
LPP (Au520) 1.06 ± 0.72 ab 0.54 ± 0.03 bc 1.42 ± 0.12 a 0.29 ± 0.28 c 0.85 ± 0.25 ab 0.65 ± 0.03 ab 1.07 ± 0.09 a 0.19 ± 0.32 b

Tannin (mg/L CE) 297.99 ± 171.60 ab 440.52 ± 33.49 a 460.33 ± 25.76 a 175.89 ± 133.11 b 379.17 ± 61.19 b 452.88 ± 37.89 ab 542.14 ± 17.27 a 230.01 ± 128.61 c

HCA = hydroxycinnamic acids, SPP = short polymeric pigments, LPP = long polymeric pigments, CE = catechin equivalents, 110R = Cabernet Sauvignon 110R, 420A = Cabernet Sauvignon 420A, RB = red blotch,
(−) = negative, and (+) = positive, 2H = second harvest, S = chaptalization. Difference in lettering indicates a significant difference between treatments after applying Tukey’s HSD test (p < 0.05).
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Overall, in 2017 the phenolic profiles of chaptalized wines were more similar to RB(−)
wines than RB(+) or RB(+) 2H wines. For CS 110R, flavan-3-ol, flavanol, and anthocyanin
concentrations were higher in RB(+) and RB(+) 2H wines compared to RB(−) and RB(+) S
wines. In addition, RB(−) and RB(+) S wines generally were higher in concentration for
polymeric pigments, polymeric phenols, and SPP values than RB(+) 2H and RB(+). For
CS 420A, RB(+) S was the only treatment significantly different and lower than other wine
treatments for anthocyanin concentrations.

3.3.3. Volatile Compound Composition

In 2016, 34 and 39 volatile aroma compounds were identified, and 31 and 27 were sig-
nificantly different for CS 110R and CS 420A, respectively. For CS 110R and CS 420A in 2017,
there was a total of 31 and 29 volatiles identified, 26 and 6 of them being significantly differ-
ent, respectively. Figure 2 depicts the PCA of the volatile profiles of wines made in 2016 and
2017, with ellipses to show 95% confidence intervals. Across seasons and rootstocks, 71–86%
of the variance of the volatile profiles between treatments was explained. The third principal
component (PC) was able to further separate the treatments only in the case of CS 110R 2017,
in which an additional 12% of the variance was explained (Supplemental Figure S1). For
the PCA in Figure 2a–c and Supplemental Figure S1, the 20 highest significantly different
volatile compounds that contribute to the variance between the treatments are shown.
The separation between sample treatments is well displayed by plotting the variables that
contribute the most variance explained in the PCA, and the separation between sample
treatments is well displayed [45]. For CS 420A wines in 2017 (Figure 2d), only the six signif-
icantly different volatile compounds are plotted to show the highest degree of separation
between the treatments.

In general, across season and rootstocks, RB(+) wines were negatively correlated
with most of the volatile compounds. In 2016, the PCA of the volatile profiles of wines in
Figure 2a,b showed that RB(+) 2H wines were differentiated from RB(+) and RB(−) wines.
Esters, terpenoids, and higher alcohols (HAs), which are responsible for fruity and floral
aromas, were negatively correlated with RB(+) wines and positively correlated with RB(+)
2H and RB(−) wines.

For CS 110R wines in 2017, Figure 2c indicates that RB(+) 2H and RB(+) wines were
similar and were separated from RB(−) wines at the 95% confidence level. RB(+) 2H was
correlated with esters and terpenoids. By plotting the third PC (Supplemental Figure S1),
RB(+) S wines were separated from RB(−) wines and were positively correlated with HAs,
whereas RB(−) wines were correlated with the esters, ethyl 2-methylbutanoate and ethyl
3-methylbutanoate, as well as p-cymene, and cis-2-hexen-1-ol.

For CS 420A in 2017 (Figure 2d) only RB(−) and RB(+) wines were separated on the
PCA at a 95% confidence interval. RB(+) S and RB(−) wines were both highly correlated
with the volatile compounds ethyl octanoate, limonene, and benzaldehyde. The confidence
ellipses suggest that RB(+) and RB(+) 2H wines were not distinguishable; however, the
volatile aroma compound profile of CS 420A RB(+) 2H may have been affected by the
Northern California wildfires, and, therefore, no conclusions can be drawn.

3.4. Descriptive Analysis of Final Wines

A MANOVA determined significant wine effects for all sensory evaluations, except
for CS 420A in 2017. An ANOVA and MFA were still applied to analyze CS 420A data in
2017; however, this observation indicates that the panel could not distinguish between the
CS 420A wines made in 2017. All sensory attributes that had a significant wine effect in
the final wines in 2016 and 2017 are shown in Supplemental Table S3. In general, it was
observed that panelists could distinguish between RB(−) wines and RB(+) wines, across
season and rootstock. A hot mouthfeel or an alcohol aroma was higher for RB(−) wines
than RB(+) wines, which was mainly significant.
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420A wines made in 2017. Ellipses are drawn to 95% confidence with n = 6 for two bottle replicates for each fermenter replicate. Only the highest 20 significant volatile compounds that 
contribute to the variance are plotted. However, 2d shows only the six volatiles that were significantly different. CS110 = Cabernet Sauvignon 110R, CS420 = Cabernet Sauvignon 420A, 
RB = red blotch, (–) = negative, and (+) = positive, 2H = second harvest, S = chaptalization. 
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Figure 2. Principal component analysis of volatile compounds in wines: (a) CS 110R wines made in 2016, (b) CS 420A wines
made in 2016, (c) CS 110R wines made in 2017, and (d) CS 420A wines made in 2017. Ellipses are drawn to 95% confidence
with n = 6 for two bottle replicates for each fermenter replicate. Only the highest 20 significant volatile compounds that
contribute to the variance are plotted. However, 2d shows only the six volatiles that were significantly different. CS110 =
Cabernet Sauvignon 110R, CS420 = Cabernet Sauvignon 420A, RB = red blotch, (−) = negative, and (+) = positive, 2H =
second harvest, S = chaptalization.

For CS 110R wines in 2016, RB(−) had significantly higher values for hot mouthfeel
and visual color than RB(+) wines. At the same time, RB(+) wines were rated significantly
higher for sour. Panelists rated RB(+) 2H higher for dry mouthfeel than other treatments
and statistically similar to RB(−) for color. RB(+) 2H wines were also found to be signifi-
cantly hotter than RB(+) wines, but still lower than RB(−) wines. In the case of CS 420A
wines made in 2016, RB(−) and RB(+) 2H wines were statistically similar for alcohol aroma
and sweet taste, which were both higher than RB(+) wines.

In 2017, RB(−) wines were rated significantly higher for dark fruit and red cherry
aromas. They were higher, although not significant for the vanilla aroma and hot mouthfeel
compared to RB(+) wines. On the other hand, RB(+) wines were rated higher for barnyard,
soil, savory, and black pepper aromas, as well as astringency mouthfeel than RB(−) wines,
although only barnyard was significant. The panelists rated RB(+) 2H wines as statistically
similar to RB(−) wines for all attributes, and RB(+) S wines as statistically similar to
RB(+) wines for all attributes besides hot mouthfeel (Supplemental Table S3). For the hot
mouthfeel, RB(+) S wines were significantly higher than RB(+) wines but similar to RB(−)
and RB(+) 2H wines.

4. Discussion
4.1. Phenolic Extractability

The current study indicated that extending the ripening of GRBV infected grapes did
increase anthocyanin extractability during winemaking. Chaptalization of diseased grape
musts in 2017 did not show a similar trend, suggesting another factor besides ethanol
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concentration influences anthocyanin extractability. Similar findings were observed in
Bautista-Ortin et al. [25], where a longer hangtime of grapes resulted in increased antho-
cyanin extractability during winemaking. In this work, the authors correlated their findings
to changes in the grape skin cell wall. Research has shown that dehydration of berries and
a longer hangtime can lead to degradation of the grape skin cell wall [46]. It is commonly
accepted that pectolytic enzyme activity that degrades the cell wall increases during ripen-
ing and is positively correlated to the enhanced extractability of anthocyanins from grape
skins [47]. GRBV delays grape ripening events, one potentially being cell wall metabolism,
resulting in more rigid cell walls, consequently decreasing phenolic extractability. Our
work potentially suggests that changes in the integrity and composition of the grape skin
cell wall through a longer hangtime drive extractability during fermentation for GRBV
infected grapes. Another explanation is that extended ripening concentrates secondary
metabolites through dehydration, leading to a higher concentration of anthocyanins in
RB(+) 2H wines compared to RB(+) and RB(+) S wines. However, an investigation into
the changes in the cell wall of GRBV infected grapes through ripening and how this may
impact phenolic extractability is needed.

Results in the current study indicate that RB(+) wines were significantly lower in tannin
concentrations than RB(−) wines by the end of primary fermentation. This is contrary to
findings in Rumbaugh et al. [17], where tannin content and concentration were higher in RB(+)
grapes when compared to RB(−) grapes, which was potentially due to a host defense mecha-
nism stimulated by GRBV infection. This suggests that although tannin grape content is higher
in RB(+) grapes than RB(−), the extractability during winemaking is much lower. Previous
work has indicated that tannins can bind to grape skin cell walls during fermentation [48], and
that tannin extraction can increase with increases in ethanol and temperature [49]. However,
in 2017 for RB(+) S wines, the concentration of tannins was similar to RB(+) and RB(+) 2H
wines, indicating that a higher alcohol content did not afford higher extraction of tannins in
GRBV infected fruit. Collectively these observations indicate that ethanol production during
fermentation is not the only factor increasing tannin extraction of RB(−) grape musts when
compared to RB(+) and RB(+) S. Research indicates that pectin and soluble proteins, namely
pathogenesis-related (PR) proteins, can bind to tannins during fermentation, decreasing extrac-
tion during winemaking [31,48,50]. The impact of GRBV on grape skin cell wall composition
and PR proteins has yet to be elucidated.

4.2. The Effect of Ethanol and Ripeness Stage on Wine Chemical Composition

In 2016, the extended ripening of diseased grapes showed the potential to mitigate
some of the effects of GRBV on the chemical composition of the wines. RB(+) 2H wines
were generally higher in phenolic concentrations than RB(+) wines, agreeing with previous
work that investigated the impact of a longer hangtime of grapes on phenolic composition
in wines [24,25,34]. However, unlike results in 2016, tannin levels in 2017 were significantly
lower in RB(+) 2H when compared to RB(+) and RB(+) S, which were previously similar
during fermentation (Figure 1). In 2017, RB(+) 2H grapes were harvested one to two weeks
later than in 2016, potentially increasing cell wall degradation [47,50–52]. Increased berry
senescence can increase the binding of large polymeric compounds to the grape cell wall.
Therefore, although extended ripening can potentially alleviate the impact of GRBV on
final wine composition, this is highly dependent on the ripening stage, where over-ripening
can cause decreases in desired polymeric phenols in wines.

Overall, RB(+) wines were lower in volatile aroma compound concentrations than
RB(−) wines, agreeing with previous results regarding the volatile profile of grapes [17].
The current study indicates that the volatile profile of RB(+) 2H wines were generally
different than those of both RB(+) and RB(−). Previous research has shown that volatile
accumulation is correlated with ripening in grapes [26,27,53,54]. Studies also indicated
that alcohol content plays a significant role in the production of volatiles during winemak-
ing, through yeast metabolism and chemical reactions, as well as the volatility of aroma
compounds in a final wine [55,56]. The differences in alcohol content among these wines
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would contribute to a difference in volatility of aroma compounds and the formation of
volatile compounds during fermentation, leading to all three wines being differentiated
based on volatile composition.

On the other hand, chaptalizing the GRBV grape must in 2017 increased the chemical
similarity between RB(+) S and RB(−) wines. In the case of CS 110R, the increase in
polymerized phenolics in these two treatments most likely is a result of the higher alcohol
content, leading to a longer malolactic fermentation (MLF). Previous work investigating
the effects of the duration of MLF on secondary metabolite concentrations has shown that
a longer duration of MLF caused decreases in anthocyanin concentrations while increasing
polymerization [36]. In addition, research indicates that a higher prefermentative Brix, and
therefore higher alcohol content, did not lead to higher anthocyanin extraction, but it did
increase concentrations of polymeric phenols and pigments [24,34].

The alcohol content also largely impacted the volatile profiles of the final wines. For
both rootstocks in 2017, the chaptalization of wine differentiated the volatile compound
profile from RB(+) wines. PCA results indicated that CS 110R RB(+) S wines positively
correlated with HAs (Supplemental Figure S1). HAs are formed through yeast metabolism
of either sugar or amino acids (Ehrlich mechanism). Their production is increased with
higher amounts of suspended solids, such as augmented sugar due to chaptalization [57].
Depending on their concentration, these compounds are responsible for fusel oil and
solvent aromas in wines [58]. On the other hand, RB(−) wines were correlated to esters
formed through enzymatic or acid-catalyzed condensation reactions of carboxylic acids and
alcohols, and responsible for fruity and floral aromas [57]. In the current study, the chap-
talization of CS 110R diseased grape musts increased HA formation during fermentation,
differentiating RB(+) S wines from RB(−) wines (Supplemental Figure S1).

4.3. Integrating Chemical and Sensorial Observations

MFA was used to visualize the correlations between chemical and sensorial obser-
vations (Figures 3–6). Between 82 and 100% of the variance was explained in the first
two dimensions across seasons and rootstocks. CS 110R in 2016 had the best correlation
between chemical and sensory data, although CS 420A in 2016 and 2017 also showed
correlations between sensory and basic chemical and volatile data, while CS 110R in 2017
only exhibited correlations between sensory and phenolic datasets (Supplemental Figure S2
and Supplemental Table S4) [59].
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volatile compound values n = 6, and for sensory data n = 9. CS110 = Cabernet Sauvignon 110R, RS = residual sugar, HCA 
= hydroxycinnamic acids, SPP = small polymeric pigments, 1 = ethyl acetate, 2 = ethyl isobutanoate, 3 = ethyl butanoate, 4 
= ethyl 2-methylbutanoate, 5 = ethyl 3-methylbutanoate, 6 = isobutanol, 7 = isoamyl acetate, 8 = α-terpinene, 9 = isoamyl 
alcohol, 10 = ethyl hexanoate, 11 = p-cymene, 12 = ethyl lactate, 13 = hexanol, 14 = trans-3-hexen-1-ol, 15 = cis-3-hexen-1-ol, 

Figure 3. Multifactor analysis of 2016 Cabernet Sauvignon 110R wines which (a) displays the significant basic chemical parameters
at bottling, phenolic profile, volatile profile, and sensory attributes on a loadings plot and how they separate and correlate to
(b) the wine treatments plotted on a partial axes plot. For bottling values, phenolic compound values, and volatile compound
values n = 6, and for sensory data n = 9. CS110 = Cabernet Sauvignon 110R, RS = residual sugar, HCA = hydroxycinnamic acids,
SPP = small polymeric pigments, 1 = ethyl acetate, 2 = ethyl isobutanoate, 3 = ethyl butanoate, 4 = ethyl 2-methylbutanoate,
5 = ethyl 3-methylbutanoate, 6 = isobutanol, 7 = isoamyl acetate, 8 = α-terpinene, 9 = isoamyl alcohol, 10 = ethyl hexanoate,
11 = p-cymene, 12 = ethyl lactate, 13 = hexanol, 14 = trans-3-hexen-1-ol, 15 = cis-3-hexen-1-ol, 16 = cis-2-hexen-1-ol, 17 = ethyl
octanoate, 18 = β-cyclocitral, 19 = benzyl alcohol, 20 = 2-phenylethyl alcohol, RB = red blotch, (+) = positive, (−) = negative,
2H = second harvest.
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Figure 4. Multifactor analysis of 2016 Cabernet Sauvignon 420A wines which (a) displays the significant basic chemical
parameters at bottling, phenolic profile, volatile profile, and sensory attributes on a loadings plot and how they separate
and correlate to (b) the wine treatments plotted on a partial axes plot. For bottling values, phenolic compound values,
and volatile compound values n = 6, and for sensory data n = 9. CS 420 = Cabernet Sauvignon 420A, RS = residual
sugar, TA = titratable acidity, HCA = hydroxycinnamic acids, SPP = small polymeric pigments, 1 = ethyl acetate, 2 = ethyl
butanoate, 3 = isobutanol, 4 = isoamyl acetate, 5 = β-myrcene, 6 = limonene, 7 = isoamyl alcohol, 8 = p-cymene, 9 = hexyl
acetate, 10 = trans-3-hexen-1-ol, 11 = cis-2-hexen-1-ol, 12 = nerol oxide, 13 = β-cycolcitral, 14 = ethyl decanoate, 15 = nerol,
16 = geraniol, 17 = benzyl alcohol, 18 = octanoic acid, 19 = 2-ethylphenol, 20 = ethyl cinnamate, RB = red blotch, (+) = positive,
(−) = negative, 2H = second harvest.
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parameters at bottling, phenolic profile, volatile profile, and sensory attributes on a loadings plot and how they separate
and correlate to (b) the wine treatments plotted on a partial axes plot. Since a fermenter replicate was removed for each
treatment for DA (n = 6), the same fermenter was removed when plotting the MFA for bottling values, phenolic compound
values, and volatile compound values (n = 4). CS110 = Cabernet Sauvignon 110R, RS = residual sugar, TA = titratable
acidity, HCA = hydroxycinnamic acids, SPP = small polymeric pigments, LPP = large polymeric pigments, 1 = ethyl acetate,
2 = ethyl isobutanoate, 3 = ethyl butanoate, 4 = ethyl 2-methylbutanoate, 5 = ethyl 3-methylbutanoate, 6 = isobutanol,
7 = isoamyl acetate, 8 = limonene, 9 = isoamyl alcohol, 10 = ethyl hexanoate, 11 = p-cymene, 12 = hexyl acetate, 13 = hexanol,
14 = trans-3-hexen-1-ol, 15 = ethyl octanoate, 16 = benzaldehyde, 17 = β-linalool, 18 = β-damascenone, 19 = benzyl alcohol,
20 = 2-phenylethyl alcohol, RB = red blotch, (+) = positive, (−) = negative, 2H = second harvest.



Beverages 2021, 7, 76 15 of 19Beverages 2021, 7, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 6. Multifactor analysis of 2017 Cabernet Sauvignon 420A wines which (a) displays the significant basic chemical 
parameters at bottling, phenolic profile, volatile profile, and sensory attributes on a loadings plot and how they separate 
and correlate to (b) the wine treatments plotted on a partial axes plot. Since a fermenter replicate was removed for each 
treatment for DA (n = 6), the same fermenter was removed when plotting the MFA for bottling values, phenolic compound 
values, and volatile compound values (n = 4). In addition, since the second harvest was not analyzed for sensory, it is not 
shown here, consequently changing what values were significant. CS 420 = Cabernet Sauvignon 420A, RS = residual sugar, 
TA = titratable acidity, HCA = hydroxycinnamic acids, ANTH = anthocyanins, Pphen = polymeric phenols, Ppig = poly-
meric pigments, SPP = small polymeric pigments, 1 = limonene, 2 = hexyl acetate, 3 = ethyl octanoate, 4 = β-citronellol, 5 = 
phenethyl acetate, RB = red blotch, (+) = positive, (–) = negative, 2H = second harvest. 

In 2016, RB(–) and RB(+) 2H were positively correlated to alcohol content, hot mouth-
feel, alcohol aroma, and many of the volatile compounds responsible for the fruity or floral 
aromas, such as esters and terpenes. This agrees with the previous research that showed 
higher alcohol content is associated with fruity and floral aromas [34]. For CS 110R in 2016, 
the color sensory attribute was highly correlated with anthocyanin concentrations and 
polymeric pigments, all of which were well correlated with RB(–) and, to a lesser degree, 
RB(+) 2H wines. The RB(+) wines in 2016 were negatively correlated with the majority of 
aroma compounds, anthocyanins, and alcohol content compared to RB(–) wine and was 
rated lower in the related sensory attributes (Figure 3). On the other hand, in RB(+) 2H 
wines, total tannin concentrations and polymeric phenol concentrations were highly cor-
related with a dry mouthfeel, indicating a delayed harvest can lead to higher tannin levels 
and higher astringency in wines [22]. For CS 420A in 2016 (Figure 4a,b), RS and sweet taste 
were positively correlated with RB(–) and RB(+) 2H, and negatively correlated with RB(+) 
wines. All wines were dry with less than 0.2 g/L of RS. Therefore, the perceived sweet 
taste in the wines could have been related to higher ethanol concentrations, which are 
associated with darker fruits and perceived sweetness in wines [24,31,60]. 

The MFA for 110R wines in 2017 (Figure 5) could not separate the wine treatments 
well, which potentially is explained by their volatile and sensory profiles. RB(+) S wines 
were similar to RB(–) wines in terms of the volatile compound profile, yet different in 
terms of their sensory characteristics (Figure 2c and Supplemental Table S3), whereas 
RB(+) S and RB(+) wines were positively correlated with soil, barnyard, savory, and black 
pepper attributes and negatively correlated with vanilla, red cherry, and dark fruit (Figure 
5). The latter attributes were generally rated higher by panelists for RB(–) and RB(+) 2H 
than for RB(+) S and RB(+) wines. Previous findings suggest an increase in ethanol con-
centration can be detrimental to the aromatic profile of a wine, by the overwhelming al-
cohol aroma masking the fruity aromas contributed by esters [55,56,61,62]. Higher ethanol 
concentrations have also been associated with spicy flavors, astringency, and hot mouth-
feel [34]. In addition, the higher concentration of HAs in RB(+) S wines are known to sup-
press fruity characteristics in wines [63]. These results suggest that although chemically 
the chaptalization of first harvested GRBV impacted grapes produced wines similar to 
RB(–) wines, the alcohol content may have been high enough to mask aromas from pan-
elists' perceptions. 

Figure 6. Multifactor analysis of 2017 Cabernet Sauvignon 420A wines which (a) displays the significant basic chemical
parameters at bottling, phenolic profile, volatile profile, and sensory attributes on a loadings plot and how they separate and
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for DA (n = 6), the same fermenter was removed when plotting the MFA for bottling values, phenolic compound values, and
volatile compound values (n = 4). In addition, since the second harvest was not analyzed for sensory, it is not shown here,
consequently changing what values were significant. CS 420 = Cabernet Sauvignon 420A, RS = residual sugar, TA = titratable
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In 2016, RB(−) and RB(+) 2H were positively correlated to alcohol content, hot mouth-
feel, alcohol aroma, and many of the volatile compounds responsible for the fruity or floral
aromas, such as esters and terpenes. This agrees with the previous research that showed
higher alcohol content is associated with fruity and floral aromas [34]. For CS 110R in 2016,
the color sensory attribute was highly correlated with anthocyanin concentrations and
polymeric pigments, all of which were well correlated with RB(−) and, to a lesser degree,
RB(+) 2H wines. The RB(+) wines in 2016 were negatively correlated with the majority
of aroma compounds, anthocyanins, and alcohol content compared to RB(−) wine and
was rated lower in the related sensory attributes (Figure 3). On the other hand, in RB(+)
2H wines, total tannin concentrations and polymeric phenol concentrations were highly
correlated with a dry mouthfeel, indicating a delayed harvest can lead to higher tannin
levels and higher astringency in wines [22]. For CS 420A in 2016 (Figure 4a,b), RS and
sweet taste were positively correlated with RB(−) and RB(+) 2H, and negatively correlated
with RB(+) wines. All wines were dry with less than 0.2 g/L of RS. Therefore, the perceived
sweet taste in the wines could have been related to higher ethanol concentrations, which
are associated with darker fruits and perceived sweetness in wines [24,31,60].

The MFA for 110R wines in 2017 (Figure 5) could not separate the wine treatments
well, which potentially is explained by their volatile and sensory profiles. RB(+) S wines
were similar to RB(−) wines in terms of the volatile compound profile, yet different in
terms of their sensory characteristics (Figure 2c and Supplemental Table S3), whereas RB(+)
S and RB(+) wines were positively correlated with soil, barnyard, savory, and black pepper
attributes and negatively correlated with vanilla, red cherry, and dark fruit (Figure 5).
The latter attributes were generally rated higher by panelists for RB(−) and RB(+) 2H
than for RB(+) S and RB(+) wines. Previous findings suggest an increase in ethanol
concentration can be detrimental to the aromatic profile of a wine, by the overwhelming
alcohol aroma masking the fruity aromas contributed by esters [55,56,61,62]. Higher
ethanol concentrations have also been associated with spicy flavors, astringency, and
hot mouthfeel [34]. In addition, the higher concentration of HAs in RB(+) S wines are
known to suppress fruity characteristics in wines [63]. These results suggest that although
chemically the chaptalization of first harvested GRBV impacted grapes produced wines
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similar to RB(−) wines, the alcohol content may have been high enough to mask aromas
from panelists’ perceptions.

5. Conclusions

This study investigated two potential mitigation strategies for GRBV: chaptalization
and extending the ripening time of GRBV impacted grapes. Through chemical and sen-
sorial analysis of the wines, it was determined that although chaptalization was able to
increase the concentration of esters, terpenes, and HAs, this did not translate into fruitier
aromas detected by sensory panelists. Overall, the chaptalized wines led to a decrease in
anthocyanin concentrations, but an increase in polymeric pigments, which were similar to
RB(−) wines. Therefore, although chemically the chaptalization of first harvested diseased
grapes produced wines that were similar to RB(−) wines, panelists did not rate them
similarly.

On the other hand, the sensory analysis found that a delayed harvest was able to
increase the similarities between healthy and diseased grapes. Moreover, delayed harvest
consistently increased concentrations of volatile and phenolic compounds compared to
RB(+) wines. However, it is unknown whether this was driven by changes in the grape
skin cell wall integrity and composition. Further research is needed to understand how
GRBV alters grape skin cell walls during ripening.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/beverages7040076/s1, Table S1. Total anthocyanin concentrations (mg/L) during fermentation
via Wine X-ray analysis for wines in 2016 and 2017 (n = 3); Table S2. Total tannin concentrations
during fermentation by Wine X-ray analysis for wines in 2016 and 2017 (n = 3); Table S3. Significantly
different sensory attributes of wines made in 2016 and 2017 as determined through descriptive
analysis; Table S4. RV coefficients to compare each data set in the multifactor analysis of each
rootstock and season. Significant RV coefficients are indicated in bold lettering; Table S5. List of
sensory attributes that were used in 2016 and the recipes to make each standard; Table S6. List
of sensory attributes that were used in 2017 and the recipes to make each standard. Figure S1.
Principal component analysis of the first and third dimensions for volatile compounds in CS 110R
wines made in 2017. Ellipses are drawn to 95% confidence with an n = 6 for two bottle replicates
for each fermenter replicate. Only the highest 20 significant volatile compounds that contribute
to the variance are plotted. CS110 = Cabernet Sauvignon 110R, RB = red blotch, (−) = negative,
(+) = positive, 2H = second harvest, S = chaptalization; Figure S2. Multifactor analysis of the groups
of variables that were used to analyze the wines: sensory profile volatile profile, phenolic profile,
and basic chemical parameters at bottling. (a) CS 110R wines made in 2016, (b) CS 420A wines made
in 2016, (c) CS 110R wines made in 2017, and (d) CS 420A wines made in 2017. CS110 = Cabernet
Sauvignon 110R, and CS420 = Cabernet Sauvignon 420A.
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