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Abstract: Acrylamide is probably carcinogenic to humans (International Agency for Research on
Cancer, group 2A) with major occurrence in heated, mainly carbohydrate-rich foods. For roasted
coffee, a European Union benchmark level of 400 µg/kg acrylamide is of importance. Regularly,
the acrylamide contents are controlled using liquid chromatography combined with tandem mass
spectrometry (LC–MS/MS). This reference method is reliable and precise but laborious because of
the necessary sample clean-up procedure and instrument requirements. This research investigates
the possibility of predicting the acrylamide content from proton nuclear magnetic resonance (NMR)
spectra that are already recorded for other purposes of coffee control. In the NMR spectrum acry-
lamide is not directly quantifiable, so that the aim was to establish a correlation between the reference
value and the corresponding NMR spectrum by means of a partial least squares (PLS) regression.
Therefore, 40 commercially available coffee samples with already available LC–MS/MS data and
NMR spectra were used as calibration data. To test the accuracy and robustness of the model and its
limitations, 50 coffee samples with extreme roasting degrees and blends were additionally prepared
as the test set. The PLS model shows an applicability for the varieties Coffea arabica and C. canephora,
which were medium to very dark roasted using drum or infrared roasters. The root mean square
error of prediction (RMSEP) is 79 µg/kg acrylamide (n = 32). The current PLS model is judged as
suitable to predict the acrylamide values of commercially available coffee samples.

Keywords: 2-propenamide; Coffea arabica; multivariate data analysis; spectroscopy; LC–MS/MS;
coffee roasting

1. Introduction

Research on the formation and biological effects of acrylamide is a relatively young
field. In 1994 acrylamide was classified as probably carcinogenic to humans (group 2A) by
the International Agency for Research on Cancer (IARC) [1]. In a study by Bergmark et al. in
1997, unexpectedly high exposures were found in non-smokers that could not be explained.
Until then, high exposure was considered likely only for workers in polyacrylamide gel
production and heavy smokers [2]. In 2000, the research group led by Tareke et al. was
able to observe a correlation between fried food and increased acrylamide exposure [3] and
subsequently showed in 2002 that specifically heated carbohydrate-rich foods have high
acrylamide contents [4]. In 2004, the assumption that acrylamide is formed by the Maillard
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reaction pathway was confirmed [5,6]. Cereal, potato, and coffee products are subject to
European Union (EU) Regulation 2017/2158, which sets benchmark levels for various food
groups in addition to minimization the formation of acrylamide [7]. In 2019, roasted coffee
contained an average of 195 µg/kg acrylamide [8], and the benchmark level is currently
400 µg/kg acrylamide [7]. For the determination of acrylamide content, the coupling of
liquid chromatography with tandem mass spectrometry (LC–MS/MS) is considered as
the standard method [9]. This approach is time-consuming due to the necessary sample
preparation and measurement procedure [4]. A possible alternative is the recording of
nuclear magnetic resonance spectra (NMR). However, acrylamide cannot be quantified
directly from NMR spectra because its concentration is typically below the detection limit
of the acrylamide-specific resonances [8]. The aim of this research was to use a partial least
squares (PLS) regression model that allows a possible correlation between reference results
from the LC–MS/MS method and associated NMR spectra. The established PLS model
could then be used to calculate acrylamide content indirectly from NMR spectra. A data
set of 40 commercially available coffee samples was available for the establishment of the
PLS model. In order to test the predictive accuracy and limitations of the model, 50 coffee
samples are additionally roasted, some of which correspond to commercially available
coffees and some of which have extreme roasts and blends of varieties.

2. Results
2.1. Calibration of the PLS Model
2.1.1. Data Preprocessing

The y-data must be at least mean centered to be suitable for use in the PLS models [10].
Further standardization of the y-data does not change the result. The x-data can be used
in the PLS toolbox unprocessed, mean centered or standardized. If the x-data are used
unprocessed, the regression error was highest (root mean square error of cross validation,
RMSECV = 106 µg/kg) and the sum of the explained variance was lowest (59.1%). This
can be slightly improved by mean centering (RMSECV = 105 µg/kg, 62.1%). Standardizing
the x-data reduced the RMSECV drastically (RMSECV = 71 µg/kg) and 99.9% of the total
variance was achieved with six PCs. In addition, a weighting of the buckets was produced,
revealing the influence of the posterior spectrum region. In Figure 1, left side the loadings
of each bucket were plotted for each PC. The higher the magnitude of this value, the higher
the influence of the variable on the respective PC. For mean centered x-data, buckets in the
first half show an especially high influence on PC1. Buckets between number 80 and 90
had a particularly negative loadings value at −5.5. In the second half, the loadings for all
PLS components were very low, so they had little influence on the regression result. The
loadings for the other PCA components PC2 to PC6 were generally very low. If the x-data
were standardized, the influence of the posterior increased visibly (Figure 1b). There was
still a negative correlation with PC1, but the loadings became larger in terms of magnitude.
Buckets after number 950 show a positive correlation with PC1. In general, influences on
the other PCs can be seen. In the following, mean centered y-data and standardized x-data
were used.

2.1.2. Variable Selection

In the PLS regression, it is assumed that the x-data contain discriminating variables to
explain the y-data. Variables that had little information, on the other hand, increased the
background noise and leads to a larger regression error. In addition, the result was easier
to understand and interpret with fewer variables.

Five different methods for variable selection are available in the PLS toolbox. Each
variable selection aimed to minimize the RMSECV by excluding variables without infor-
mation (background noise) in the PLS calibration. Table 1 shows the selection results of
the different methods. In each case, the specifications of a method were chosen so that
the RMSECV reached a minimum. A minimum of 19 and a maximum of 315 buckets
were selected from a total of 1042 buckets. In general, a reduction of the RMSECV could
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be observed by using variable selection, which was 71 µg/kg without variable selection.
Bucket no. 877 and no. 904 were selected by all methods, so they were likely to have a
high impact on the regression result. Most of the selected buckets were in the posterior
spectrum region (after no. 800).
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Table 1. Comparison of variable selections based on PLS regression of mean-centered y-data and
standardized x-data with six PLS components, PLS toolbox.

Method Specification Number of Selected Buckets RMSECV (µg/kg)

GA Interval size 5 170 38
Forward iPLS Interval size 1 23 18

rPLS Specified, Level 6 36 28
suggested 19 35
surveyed 32 19

sRatio Exclusion of last 45% 315 48
VIP Exclusion of last 20% 140 36

The genetic algorithm (GA) and forward interval PLS (iPLS) selected different buckets
depending on the selected interval size. Table 1 shows the interval sizes with the smallest
error. In addition, the GA did not give reproducible results due to the evolutionary biology
background (combinations and mutations of variables in the subset), making it unsuitable
for this work. Forward iPLS gave a very small RMSECV, but the model was based on only
23 buckets, so these would be risky as the basis of a prediction model. If the signals of
a more unusual coffee (e.g., extreme degree of roast, special variety) do not match with
the 23 selected buckets, an incorrect prediction is made. For the reverse PLS (rPLS), the
“specified” variant yields the smallest RMSECV with the largest number of variables, so
that the “suggested” and “surveyed” variants were not considered for this work. Selectivity
ratio (sRatio) was also considered unsuitable due to the high error and the high number of
variables. Selected buckets from the variable of importance (VIP) method and specified
rPLS were then compared and chemical compounds were identified. Especially in the
rear region (from about 10 ppm), hardly any signals could be seen, which made the
identification of selected buckets in this region difficult. Specified rPLS selected fewer
buckets than VIP, which can be seen well in the front region of the spectrum (<7 ppm).
Here, VIP selected many signals that can be assigned to lipids (sterols, diterpenes, fatty
acids, and glycerol) and were thus uninteresting for Maillard formation of acrylamide.
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Exclusion of these signals (36 buckets in total) improved the RMSECV from 36 to 35 µg/kg.
Specified rPLS selected only the signals from 16-O-Methylcafestol (OMC) (δ: 3.164 ppm (s)
and 4.423 ppm (d, J = 12.55 Hz) [11,12]). In the posterior region of the spectrum, furfuryl
alcohol (δ: 7.401 ppm (dd, J = 0.82, 1.88 Hz) [13,14]), hydroxymethylfurfural (HMF) (δ:
9.616 ppm (s) [13,14]), and an Arabica-specific signal (δ: 10.182 ppm (d, J = 7.3 Hz) [11,15])
can be identified.

2.1.3. Spiking

To further identify selected buckets, spiking experiments were performed with the
roasting markers, namely furan, 2-furoic acid, methyl nicotinate and the acrylamide precur-
sor L-asparagine. It is observed that L-asparagine was insoluble in deuterated chloroform
(CDCl3) and thus, no NMR spectrum could be recorded. Furan can be identified from
the triplets at 6.397 ppm and 7.452 ppm. 2-furoic acid shows signals at 6.548 ppm (m),
7.280 ppm (dd) and 7.625 ppm (q). In addition, a singlet at 8.103 ppm can be assigned to
both furan and 2-furoic acid. Methyl nicotinate had signals at 3.964 ppm (s), 7.398 ppm
(ddd), 8.304 ppm (dt), 8.781 ppm (dd), and 9.233 ppm (dd). There was no match with the
signals from the coffee samples besides the furan (derivative) signal. By adding the singlet
at 8.103 ppm (bucket no. 752), the RMSECV could be lowered to 26 µg/kg.

2.2. Parameters of the PLS Model

In the considerations above, the change in RMSECV was the main parameter. By
centering the y-data and standardizing the x-data, the lowest RMSECV of 71 µg/kg could
be achieved. Further reduction of the RMSECV was achieved by targeted variable selection
with the specified rPLS method, so that the RMSECV was 28 µg/kg. With spiking the
signal at 8.103 ppm could be assigned to furan (derivative). Adding the associated bucket
reduces the RMSECV to 26 µg/kg. The coefficient of determination was R2 = 0.94. The
six PLS components together explained 99.3% of the variance in the data. A total of 77.5%
explained variance fell to the first PLS component. The PC2 explained 18.22% and PC3
2.23% of the variance. The last three PLS components hardly contributed to the explanation
of the variance (less than 1% each).

The influence of the variables can be shown in the scores and loadings plots for the
first two PLS components. In the scores plot, data points in the upper right square had
above average influence in PC1 and PC2, whereas data points in the lower left square
had below average influence in both PLS components [10]. The 40 samples with their
attributes (variety, roasting degree, organic coffee, and cardamom addition in Turkish
coffee) are shown on the left side in Figure 2. The assignment to the variety Coffea canephora
was based on high OMC contents (>1000 mg/kg) of the sample. For some samples, no
other attributes were known besides varieties, so there was only limited significance. Dark
roasted C. arabica were mainly located in the upper left square, meaning they were below
average in PC1 and above average in PC2. Samples of C. canephora were located on the
right side of the scores plot regardless of roasting degree and were thus above average with
respect to PC1. Only two samples had the attribute “light roast” assigned and both were in
the upper right square regardless of their variety. The organic coffees (all C. arabica) revealed
a group that was slightly below average in PC1 and PC2. The addition of cardamom in
Turkish coffee led to a high above average influence with respect to PC2. In Figure 2b, the
samples were marked with their acrylamide content (µg/kg). The 40 samples contained
23 different concentrations ranging from 95 to 490 µg/kg acrylamide. The six samples
with the highest acrylamide content were in the upper right square, so they were above
average with respect to both PLS components. The seven samples with lowest content were
located in the lower left square, so they were below-average for both PLS components. A
separation into samples with higher (250–480 µg/kg) and lower (95–210 µg/kg) acrylamide
content might even be visually possible.
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Figure 2. (a) Scores plot of principal components (PC) 1 and 2, 40 commercial coffee samples are marked with their known
attributes: l=light roasting degree, d= dark roasting degree, +Ca= additive cardamom in Turkish coffee; (b) scores plot of
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In the loadings plot, data points in the upper right square had a positive high impact
on both PLS components, while in the lower left square they had a negative high impact [10].
In Figure 3, it can be seen that only bucket no. 900 (unknown), no. 966 (unknown), and
no. 1018 (unknown) were located in the lower left square. In the upper right square were
the buckets no. 393 (OMC) and no. 394 (OMC) and seven other buckets with an unknown
compound. The buckets at the back of the spectrum (>no. 1000) all had a negative impact
on PC2 and, with the exception of bucket 1018, a positive impact on PC1. The additional
bucket 752 from the furan signal (8.103 ppm, s) was located just inside the upper left square
and thus had a negative influence on PC1 and a small positive influence on PC2.
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2.3. Application of the PLS Model to Unknown Data

The model was based on 40 commercially available coffee samples. Most of these are
of the variety C. arabica, and usually provided a dark roasting degree. In order to test the
model and show its limitations, more samples with extreme roasting were prepared and
afterwards predicted. For this purpose, C. canephora beans and Malabar and Catuaí types of
C. arabica were roasted in an infrared (IR) roaster from very light to very dark. In all roasts,
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an increase in volume of the roasted beans can be observed and the characteristic cracking
of the beans can be heard. In addition, more samples of C. arabica, Catuaí were used, which
were roasted in a drum roaster. In total, a test set of 50 samples was assembled, their
NMR spectra recorded, and their acrylamide contents determined via the standard LC–
MS/MS method. The results from the model prediction and the reference measurements
can be taken from Appendix A (Tables A1 and A2). It must be noted that the acrylamide
contents from the reference samples were subject to fluctuations and were used here as the
mean value of a double determination. The acrylamide contents provided by the standard
LC–MS/MS method were between 16 and 1300 µg/kg, those from the resulted model
prediction between 31 and 380 µg/kg.

Including all test set samples, the correlation was R2 = 0.33 and the RMSEP (root mean
square error of prediction) was 334 µg/kg. For comparison, within the calibration set
(cross-validation) an R2 = 0.94 and an RMSECV = 26 µg/kg applies. It should be noted, that
using the R2 for assessing the prediction accuracy for unknown data was not recommended.
The focus was on the behavior of the RMSEP [16]. Accurate predictions were made for a
very dark C. canephora (1 µg/kg above the reference value), a dark C. arabica, Malabar and
a dark C. canephora (each 8 µg/kg above the reference value).

In Table 2, the samples were sorted according to the roasting degree, variety, and
roasting method in order to identify a possible influence of these parameters. The largest
RMSEP are found in the light roasts regardless of variety and roasting method. One partic-
ular sample is C. arabica, Catuaí, which was roasted (IR) for only 6.5 min and is therefore
more like a green coffee than a roasted coffee. It contained 16 µg/kg acrylamide according
to the reference LC–MS/MS measurement and was predicted to contain 308 µg/kg. A light
roasted sample (C. arabica, Catuaí) had the highest acrylamide content with 1300 µg/kg
measured and 380 µg/kg predicted. When sorted by variety, the most accurate predictions
were achieved for C. canephora samples. It can be seen by LC–MS/MS measurements that
for mixtures with increasing C. canephora content, the acrylamide content increased. Such
a trend was not observed by the model prediction for light roasts, but for dark roasts.
In Figure 4, the samples are color-coded according to their degree of roasting. For one
sample, the degree of roasting was not known (circle). If all light roasts were excluded,
a correlation of R2 = 0.79 was obtained and the RMSEP decreased to 79 µg/kg, which
were judged as acceptable for application in the form of a screening analysis to preselect
suspicious samples.

Table 2. RMSEP (µg/kg), grouped by roasting degree, type and roaster.

RMSEP (µg/kg)

Roasting degree

Light (n = 18) 546
Medium (n = 10) 52

Medium/dark (n = 2) 87
Dark (n = 14) 98

Very dark (n = 5) 53

Type

C. arabica, Catuaí (n = 19) 97
C. arabica, Malabar (n = 4) 48

C. canephora (n = 5) 17

Roaster

IR (n = 26) 49
Drum (n = 6) 151
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3. Discussion
3.1. Interpretation of the PLS Components

Of greatest importance are the first two PLS components, as they explain most of the
variance in the data. In the scores plot, PC1 and PC2 can be used to separate samples with
higher (250–480 µg/kg) and lower (95–210 µg/kg) acrylamide levels.

PC1 was above average especially in C. canephora samples, since C. canephora contains
on average more acrylamide than C. arabica. In addition, the two light roasts are above
average in PC1, as the acrylamide content decreases with increasing degree of roasting [8].
The extrema on PC1 are a dark C. arabica roast at the minimum and a light C. canephora
roast at the maximum. In the loadings plot, besides some unknown compounds, OMC
and HMF had a high positive influence. For HMF, there are sources describing a negative
correlation with acrylamide [8], and sources describing a positive correlation [17,18]. In
this model, HMF is located in the upper right square and thus is positively correlated with
acrylamide (PC1). In addition, it has a positive influence on PC2. HMF was selected as
important in all available variable selection methods. Therefore, it has an important role in
predicting acrylamide content. Furan correlates negatively with acrylamide content. The
darker the roast, the higher the furan content [8]. In the loadings plot, this is evident at the
position just inside the upper left square, which represents a negative influence on PC1
and a slightly positive influence on PC2. PC1 explained 77.5% of the variance in the data
and was likely based on variety and roasting degree. The lighter the roast (higher HMF
content, less furan) and the higher the C. canephora content (increasing OMC content), the
more acrylamide was present in the sample. The importance of PC1 is consistent with the
literature [8,17,18].

With the data available, the influences of PC2 cannot be clearly substantiated. Many
samples have no known attributes other than the variety (important for scores plot) and
only 5 out of 37 buckets could be assigned to chemical compounds (important for loadings
plot). The highest loadings for PC2 were achieved by dark C. arabica roasts with additional
cardamom, followed by the two light roasts. The lowest loading had a mixed sample with
60% C. arabica content. No clear separation in terms of roasting degree or variety was
evident. For the explanation of PC2, the identification of the compound behind Bucket
877 would be very interesting. This bucket had the highest positive influence on PC2 and
was selected by all available selection methods. Thus, it seemed to be a key compound for
acrylamide formation.
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3.2. Applicability of the PLS Model

The model is calibrated using 40 commercially available coffee samples. They show a
medium to darker roasting degree. Special roasts, such as cinnamon/Scandinavian (light)
or Neapolitan (dark), are often highlighted on the packaging. Roasting is mostly performed
in hot air and drum roasters. In addition, they are predominantly pure C. arabica or blends
thereof [19]. Therefore, the application to deviating coffee samples was problematic because
the calibration data did not cover the range of data for prediction.

Based on Figure 4 and the RMSEP values, the strong deviation of the prediction for
light roasts was obvious. Only two of 40 samples were known to be light roasts for the
purpose of calibrating the model, so there was not a sufficient basis for predicting light
roasts. Since the model was created with samples below the guideline value of 400 µg/kg,
it was also not suitable for samples with higher acrylamide contents, as in light roasts.
Excluding the light roasts significantly improved the overall prediction.

When sorted by variety, the low RMSEP of 17 µg/kg for C. canephora samples was
noticeable. In the model, samples with an OMC content above 1000 mg/kg were assigned
the attribute “C. canephora”; a more precise declaration was not available. It was shown
that variety separation occurs on PC1, which probably led to the very good prediction of
the C. canephora samples.

Despite the roasting method differing from the model, the IR roasts can be predicted
well. For the drum roasts, the RMSEP was higher because the model predicted an acry-
lamide content of 31 µg/kg for a dark C. arabica, Catuaí, although the reference value was
331 µg/kg. The other two dark C. arabica, Catuaí drum roasts had more precise predictions
of 189 µg/kg and 207 µg/kg acrylamide. It is unclear why this one sample was assigned
an acrylamide content comparable to almost unroasted green coffee. In general, the model
made the most accurate predictions for medium to very dark C. canephora samples roasted
in the IR roaster.

Apart from the low variance of commercial coffees, which were typically medium
roasted C. arabica, limitations of the research included the restricted number of samples in
the training set, limited by availability and costs of reference analytics. Nevertheless, as
a validation with a completely independent test set was conducted, limited applicability
of the current model for commercial roasts can be assumed, while rather large errors
were observed for light and dark roasts. To overcome this problem, an expanded train-
ing set, combined with identification of important NMR signals influencing PC2, could
be conducted.

3.3. Similar Applications in Literature

In literature, principal component analysis (PCA) has often been used for classification
purposes. Monakhova et al. were able to determine varietal authenticity using NMR spectra
of aqueous and lipophilic green coffee extracts. In aqueous NMR spectra, differences in
caffeic and quinic acid contents were seen, whereas in lipophilic spectra the compounds
OMC and kahweol were discriminating. Clear separation of the varieties in the loadings
plot was seen for both types of preparation, so the application of PCA to NMR spectra was
suggested as a rapid screening method for authenticity testing [11]. PCA could also be
used for geographical assignment of roasted coffee. For this purpose, samples of C. arabica
with known origin (America, Africa, and Asia) were measured as aqueous extracts in NMR
and a separation by place of origin in the scores plot was achieved. Classification was
achieved based on chlorogenic acid and lactate (Africa), acetate and trigonelline (Asia),
and fatty acid protons (America) [20]. In addition to assigning the variety and country of
origin, Wei et al. used the PCA method to classify the roasting time and thus the degree of
roasting. Discriminatory compounds included chlorogenic and quinic acid, sucrose and
HMF, and trigonelline and nicotinic acid. There was a correlation between the respective
origin compound in green coffee and the thermal degradation product with increasing
degree of roasting [18].
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Febvay et al. used PLS regression to determine roast markers in NMR spectra of
aqueous coffee extracts. For this purpose, samples with different final roasting temperatures
and the same roasting time and samples with the same final temperature and different
roasting times were roasted. To test the influence of the final temperature, a model with
13 components (explained variance 97.8%) was built and cross-validated with the leave-
one-out method. The compounds HMF, methylnicotinate, 2-furylmethanol, acrylamide,
chlorogenic acid, and lactic acid were selected as discriminating variables. The error of
prediction RMSEP was 0.43 ◦C. The scores plot showed a partitioning of the samples
according to their final temperature. The development time showed no influence on the
chemical composition and no differentiation between the samples could be detected [21].

4. Materials and Methods
4.1. Samples

The calibration of the PLS model was based on 40 commercially available coffee
samples. The samples were described in more detail in our previous study about LC–
MS/MS reference analysis [8]. For validation purposes as the independent test set, 50 coffee
samples were prepared. A total of 26 samples had a roasting degree similar to commercial
samples, from which 9 were roasted in a drum roaster and 33 were roasted in an IR roaster.
A total of 24 samples had more extreme roasting degrees from very light to slightly burnt
(black, Neapolitan-type), which were also roasted in the IR roaster.

4.2. Materials

Chloroform (D1, 99.8 atom% D, stabilized with silver) and tetramethylsilane (≥99.9%,
for NMR spectroscopy): Carl Roth GmbH+Co. KG, Karlsruhe, Germany.

Furan (≥99%), 2-furoic acid (98%), L-asparagine, and methylnicotinate (99%): Sigma-
Aldrich Chemie GmbH, Taufkirchen, Germany.

Single use filter, Chromafil Xtra PET-45/25: Macherey-Nagel GmbH & Co. KG,
Düren, Germany.

NMR tubes, Deu Quant: DEUTERO GmbH, Kastellaun, Germany.
NMR tube lids, red: SP Scienceware, Vineland, NJ, USA.
Infrared roaster, Tyboon 3000: Kammerer GmbH, Remchingen, Germany.
Drum roaster, Solar Shop Roaster: Coffee-Tech Engineering, Moshav Mazliach, Israel.
NMR equipment from Bruker Biospin, Rheinstetten, Germany including:

• NMR instrument: Ultrashield 400;
• Console: Avance III-400;
• Sample head: 5 mm PASEI 1H/D 13C;
• Sampler: SampleXpress;
• Sample head cooling: BCU05;
• TopSpin, Version 4.0.9.

Mahlkönig multipurpose mill, EK 43/1: Hemro International AG, Bachenbülach,
Switzerland.

MATLAB, Version 2020: The MathWorks Incorporated, Natick, MA, USA.
PLS_Toolbox: Eigenvector Research Incorporated, Manson, WA, USA.

4.3. Analytical Methodology
4.3.1. LC–MS/MS, Method 1, Calibration Set

The analysis of acrylamide was conducted according to the standard method EN
16618:2015 using liquid chromatography in combination with tandem mass spectrometry
(LC–MS/MS). For details see Lachenmeier et al. [8].

4.3.2. LC–MS/MS, Method 2, Test Set

A stable isotope dilution method (SIDA) adapted from Rünz et al. [22] was performed
to determine the acrylamide content of the samples. A total of 2 g of sample material
(ground roasted coffee) was weighted into a 50 mL Falcon, filled up to 30 mL with double
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distilled water, and 1 µg internal standard (D3 acrylamide absolute) was added. The
mixture was shaken for 30 sec (vortex) and then extracted for one hour at room temperature
while stirring with a magnetic stirrer. After 10 sec of shaking (vortex), the mixture was
centrifuged (3000 rpm for 30 min, at room temperature). An aliquot of 10 mL was taken
from the supernatant and transferred to a 10 mL Falcon.

An SPE column (Isolute ENV+; 500 mg; 6 mL; Biotage Sweden AB, Uppsala, Sweden)
was conditioned with 4 mL of methanol and short vacuum and equilibrated twice with 4 mL
of double distilled water. After applying the sample to the SPE, the column was washed
twice with 2 mL of double distilled water and vacuum is used for drying. The acrylamide
was eluted with 2 mL methanol (60%) into a 15 mL Falcon, first at normal pressure, then
vacuum was used to draw the column dry. The eluate was concentrated to 500–1000 µL
using a vacuum centrifuge and then filled up to 1 mL with double distilled water. The
solution was pipetted into a microreaction tube and centrifuged (13000 rpm for 20 min
at room temperature). The supernatant was pipetted into an injection vessel (vial) and
could be measured by LC–MS/MS in the multiple reaction mode (MRM). The LC column
was conditioned with 10 mL methanol (60%) before measurement. A total of 2 µL of the
final solution was injected into the HPLC system. Measurements were performed using a
UHPLC system (Agilent Technologies 1290 Series; Agilent, Waldbronn, Germany) coupled
to a Qtrap 5500 mass spectrometer (AB Sciex Germany GmbH, Darmstadt, Germany).

The precursor ion of acrylamide [M + H]+ at m/z = 72 fragments in the collision cell to
two product ions [H2C=CH-C=NH]+ with m/z = 54 and [H2C=CH-C=O]+ with m/z = 55.
The product ion at m/z = 55 was used for quantification. The internal standard with triple
deuteration had its precursor ion [M + H]+ at m/z = 75 and product ion at m/z = 58 [22].

4.3.3. NMR Spectroscopy

A total of 200 mg of ground coffee was weighed out and 1.5 mL of CDCl3+TMS
solution was added. Extraction was then performed for 20 min on a shaking machine. The
solutions were membrane filtered and 600 µL of the filtrate was pipetted into an NMR
tube. The measurement was performed on a Bruker Ultrashield 400 NMR instrument. The
processing of the spectra was performed automatically (window multiplication, Fourier
transform, zero referencing to TMS signal, phase correction, and baseline correction). For
details on NMR measurement of coffee samples, see Lachenmeier et al. [8].

4.3.4. Spiking Experiments

Between 5 and 10 mg of each substance was weighed out and dissolved in 1 mL CDCl3.
This yields solutions of 6.35 mg/mL L-asparagine, 6.66 mg/mL 2-furoic acid, 5 mg/mL
furan, and 9.31 mg/mL methyl nicotinate. Then, 10 µL of the solution were added to the
coffee extracts in an NMR tube.

4.4. Multivariate Data Analysis

For the calibration of the PLS model, data from 40 commercially available coffee
samples are available, from which NMR spectra and acrylamide contents (µg/kg) were
already measured via the standard methods. For the bucketing of the NMR spectra, the
ppm range 0–11 ppm was integrated into 0.01 ppm buckets and the chloroform signal
between 7.21 and 7.29 ppm was removed. This results in 1042 buckets per spectrum.
MATLAB software was used to build the model and includes a command (“plsregress”) for
PLS regressions. In addition, the PLS toolbox from Eigenvector Research, Inc. was used.

The bucketed NMR spectra (40 samples with 1042 buckets each) represent the x-data
and the results of the LC–MS/MS measurements (40 samples with one acrylamide content
(µg/kg) each) the y-data. Models were developed with six PLS components (PC) each and
cross validated via venetian blinds (s = 10). Different PLS regressions were performed to
see the influence of data preprocessing and variable selection.

Numerical methods, such as sRatio and VIP select variables by the amount of a specific
value [23]. With sRatio, the ratio of explained variance to residual variance was calculated
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for each variable. The higher the value, the more important was the variable for the
model. The variables with lowest sRatio were excluded from the model. Then, a new PLS
model with reduced number of variables was created and iterated until a desired criterion
(minimal RMSECV) was reached [24]. The VIP method proceeds similarly and considers
for the calculation not only the explained variances but also the weights of the variables for
each PLS component. If the value is ≥1, the variable was considered important and was
left in the model [25].

GA follows an evolutionary biology approach. Data subsets (“individuals” in “pop-
ulation”) containing a desired number of random variables (“genes”) were formed. For
each subset, the RMSECV (“fitness”) was calculated and subsets with an RMSECV above
the median were removed (“selection”). The number of subsets (“population”) had conse-
quently decreased and was now replenished with combinations of the remaining subsets
(“reproduction”) by swapping variables from two subsets (“cross-over”). Further, individ-
ual variables in the subsets can be exchanged (“mutation”). This process was repeated
until the subsets contain similar variables, which consequently had a high selectivity for
the model [26].

In forward iPLS, similar to the GA method, subsets of certain size were formed and the
RMSECV for each of them was calculated. The subset with the lowest RMSECV was then
combined with one other subset and the RMSECV was determined for each combination.
This was repeated until the RMSECV did not decrease despite the addition of a new
subset [27,28].

The rPLS method uses the weighted loadings from the PLS model to determine the
relevance of each variable. The weights are assumed to correlate with the importance of a
variable. This method is easy to apply, since only the number of PLS components has to be
specified (variant specified). In the suggested variant, the method independently selects
the number of PLS components; in the surveyed, the method selects a component number
between one and a previously named maximum number [27,29].

4.5. Validation

After the PLS model has been calibrated, it must be validated. Cross-validation
excludes s subsets from the calibration set with n samples and uses them for validation.
In the venetian blinds method, every sth sample is factored out. This method is only
suitable for unsorted data sets and not for sorted data, such as from time-dependent
measurements. In leave-one-out cross-validation, each object is excluded once and a
calibration is performed. This method is very computationally intensive and thus only
suitable for smaller datasets [30]. The computed model was applied to the excluded
samples and the RMSECV was calculated. The total error of the PLS model was calculated
from the mean value of the individual RMSECV [10].

5. Conclusions

The explanation of the PLS model is limited due to the limited information on the
samples and the small number of compounds identified. For a better understanding of
the PLS model, more comparison spectra of possible compounds need to be recorded.
More signals can be identified by, e.g., spiking. Of particular interest is the compound
behind bucket 877 (9.35 ppm), since it was selected by all variable selection methods
and had a high influence on PC2. The basis of the model is a small sample number from
commercial coffees. The application to extreme roasting degrees, as here mainly light roasts,
is therefore problematic. The RMSEP of all samples was 334 µg/kg, and 79 µg/kg if the
light-roasted samples were excluded. A prediction of the acrylamide content of unknown
coffee samples of medium to very dark roast appeared possible. Nevertheless, the model
could be improved by inclusion of a larger number of reference samples spanning a higher
variability of different coffee types and roast degrees.



Beverages 2021, 7, 31 12 of 15

Author Contributions: Conceptualization, D.W.L.; methodology, V.R., C.F., K.K., S.S., A.S. and
C.M.B.-U.; software, A.S.; validation, V.R.; formal analysis, V.R.; investigation, V.R., C.F. and K.K.;
resources, S.G.W.; data curation, V.R.; writing—original draft preparation, V.R. and D.W.L.; writing—
review and editing, A.S., K.K., C.F., S.S., C.M.B.-U., E.R. and S.G.W.; visualization, V.R.; supervision,
E.R. and S.G.W.; project administration, D.W.L.; funding acquisition, E.R. and S.G.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The team of Coffee Consulate, Mannheim, Germany is thanked for help in
conducting the drum roasting experiments.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples are available on request from the authors.

Appendix A

Table A1. Selected variables using rPLS with some assignments (m = multiplet, s = singlet, d = duplet,
t = triplet, and J = coupling).

Bucket Number ppm Signal Compound

267 3.16 s OMC
393 4.42 d, J = 12.55 Hz OMC
394 4.43
730 7.88 m
752 8.1 s Furan
797 8.55
842 9
844 9.02
847 9.05
859 9.17
860 9.18
873 9.31
877 9.35 m
879 9.37 t
894 9.52 s
898 9.56
900 9.58
904 9.62 s HMF
906 9.64
909 9.67 m
911 9.69 m
913 9.71
915 9.73
936 9.94 m
943 10.01
952 10.1
966 10.24 m
973 10.31
998 10.56
999 10.57
1002 10.6
1005 10.63
1018 10.76
1022 10.8
1025 10.83
1026 10.84
1029 10.87
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Table A2. Results of the test set of 50 coffee samples (IR = infrared roaster, A = Coffea arabica, R = C. canephora, and blend
(mix) with A, Catuaí).

Sample Id. Roaster Type Roasting Degree Coffee Type
Acrylamide (µg/kg)

Method 1 Method 2a Method 2b PLS Result

467 IR light A, Catuaí 350 340 316
468 IR mid A, Catuaí 238 235 306
469 IR dark A, Catuaí 207 206 248
470 IR mid A, Catuaí 153 146 204
471 IR mid/dark A, Catuaí 125 125 219
472 IR mid/dark A, Catuaí 134 136 215
473 IR mid A, Catuaí 150 152 186
474 IR light A, Catuaí 968 991 330
475 IR light A, Catuaí 660 655 234
476 IR mid A, Catuaí 297 296 262
477 IR dark A, Catuaí 198 195 183
478 IR light A, Catuaí 536 518 203
479 IR mid A, Catuaí 248 331 287 261
480 IR light A, Catuaí 1020 1020 1079 325
481 IR light A, Catuaí 1430 1200 1399 380
482 IR dark A, Catuaí 224 347 306 275
483 IR dark A, Catuaí 206 280 230 225
484 Drum light A, Catuaí 344 393 191
485 Drum mid A, Catuaí 274 266 185
486 Drum dark A, Catuaí 301 361 31
487 Drum mid A, Catuaí 227 294 296 242
488 Drum light A, Catuaí 471 593 601 317
489 Drum light A, Catuaí 588 757 859 307
490 Drum dark A, Catuaí 250 319 295 207
491 Drum dark A, Catuaí 244 326 333 189
492 Drum A, Catuaí 102 103 180
493 IR dark R 224 257 266
494 IR mid R 325 290 287
495 IR light R 960 1089 286
496 IR dark A, Malabar 245 218 239
497 IR mid A, Malabar 254 305 307
498 IR light A, Malabar 583 683 268
499 IR very dark R 151 121 137
500 IR very dark R 130 131 149
501 IR very dark A, Malabar 177 187 94
502 IR very dark A, Malabar 121 131 154
503 IR dark Mix 20% R 167 169 179
504 IR dark Mix 40% R 197 192 254
505 IR dark Mix 60% R 211 195 278
506 IR dark Mix 80% R 264 282 290
507 IR dark R 199 199 207
508 IR light Mix 20% R 527 576 295
509 IR light Mix 40% R 603 706 281
510 IR light Mix 60% R 1051 910 320
511 IR light Mix 80% R 1111 1164 251
512 IR light R 792 719 336
513 IR 6.5min A, Catuaí 15 17 309
514 IR 13 min A, Catuaí 1099 1099 351
515 IR 19.5 min A, Catuaí 201 200 261
516 IR 26 min A, Catuaí 146 142 216
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