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Abstract

The aim of the present study was to test the prediction ability of three different supervised
chemometric algorithms, such as linear discriminant analysis (LDA), k-nearest Neighbor
(k-NN) and artificial neural networks (ANNs), for fruit juice classification and differentia-
tion, based on isotopic and multielemental content. To accomplish this, a large experimental
dataset was analyzed using inductively coupled plasma mass spectrometry (ICP-MS) to-
gether with isotope ratio mass spectrometry (IRMS), and a low data fusion approach was
applied. Three classifications were tested, namely the following: (i) fruit differentiation
of different juice types; (ii) apple and orange juice differentiation; and (iii) distinguishing
between processed versus directly pressed apple juices. The results demonstrated that
ANNs can offer the most accurate results, compared with LDA and k-NN, for all three
cases of classification, highlighting once again the advantages of deep learning models for
modeling complex data. The work revealed the higher potential of advanced chemometric
methods for accurate classification of fruit juices, compared with traditional approaches.
This approach could represent a realistic tool for ensuring the juice’s quality and safety,
along with complying with regulations and combating fraud.

Keywords: fruit juices; IRMS; ICP-MS; artificial neural networks; prediction

1. Introduction
In 2023, the global market for fruit beverages was assessed at USD 46.12 billion [1]

and is expected to grow in the next few years. The consumer interest in these products
increased during the COVID-19 pandemic, boosting the immune system and increasing
the health benefits. Generally, soft drinks (e.g., non-alcoholic beverages, flavored sodas
and other sugar-sweetened beverages) present no nutritional advantage versus fruit and
vegetable juices. Fruit juices’ benefits depend on the type of juice (orange, cranberry, tomato,
apple, etc.).

Due to their nutritional value, fruit and vegetable juices contribute significantly to the
economy through satisfying consumer demand, contributing to sales growth, and at the
same time, generating important earnings for beverage industries. The place of natural
juices in dietary guidelines and models of healthy eating remains intangible. Apart from
orange juice, which remains the most popular and widely consumed fruit juice produced
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in the largest volume worldwide, apple juice takes the second position in this ranking [2]
and other fruit juice types, such as pomegranate or berry-based juices, have gained a high
reputation and are being sold as high-quality food items, due to their remarkable health
benefits [3].

In Romania, apple production has a long history, with this fruit being considered the
national fruit [4]. Gradually, from 2020 and 2021—when Romania ranked fifth in apple
production (cultivation/harvested/production) (1000 ha)—to 2024, Romania reached the
second position in this top, after Poland, according to the 2024 Eurostat data [5]. But,
against all odds, apple imports are very high. Although Romania is a significant fruit
producer, high volume of imported fruit may reflect consumer preferences for specific
visual or quality standards, which are more rigorously controlled in certain exporting
countries. Supermarkets have imposed some standards to sell impeccable, washed and
polished food, and a lot of consumers prefer large and perfect apples. In this situation, the
remaining apple production is transformed into juice and different alcoholic beverages [4].
Thus, in the last few years, on the Romanian market, many apple producers transformed
their remaining fruits into juices, thus leading to the development of autochthonous brands
that make 100% fruit juices not from concentrate, without added sugar. These beverages are
directly pressed juices, being squeezed straight from the fruit, preserving all components
of the fruit.

Given the background, food authenticity [6] is still a major concern for all actors
involved in the food chain: consumers, consumer protection authorities and also producers
and dealers [7]. The issue of food adulteration presents significant economic and public
health concerns [8], and previously published papers suggest that combining spectroscopic
techniques with machine learning algorithms could represent an effective quality control
strategy [9]. Multi-element and isotopic analyses represent the key techniques and the
methods of choice when geographical origins are the goal for a large variety of food
stuffs [10]. Fruit juices are prepared from ripe, fresh, frozen or refrigerated fruits. They
are made by mechanically rubbing raw materials or by pressing juice out of pulp [11]. For
juices, adulteration is usually caused through the addition of water or other exogenous
substances (sugars, coloring or flavoring agents) [12] or by dilution with cheaper quality
juices [13]. The result of any of these fraudulent practices will be a drop in the value of final
products. The diversity in adulteration practices, alongside fruit fingerprints (different
fruits, different geographical areas, different varieties, etc.) and also with manufacturing
methods and processing, creates a difficult scenario for detection and prevention of juice
adulteration [3,8].

The isotope ratio mass spectrometry (IRMS) and inductively coupled plasma mass
spectrometry (ICP-MS) techniques represent a knowledge tool for authenticity purposes,
due to the fact that the isotopic and elemental fingerprints of the investigated juices will
reflect the following: the geographical origin of the raw material, the exogenous water
and/or sugars, the fruit type, the mineral composition of the soil and irrigation water, the
weather conditions and/or the agricultural practices (e.g., fertilizers) [14–17]. At this time,
there is a progressive effort towards the use of different methods (non-targeted) coupled
with machine learning methods to ascertain the authenticity of food products [13,18].

In the context presented above, the aim of the present study was firstly to obtain
a detailed fingerprint of fruit juices through IRMS (δ2H, δ18O, δ13C) and ICP-MS (Na,
Mg, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Rb, Sr, Pb) analysis, followed by classical
and advanced chemometric models, applied for identification of distinct characteristic
of each juice type [19]. Additionally, another aim was to explore the potential of fusion
between analytical results and an advanced multimodeling approach for the prediction of
fruit type and processing method. To our knowledge, this is among the first studies that
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employ this type of chemometric approach for fruit juice prediction, based on elemental and
isotopic contents.

2. Materials and Methods
2.1. Sample Description

A total of 101 juice samples were investigated for this study (Table S1). The distribution
according to fruit type was as follows: apple juices (n = 41), orange juices (n = 37) and
juices obtained from other fruits (n = 23) (lemon, blueberries, plums, mango, tomato, cherry,
peaches, etc.). Regarding the provenance of the samples, 28 were apple juices coming from
Romanian manufacturers, labelled “100% fruit juices not from concentrate, without added
sugar” (mentioned in the manuscript as “directly pressed/ freshly squeezed juice”), while
73 were produced by other foreign brands, being processed juices, commercially available
on the Romanian market.

2.2. IRMS Measurements

The 2H/1H, 18O/16O and 13C/12C ratios were expressed in the delta notation, δ2H,
δ18O, δ13C, as deviation, in parts per million (‰), from the Vienna Standard Mean Ocean
Water (VSMOW) (for hydrogen and oxygen), and the Vienna Pee Dee Belemnite (VPDB)
(for carbon) international standards. The isotopic signatures of 2H and 18O in the juice
samples were determined by using a liquid-water isotope analyzer (DLT 100, Los Gatos
Research, San Jose, CA USA). The uncertainty of the isotopic analysis was ±0.2‰ for
δ18O, and ±0.6‰ for δ2H. A set of five reference materials, calibrated against Vienna
Standard Mean Ocean Water international standard, V-SMOW, was used for calibration
purposes, covering a wide isotopic scale: standard 1 (δ18O = −19.6‰, δ2H = −154.1‰),
standard 2 (δ18O = −15.6‰, δ2H = −117.0‰), standard 3 (δ18O = −11.5‰,
δ2H = −79.0‰), standard 4 (δ18O = −7.1‰, δ2H = − 43.6‰) and standard 5
(δ18O = −2.9‰, δ2H = −9.8‰), respectively. All samples were measured in duplicate.
Each analysis consisted of 7 acquisition cycles; the first 3 cycles were eliminated to avoid
sample-to-sample memory effects and run drift. The final result was calculated as the
average of the remaining 4 cycles.

To obtain the 13C signature of whole juice, the first step consisted of removing the
water by drying the juice in an oven at 65 ◦C (72 h). In the next stage, the conversion of
each sample to CO2, by dry combustion (550 ◦C, 3 h) in excess oxygen, was carried out.
The resulting CO2 was isolated from the other combustion gases by a cryogenic separation.
Then, measurements of samples were made using an isotope ratio mass spectrometer (Delta
V Advantage, Thermo Scientific, Waltham, MA, USA) in line with a dual inlet system. The
measurement of each sample consisted of two replicates, and the average was calculated.
For each replicate, an analysis containing eight cycles was accomplished. The standard
deviation per analysis was consistently below 0.05‰, and the associated measurement
uncertainty was ±0.3‰. Prior to analyzing the samples each day, a working standard
was measured. This standard had been calibrated against the certified reference material
NBS-22 oil, provided by the IAEA (International Atomic Energy Agency), in order to correct
the raw data for run drift. Uncertainty for the δ13C analysis was ±0.2‰. NBS-22 oil, as
certified reference material (IAEA—International Atomic Energy Agency), with a value of
δ13CVPDB = −30.03‰, was used as a standard and used to correct the instrumental drift.

2.3. ICP-MS Measurements

Samples of fruit juices were digested using microwave-assisted acid digestion. A
total of 4 mL of HNO3 (Chempur, Piekary Śląskie, Poland) and 1 mL of H2O2 (Chempur,
Poland) were added to 2.5 mL of the homogenized fruit juice samples and digested in
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the microwave oven system from Berghof® (Speed ENTRY, Berlin, Germany), using the
following program: heating from room temperature to 150 ◦C in 8 min (for 5 min) and
heating from 150 ◦C to 200 ◦C in 2 min (for 18 min), from 200 ◦C to 75 ◦C in 1 min
(for 19 min), and 50 ◦C in 1 min (for 5 min). After mineralization, all samples were
transferred to 50 mL volumetric flasks and diluted with ultrapure water. This procedure
was carried out in duplicate for all samples and analytical blanks (4 mL of HNO3 and 1 mL
of H2O2).

The elemental analysis (Na, Mg, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Rb, Sr and
Pb) was performed using inductively coupled mass spectrometry (ICP-MS ELAN DRC (e)
mass spectrometer, Perkin Elmer SCIEX, Billerica, MA, USA). Important operation factors
were as follows: nebulizer gas flow rates (0.92 L/min); auxiliary gas flow (1.2 L/min);
plasma gas flow (15 L/min); lens voltage (7.25 V); radiofrequency power (1100 W);
CeO/Ce = 0.015; Ba++/Ba+ = 0.025. For the standard stock solutions preparation,
10 µg/mL (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, In, K, Li, Mg, Mn,
Na, Ni, Pb, Rb, Se, Sr, Tl, U, V, Zn, in 5% HNO3 Chempur, Poland) solution from Perkin
Elmer Pure Plus was used. For the calibration curves, successive dilutions were made to
obtain the working solutions at different concentrations.

The working standard solutions, covering a range of 0.1–0.5 mg/L for Na, Mg, K and
Ca were prepared by successive dilutions of multi-element calibration standard 3 (matrix:
5% HNO3, 10 µg/mL: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, In, K, Li, Mg,
Mn, Na, Ni, Pb, Rb, Se, Sr, Tl, U, V, Zn, in 5% HNO3). In the analytical determination
conducted by ICP-MS analysis, the external calibration standards were employed within a
concentration of 0.05 to 150 µg/L for Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Rb, Sr and Pb, using
multi-element calibration standard 3 (matrix: 5% HNO3, 10 µg/mL).

The following parameters were taken into account and evaluated for the validation
of the analytical method for quantitative determination of Na, Mg, K, Ca, Cr, Mn, Fe,
Co, Ni, Cu, Zn, As, Rb, Sr and Pb in fruit juices by ICP-MS: linearity, limits of detection
(LOD), limits of quantification (LOQ), precision and accuracy. Highly satisfactory linear
relationships were observed, as indicated by correlation coefficients (r > 0.999) for the
calibration curves. LOD and LOQ were calculated with 3 and 10 times the standard de-
viation of the prepared blank solutions (n = 10). The instrumental LODs in µg/L were as
follows: 0.06 (Na), 0.04 (Mg), 0.2 (K), 0.3 (Ca), 0.01 (Cr), 0.03 (Mn), 0.04 (Fe), 0.001 (Co),
0.01 (Ni), 0.05 (Cu), 0.02 (Zn), 0.003 (As), 0.005 (Rb), 0.001 (Sr) and 0.002 (Pb). The instru-
mental LOQs in µg/L were as follows: 0.18 (Na), 0.12 (Mg), 0.6 (K), 0.9 (Ca), 0.03 (Cr),
0.10 (Mn), 0.13 (Fe), 0.003 (Co), 0.03 (Ni), 0.15 (Cu), 0.07 (Zn), 0.01 (As), 0.015 (Rb),
0.015 (Sr) and 0.007 (Pb). The LOD and LOQ values obtained for each element were
adequate for the expected contamination levels in fruit juices and met the requirements of
international regulations and the specificity of the analyzed matrix. The precision of the an-
alytical method was studied in terms of repeatability and reproducibility. The repeatability
was studied by analyzing ten replicates of the same sample under the same conditions. The
reproducibility was studied by repeating measurements on different days with different
analysts. The RSDs were lower than 10%. The accuracy was estimated using recovery tests,
using a digested sample at three concentration levels: low (5 µg/L, 10 µg/L), medium
(100 µg/L, 250 µg/L) and high (10,000 µg/L). Recovery rates of 87–113% in fruit juice
samples were obtained. For most analyses, the expanded uncertainties were found to range
between 5 and 15%, depending on concentration levels. Matrix effects were minimized by
using internal standard correction and matrix-matched calibration. Differences between
matrix-matched and aqueous calibrations were within ±15%. Rh (10 µg/L) was employed
as the internal standard.
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2.4. Data Acquisition and Chemometric Processing

Chemometric analysis was carried out using SPSS v.24 (IBM, New York, NY, USA)
software. The working data matrix was obtained through a low-level data fusion approach,
which involved the concatenation of isotopic and elemental profiles into a single data file,
used further for generation of chemometric models. By combining the results from two
or more different analytical techniques, the reliability and robustness of the generated
chemometric model are very much improved, due to the complementarity of information
provided [19]. In this study, for classification and prediction purposes, three different
chemometric methods were applied, as follows: linear discriminant analysis (LDA), k-
nearest neighbor (k-NN) and artificial neural networks (ANNs), each time using different
working data files, depending on the desired aim. Due to its simplicity and versatility,
one of the most commonly used supervised statistical models is LDA. It works by finding
linear combination of initial variables, weighted by numerical coefficients, which directly
reflect their contribution to the developed model. These discriminant functions (DFs) offer
a maximum separation among predefined groups of samples, juices in this case, and a
minimum of variability within one group. The validation of the model is carried out using
“leave-one-out cross validation” (LOOCV), which means, as the name suggests, a model
development by omitting one sample at a time, and then the testing of that sample as a new
one, using the model. This stage is repeated for each sample, and the results are expressed
in accuracy by comparing the predicted and actual class labels across all iterations.

The second classification method applied in this study is k-NN, as LDA is a supervised
method, used for both classification and prediction purposes. The k-NN algorithm stands
out as a robust distance-based classifier within machine learning methods. As a prediction
algorithm, the main elements of k-NN are as follows: measurement of the distance between
the testing sample and predefined groups, then establishment of the neighbor’s number
to consider, and finally prediction of the final classification group. The validation in this
case is made using “hold-out method” which splits the dataset into training and validation
subgroups. An important variable herein is the number of k, which represents the number
of closest data points (neighbors) that the algorithm considers when making a classification
or prediction [20].

The simplest type of ANN is constructed by at least three layers: an input layer, one or
more hidden layers and an output layer. The most common type of ANNs is the multilayer
perceptron; in this case, the information is moving forward from the input layer, through
hidden layers, towards the output layer [21,22]. The number of neurons from the input
layer corresponds to each measured characteristic, and then the hidden layer receives
information from the input layer. In this stage, a bias node is added and weights for inputs
are estimated. The neurons from the output layer correspond to the predicted category, as
in this case, the type of fruit processing method applied for juice production [23]. There are
several domains where neural networks have good results, e.g., business, finance, medicine
or industry, in terms of prediction or pattern recognition problems. In the food industry,
food processing, food engineering, food properties or quality control [24], statistical tools
are frequently present, and ANNs can more efficiently process data comprising multiple
input and output variables. Important parameters used for performance evaluation are
represented through sensitivity and specificity values, which evaluate the model’s ability to
discriminate between predefined classes, along with the area under the curve (AUC). The
closer to 1 the AUC values, the more appropriate the model is for the respective dataset.
It should be mentioned here that the above-mentioned algorithms were implemented in
SPSS software by selecting their own specific predefined parameters. Thus, for a more
consistent interpretation, in terms of cross-validation performances, all three machine
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learning algorithms were implemented in Python version 3.14 using the Anaconda interface.
The imported libraries were Pandas, Numpy, Sklearn and Tensorflow.

3. Results and Discussion
3.1. Isotopic Fingerprint of Fruit Juices

The fruits absorb the water from precipitation and irrigation during the growing
process [25]. This fruit water presents a unique isotopic signature of 2H and 18O related
to the place of origin where the plant was grown. And it is well-known that the isotopic
composition of the water from a specific location depends on temperature, altitude, latitude
and precipitation amount [26]. In this regard, the isotopic fingerprints of 2H and 18O of the
studied fruit juices will give information about the water source and sample origin [27].

For all investigated fruit juice samples, δ2H values ranged between −88.4 and −7.8‰,
and δ18O between −12.5 and 2.3‰ (Figure 1). The sample with the highest content of
hydrogen and oxygen is an orange juice, produced by a Spanish brand. These enriched
values validate an authentic orange juice and could be explained by the Mediterranean
climate of this country, with warm to hot summers. The lowest isotopic signatures of 2H
and 18O were recorded for a berry fruit juice.

 

Figure 1. δ2H versus δ18O for studied fruit juices.

The fruit juice water has elevated isotopic values compared to groundwater and also
tap water. If a concentrated fruit juice is re-diluted with tap water, the final product will
have a depleted result. It can be observed that (Figure 1), with two exceptions, the other
fruit juices presented similar isotopic values to those of orange juices, confirming that all
these samples represent juices obtained from concentrates re-diluted with tap water. Taking
into account that orange trees prosper in warm climates and the ideal temperatures for
citrus tree growth range between 15 and 32 ◦C [28], the isotopic signatures of 2H and 18O
should be higher, reflecting the geographical origin and climatic effects. But, except for
the authentic orange juice from Spain, the other orange juices recorded depleted values.
Regarding the two exceptions from the “other fruit juices” category, much higher values
for these samples are observed.

To better highlight the differences in isotopic signatures between the two categories of
apple juices (labeled “directly pressed juice, not from concentrate, without added sugar”
and regular label, processed juices), from Figure 1 were eliminated the results for the rest of
the fruit juices, and Figure 2 is presented below.



Beverages 2025, 11, 145 7 of 29

 

Figure 2. Comparison of the isotopic fingerprints of processed and directly pressed apple juices.

In this graphic (Figure 2), a usual tap water (Cluj-Napoca, Romania) was plotted
(with mean values of δ2H = −10.0‰ and δ18O = −70.0‰). The group tagged “directly
pressed juices” was clearly separated from the other group. δ2H values ranged from
−53.4 to −36.6‰ (mean of −46.0‰), and δ18O from −5.3 to −2.8‰ (mean of −4.5‰). The
isotopic results for these samples are very close, confirming that the raw material apples
come from the same area, namely Transylvania, as mentioned on the label. These results
are consistent with those previously reported for directly pressed apple juices from the
Transylvania region (Romania) by [29,30]. Thus, for 28 single-strength apple juices from
the same region of Romania [30], the isotopic signature of 2H ranged between −56.5 and
−39.0‰, and that of 18O from −5.6 to −3.0‰. Regarding the group of processed apple
juices (which had no specific mention on the label), with three exceptions, the isotopic
fingerprints of 2H and 18O were lower, proving the re-dilution with tap water. Thus, the
isotopic signature of 2H varied between −84.2 and −44.4‰ (mean of −62.7‰), and that
of 18O between −10.8 and −3.2‰ (mean of −7.9‰). Three samples from this category
presented results in the same isotopic interval as those of directly pressed apple juices,
confirming their authenticity.

For terrestrial plants, the 13C isotopic signature depends on the photosynthetic path-
way. There are two main groups of photosynthesis: C3 (Calvin cycle) and C4 (Hatch-
Slack cycle), as they function on different enzymes involved in the carboxylation pro-
cess, with CO2 from the atmosphere being first incorporated into a three-carbon or four-
carbon compound. Fruits follow a C3 cycle, having δ13C values between −30 and −23‰.
C4 plants (corn, sugarcane) present a higher isotopic value of 13C, ranging from
−14 to −12‰ [31]. Thus, if exogenous sugars, from corn or sugarcane, are added during
the juice manufacturing process, the final 13C isotopic fingerprint of that juice will be higher.

δ13C values ranged, for all investigated samples, from −30.8 to −12.3‰ (Figure 3).
In the case of apple juice, the presence of C4 sugars was identified in one sample
(δ13C = −14.5‰). Of the 37 orange juices, 14 samples had 13C values higher than those for
C3 plants, confirming the presence of exogenous sugars from C4 plants. For “the other fruit
juices” group, one sample, with a value of −17.7‰, was found to contain C4 sugars. A
previously reported study presented similar results regarding the range values for δ13C
(−27.9‰ and −15.1‰) for commercial orange juices. For commercial apple juices, there
was a slight difference; the δ13C values ranged between −27.4‰ and −25.3‰. On the other
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hand, values between −27.8‰ and −23.3‰ were obtained for the directly pressed apple
juices [29].

 

Figure 3. Box diagram for the fruit juice samples. The line across the box represents the median.
Whiskers indicate the higher and lower values in the entire data range. Circles represent outliers.
Crosses indicate mean markers.

3.2. Distribution of Macro-, Micro- and Trace Elements in Fruit Juices

The concentration variations of the investigated elements in the fruit juices are indi-
cated in Table 1. The average concentration values for most of the elements investigated in
the analysis of commercial apple juice samples are lower than the average levels obtained
for orange juice samples, in accordance with the study performed by [32]. Orange fruit
juice samples had the highest mean concentrations of K (623.10 mg/L), Ca (80.24 mg/L),
Mg (60.06 mg/L), Rb (901.15 µg/L) and Sr (435.39 µg/L), with maximum concentra-
tions of K (1471.70 mg/L), Ca (407.80 mg/L), Mg (135.89 mg/L), Rb (2135.37 µg/L) and
Sr (1658.44 µg/L), respectively. The highest concentrations of Na (1324.98 mg/L), Fe
(6413.26 µg/L), Mn (2240.12 µg/L), Zn (1186.06 µg/L), Cu (2143.00 µg/L) and Co
(76.00 µg/L) were found in mixed fruit juices, with the highest mean concentration
of 125.09 mg/L for Na, 1037.72 µg/L for Fe, 416.20 µg/L for Mn, 358.93 µg/L for Zn,
536.22 µg/L for Cu and 23.63 µg/L for Co. Apple juices had the highest mean concentra-
tion of Cr (308.99 µg/L) and Ni (137.17 µg/L) among all the juices. Finally, the directly
pressed apple juice samples have the highest As and Pb concentrations (0.85 µg/L and
0.69 µg/L, as mean values) and the lowest mean concentrations of Ca (15.70 mg/L), Mg
(18.54 mg/L), Na (0.84 mg/L), Rb (552.79 µg/L), Cr (50.59 µg/L), Mn (143.11 µg/L), Ni
(15.44) and Co (0.89 µg/L). The lowest mean K (297.68 mg/L) and As (0.17 µg/L) con-
tents were measured in mixed fruit juices, Fe (425.76 µg/L) in orange fruit juices, and Sr
(228.64 µg/L), Zn (163.19 µg/L), Cu (139.92) and Pb (0.27 µg/L) in apple fruit juices.

The World Health Organization (WHO) and the Food and Agriculture Organization
(FAO) have delineated permissible concentrations of Pb in fruit juices, specifically estab-
lishing a threshold of 0.03 mg/L, with the caveat that this maximum limit does not extend
to juices derived exclusively from berries and other diminutive fruits; for grape juice, the
stipulated level is 0.04 mg/L, whereas for fruit juices sourced solely from berries and
other small fruits, the permissible concentration is set at 0.05 mg/L [33]. Nonetheless,
definitive reference concentrations for Cu, Fe and Zn in fruit juices have not been estab-
lished. Standards pertaining to drinking water delineate reference values for various heavy
metals, encompassing Cu, Fe and Zn. The presence of heavy metals in beverages, including
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packaged fruit juices, is often compared with drinking water standards, given that the
quality of water is a critical determinant of the purity of these beverages.

Table 1. Macro-, micro- and trace elements concentrations in fruit juice samples.

Elements

Type of Fruit Juice Water Quality
Standards

Apple
(n = 13)

Orange
(n = 37)

Others
(n = 23)

Directly Pressed
Juice (Apple)

(n = 28)
USEPA

[34]
2018

WHO
[35]
2017

N (%)

Min–Max Values
(Mean Value ± SD)

Na
(mg/L)

1.13–53.50
(20.30 ± 13.81)

1.82–206.19
(51.70 ± 55.97)

5.08–1324.98
(125.09 ± 267.12)

0.32–1.42
(0.84 ± 0.30) nm nm -

Mg
(mg/L)

23.79–50.43
(38.10 ± 7.91)

7.48–135.89
(60.06 ± 37.58)

13.80–142.16
(46.63 ± 36.83)

9.76–30.39
(18.54 ± 5.42) nm nm -

K
(mg/L)

332.11–812.18
(514.86 ± 171.40)

48.96–1471.70
(623.10 ± 466.88)

52.52–824.83
(297.68 ± 206.73)

324.74–533.52
(399.65 ± 65.78) nm nm -

Ca
(mg/L)

22.00–72.44
(43.11 ± 16.79)

10.31–407.80
(80.24 ± 78.15)

0.43–107.41
(40.70 ± 28.47)

6.03–32.47
(15.70 ± 6.52) nm nm -

Cr
(µg/L)

16.41–1055.20
(308.99 ± 344.02)

8.44–1121.78
(203.09 ± 220.85)

30.70–554.50
(147.17 ± 133.62)

6.04–144.84
(50.59 ± 34.45) 100 50 45 (44.6%)

[34]
Mn

(µg/L)
5.92–391.23

(256.05 ± 106.63)
6.44–483.38

(210.68 ± 154.88)
59.60–2240.12

(416.20 ± 476.67)
54.10–262.18

(143.11 ± 57.89) 50 nm 94 (93.1%)
[34]

Fe
(µg/L)

54.45–2719.02
(824.22 ± 796.16)

2.46–3167.88
(425.76 ± 638.80)

60.30–6413.26
(1037.72 ±

1731.16)

338.06–1720.96
(940.11 ± 375.29) 300 nm 55 (54.5%)

[34]

Co
(µg/L)

0.26–11.37
(4.89 ± 3.36)

0.66–13.92
(4.63 ± 3.78)

1.22–76.00
(23.63 ± 26.48)

0.22–5.06
(0.89 ± 0.95) nm nm 0 (0%)

Ni
(µg/L)

13.75–1083.98
(137.17 ± 289.66)

0.83–492.50
(70.22 ± 105.95)

1.52–321.40
(70.46 ± 77.26)

0.10–69.16
(15.44 ± 17.02) nm 70 20 (19.8%)

[35]
Cu

(µg/L)
37.58–800.61

(139.92 ± 201.65)
12.86–1297.40

(231.41 ± 229.31)
162.60–2143.00

(536.22 ± 429.16)
109.86–1215.10

(302.23 ± 216.00) 1300 2000 1 (1.0%)
[35]

Zn
(µg/L)

12.36–379.10
(163.19 ± 128.98)

6.78–830.57
(299.36 ± 223.96)

112.62–1186.06
(358.93 ± 259.66)

83.06–573.06
(180.74 ± 117.67) nm nm 0 (0%)

As
(µg/L)

0.01–0.44
(0.20 ± 0.13)

0.07–3.02
(0.35 ± 0.52)

0.02–0.38
(0.17 ± 0.11)

0.02–2.52
(0.85 ± 0.77) 10 10 0 (0%)

Rb
(µg/L)

422.74–2247.23
(771.91 ± 490.57)

57.82–2135.37
(901.15 ± 702.89)

147.10–1279.04
(620.49 ± 343.98)

87.76–1748.48
(552.79 ± 437.18) nm nm 0 (0%)

Sr
(µg/L)

71.46–771.63
(228.64 ± 193.33)

28.73–1658.44
(435.39 ± 309.09)

121.62–878.74
(400.89 ± 209.05)

63.80–705.80
(233.11 ± 173.42) nm nm 0 (0%)

Pb
(µg/L)

0.03–0.78
(0.27 ± 0.22)

0.10–1.92
(0.32 ± 0.32)

0.12–0.67
(0.33 ± 0.19)

0.01–3.73
(0.69 ± 0.99) 15 10 0 (0%)

nm—not mentioned. The water quality standard levels are in µg/L. a-values are secondary maximum contami-
nant limits, which are non-enforceable as stated in USEPA. N—the number of samples exceeding the value of
water standard.

There were variations in the concentrations of both essential and nonessential el-
ements within the analyzed fruit juices when compared to previously published data
(Tables 2 and 3). These differences are attributed to the elemental composition of the fruit,
the mineral content of the water utilized in the juice production process, and any additional
ingredients incorporated. In addition, essential and non-essential elements profiles can be
influenced by factors such as geographic origin, agricultural practices, seasonal variation
and processing methods.



Beverages 2025, 11, 145 10 of 29

Table 2. Published literature data regarding essential (Na, Mg, K, Ca, Cr, Mn, Fe, Co, Cu and Zn) and
non-essential elements (Ni, As and Pb) levels in apple and orange fruit juices.

Element
Concentration (mg/L)

Apple Orange Refs.

Na

- 88.00 [36]
20.00 39.80 [15]
22.90 7.70 [37]
20.30 51.70 This study

Mg

- 29.00 [36]
44.30 71.20 [38]
44.70 51.20 [15]
33.04 73.30 [37]
38.10 60.06 This study

K

- 825 [36]
371.00 277.20 [15]
896.00 1350.00 [37]
514.9 623.1 This study

Ca

- 52.00 [36]
83.40 1082.00 [38]
51.30 43.30 [15]
64.10 - [37]
43.11 80.24 This study

Concentration (µg/L)

Cr

6.30 5.90 [39]
22.00 9.00 [38]
20.60 14.20 [15]
12.00 - [37]
308.99 203.09 This study

Mn

23.40 20.90 [39]
- 200.00 [36]

406.00 316.00 [38]
242.03 120.27 [15]
256.05 120.68 This study

Fe

325.00 361.00 [39]
- 4900.00 [36]

1790.00 549.00 [38]
227.00 455.00 [37]
824.22 425.76 This study

Co
8.00 7.90 [39]

13.77 2.47 [15]
4.89 4.63 This study

Cu

317.00 500.00 [39]
283.00 245.00 [40]

- 130.00 [36]
83.00 198.00 [38]
86.17 132.83 [15]
7.00 48.00 [37]

139.92 231.41 This study
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Table 2. Cont.

Element
Concentration (mg/L)

Apple Orange Refs.

Zn

524.00 895.00 [39]
550.00 1177.00 [40]

- 4700.00 [36]
210.00 235.00 [38]
230.00 180.56 [15]
15.00 49.00 [37]
163.19 299.36 This study

Ni

6.20 5.70 [39]
- 100.00 [36]

69.00 63.00 [38]
80.64 79.23 [15]
BDL * BDL * [37]
137.17 70.22 This study

As
1.73 1.04 [15]
0.20 0.35 This study

Pb

130.00 95.00 [40]
670.00 - [38]
22.71 3.28 [15]
58.00 BDL * [37]
0.27 0.32 This study

* BDL—below detection limit.

Table 3. Published literature data regarding essential (Na, Mg, K, Ca, Cr, Mn, Fe, Co, Cu and Zn)
and non-essential elements (Ni and Pb) levels in other fruit juices (cherry, apricot, peach, grape
and pomegranate).

Element
Concentration (mg/L)

Cherry Apricot Peach Grape Pomegranate Refs.

Na

- 79.80 52.00 - - [15]
75.80 - 50.58 88.20 - [41]
68.40 68.30 50.51 - - [42]

- 30.00 - - - [43]
- - - - 96.02 [44]
- - - - 133.00 [45]

23.00 3.07 4.76 17.01 16.00 [37]
193.80 79.80 52.00 - 132.70 This study

Mg

- - - 48.80 - [38]
- 34.80 32.30 - - [15]

39.90 - 24.60 32.20 - [41]
91.00 150.90 110.70 - - [42]

- 50.00 - - - [43]
- - - - 67.20 [44]
- - - - 13.80 [45]

31.40 30.81 27.70 71.01 61.70 [37]
142.20 34.80 32.30 - 13.80 This study
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Table 3. Cont.

Element
Concentration (mg/L)

Cherry Apricot Peach Grape Pomegranate Refs.

K

- 339.70 191.80 - - [15]
157.00 185.00 144.00 [41]
264.00 1046.00 679.00 [42]

1140.00 [43]
1283.00 [44]
207.00 [45]

565.00 1038.00 842.00 1080.00 941.00 [37]
756.90 339.70 191.80 - 207.50 This study

Ca

123.00 [38]
- 48.70 32.90 - - [15]

42.80 38.60 49.40 [41]
54.70 102.05 42.90 [42]

70.00 [43]
107.53 [44]

0.42 [45]
68.80 66.09 53.80 177.00 162.00 [37]
107.40 48.70 32.90 - 0.40 This study

Concentration (µg/L)

Cr

- - - 25.00 - [38]
- 41.20 25.23 - - [15]

246.00 - 377.00 330.00 - [41]
7.00 7.00 10.00 7.00 BDL * [37]

64.30 41.20 25.23 - 82.0 This study

Mn

886.00 [38]
- 225.72 162.77 - - [15]

272.00 346.00 284.00 [41]
96.00 [44]

15.00 47.00 90.00 87.00 13.00 [37]
538.74 225.72 162.77 - 122.72 This study

Fe

- - - 2750.00 - [38]
5150.00 - 7370.00 5300.00 - [41]
9110.00 10,250.00 10,290.00 - - [42]

- 3800.00 - - - [43]
- - - - 1810.00 [44]

195.00 894.00 205.00 343.00 211.00 [37]
129.27 3157.24 3635.69 - 60.30 This study

Co
- 4.10 4.81 - - [15]

21.00 - 17.00 22.00 - [41]
8.80 4.10 4.81 - 1.23 This study

Cu

- - - 1680.00 - [38]
- 336.78 747.54 - - [15]

284.00 - 1360.00 321.00 - [41]
- 730.00 - - - [43]
- - - - 100.00 [44]

13.00 74.00 83.00 83.00 82.00 [37]
493.00 336.78 747.54 - 1120.60 This study
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Table 3. Cont.

Element
Concentration (mg/L)

Cherry Apricot Peach Grape Pomegranate Refs.

Zn

- - - 351.00 - [38]
- 481.08 663.97 - - [15]

158.00 - 536.00 322.00 - [41]
- 900.00 - - - [43]

6.00 81.00 830.00 94.00 80.00 [37]
261.98 481.08 663.97 - 112.62 This study

Ni

- - - 55.00 - [38]
- 90.82 34.88 - - [15]

15.30 - 331.00 41.30 - [41]
- - - - 40.00 [45]

BDL * 18.00 3.00 BDL * BDL * [37]
65.52 90.82 34.88 - 9.10 This study

Pb

106.00 [38]
3.00 [45]

BDL * 121.00 135.00 32.00 55.00 [37]
0.18 0.44 0.33 - 0.17 This study

* BDL—below detection limit.

3.3. Chemometric Modeling Based on Isotopic and Multielemental Data

The chemometric modeling consisted of several approaches, including classical (LDA)
and advanced (k-NN and ANNs) analysis. Classical chemometric models are widely used,
are easier to implement and to interpret, have a linear character, while advanced models
encompass more flexible and sophisticated algorithms, suitable for modeling nonlinear
relationships among different types of samples. The first dataset was a matrix formed by
73 processed juice samples (having a regular label “fruit juice”), having as characteristics the
isotopic (three variables corresponding to each isotope) and multielemental contents (fifteen
variables corresponding to each macro, micro and essential element). A new dependent
variable was created having values corresponding to different classes (code 1—for apple
juices, code 2—orange juices, code 3—other fruit juices).

3.3.1. Development of LDA for Fruit Juices Classifications

For the first classification aim, more precisely the fruit juices classification according
to the fruit type LDA provided an acceptable percent of classification, 80.8% accuracy for
initial classification and for leave-one-out cross-validation, based on several features, each
having the following standardized canonical coefficients: K (0.979), Ca (0.435), Mn (−0.498),
Zn (1.117), Co (−0.430) and δ13C (0.696). Some minerals (K, Mg) were reported by other
authors to have higher values in commercial juices [46]. Another published study, which
employed linear discriminant analysis for differentiation of commercially available orange
and apple juices, highlighted, among other features, the strong contribution of K, Ca and
δ13C in the classification step [29].

As can be observed in Figure 4, the separation among the juices is not very good
(Wilks’ Lambda 0.346, p < 0.001 for DF1 and 0.790, p = 0.007 for DF2); some serious
overlapping areas can be observed among all groups. Since three categories of samples
were compared, two discriminant functions were obtained, each one explaining a percent
of dataset variability, DF 1 = 82.8% and DF 2 = 17.2%.
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Figure 4. Juices samples distribution after LDA processing, using significant isotopic and multiele-
mental content. The numbers represent the group centroids as follows: 1 for apple, 2 for orange and
3 for other fruits, respectively.

When LDA was implemented in Python, using the scikit-learn library, to classify juice
samples based on isotopic and elemental profiles, the following stages were carried out:
standardization of features using StandardScaler preprocessing method, and the dataset
was split into training and test sets with stratification to preserve class distribution. Model
evaluation was assessed using stratified 5-fold cross-validation. Also, the performance
metrics of the model, such as accuracy, confusion matrix, precision, recall, F1-score (macro
and micro) and AUC, were computed.

Having the same purpose, LDA was implemented in Anaconda notebook, and the
results are presented below. The canonical coefficients values obtained for each significant
features, in decreasing order of importance are as follows: K = 2.226457, Co = 1.487596,
Rb = 1.327064, Zn = 1.174625, Pb = 1.124423, δ13C = 1.029280, δ18O = 0.984907,
Mg = 0.958271, δ2H = 0.896743, Fe = 0.73376, Mn = 0.580611, Ca = 0.49079, As = 0.463236,
Ni = 0.459750, Sr = 0.359329, Na = 0.316334, Cu = 0.306442, Cr = 0.191181. The confusion
matrix and performance parameters are presented below, in Table 4.

Table 4. The LDA confusion matrices (counts and percentages) and macro- and micro-metrics
obtained for three commercial classes of juices.

LDA Algorithm Apple Orange Other Fruits

Training
(Accuracy = 0.941)

Apple 2 (22.22%) 1 (11.11%) 6 (66.67%)
Orange 26 (100%) 0 (0%) 0 (0%)

Other fruits 0 (0%) 16 (100%) 0 (0%)
Recall F1-score AUC Precision

Macro 0.957 0.911 0.999 0.889
Micro 0.941 0.941 0.997 0.941

Testing
(Accuracy = 0.636)

Apple 2 (50%) 1 (25%) 1 (25%)
Orange 10 (90.91%) 0 (0%) 1 (9.09%)

Other fruits 4 (57.14%) 3 (42.86%) 0 (0%)
Recall F1-score AUC Precision

Macro 0.625 0.540 0.778 0.529
Micro 0.636 0.636 0.806 0.636
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Micro-averaged scores, which weight classes by their sample counts, are influenced
heavily by the majority class, in this particular case, “Orange group”, which dominates the
predictions. In contrast, because the sample sizes are imbalanced, macro metrics are critical
in this context for assessing the true accuracy across all three categories. Macro-averaged
scores treat all classes equally, revealing that the model tries to correctly classify the minority
class, in this case, “Apple group” and “Other fruits group”. These differences between
values highlight that although the overall accuracy and micro scores appear reasonable,
the model performs unevenly across classes, having higher prediction capabilities for the
majority class.

Generally, for chemometric analysis, a very important aspect is given by the representa-
tiveness of samples, which refers to how well the selected samples reflect the system under
study. For accurate and reliable results, it is crucial that sample groups be well represented,
with small variability within the group. In this case, the classification is lowered by the third
group, which contains a mix of fruit juices. To better assess model performances between
the dominant classes of juices—apple and orange juices and to overcome this aspect, these
samples were removed from the analysis. The binary classification task (apple vs. orange)
was performed and this strategy provided a percent of 98% for initial classification (only
one sample was misclassified) and 96% for the cross-validation step (two samples were
misclassified). The graphical distribution is presented in Figure 5. For this classification,
the main predictors were Mn (2.734), Mg (−2.931), Cu (0.840) and Cr (−0.501).

 
Figure 5. Apple and orange juice distribution after LDA.

For the same dataset LDA was implemented in Anaconda notebook; the results
are presented below. The canonical coefficients values obtained for each significant fea-
tures in decreasing order of importance are as follows: Mg = 12.706607, Mn = 10.000922,
Pb = 5.622907, Ni = 4.167398, Rb = 3.060786, δ18O = 3.035185, Cr = 2.774942, Cu = 2.470939,
Zn = 1.943464, Fe = 1.573172, Sr = 1.283760, Co = 0.967749, Ca = 0.961272, As = 0.953146,
K = 0.867724, δ2H = 0.541309, δ13C = 0.470545, Na = 0.319847. The confusion matrix and
performance parameters are presented below, in Table 5.
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Table 5. The LDA confusion matrices (counts and percentages) and macro- and micro-metrics
obtained for apple and orange commercial classes of juices.

LDA Algorithm Apple Orange

Training
(Accuracy = 0.941)

Apple 9 (100%) 0 (0%)
Orange 0 (0%) 26 (100%)

Precision Recall F1-score
Macro 1 1 1
Micro 1 1 1

Testing
(Accuracy = 0.636)

Apple 3 (75%) 1 (25%)
Orange 3 (27.27%) 8 (72.73%)

Precision Recall F1-score
Macro 0.694 0.739 0.700
Micro 0.733 0.733 0.733

The LDA metrics showed almost perfect separation in the training step, but in the
testing step, it seems that the performances are unequal among the two classes. The percent
drop in the testing step indicates an imbalance in class correct assignment. At the same
time, the lower values obtained for macro-metrics compared with micro-metrics are a clear
suggestion that the model does not have the same prediction power for both classes. This
fact represents a need for a comprehensive evaluation using all available metrics when
imbalanced datasets are classified.

For the last classification, a new dataset was created, containing only apple sample
juices, but from two categories (labeled “directly pressed juice, not from concentrate,
without added sugar” and processed apple juice, regular label). In this case, LDA provided
the best results, with 100% for both stages (Figure 6), the initial and cross-validation steps.
The only discriminant function, which explained the whole dataset’s variability, had as
variables the content of K (1.184), Mn (0.781), Rb (−0.406) and δ13C (−0.327).

Figure 6. The differentiation between processed and freshly squeezed apple juices, after
applying LDA.

For the same dataset LDA was implemented in Anaconda notebook; the results are
presented below. The canonical coefficients values obtained for each features, in decreasing
order of importance, are as follows, K = 255.854175, Mg = 205.255458, Ca = 201.464697,
Mn = 145.956611, Sr = 128.050872, Fe = 89.347313, D = 55.740929, O = 52.416983,
Pb = 52.113992, Ni = 43.892672, As = 38.662091, Cu = 34.931385, Co = 32.259463,
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Rb = 18.564292, Na = 17.216694, Cr = 10.573513, Zn = 6.342348, C = 1.559464. The confusion
matrix and performance parameters are presented below, in Table 6.

Table 6. The LDA confusion matrices (counts and percentages) and macro- and micro-metrics
obtained for commercial apples and orange juices.

LDA Algorithm Processed Freshly Squeezed

Training
(Accuracy = 1)

Processed 9 (100%) 0 (0%)
Freshly squeezed 0 (0%) 19 (100%)

Precision Recall F1-score
Macro 1 1 1
Micro 1 1 1

Testing
(Accuracy = 1)

Processed 4 (100%) 0 (0%)
Freshly squeezed 0 (0%) 9 (100%)

Precision Recall F1-score
Macro 1 1 1
Micro 1 1 1

This perfect separation, which was obtained here, should be interpreted taking into
consideration the split sample set among the training and testing steps (9 processed
juices vs. 19 freshly squeezed and 4 processed juices vs. 9 freshly squeezed). To con-
firm the model performances and to increase the generalizability power, future work
should be focused on extension of datasets.

3.3.2. Development of k-NN Algorithm for Fruit Juice Classifications

As in the case of LDA, the same dependent variable is used in this case for imple-
mentation of k-nearest neighbor. The analysis was run with the following parameters:
the target variable was the type of fruit used for juices and the isotopic and elemental
content were selected as features. The normalization of variables (autoscaling to zero mean
and unit variance) was made before any other computations. There were two options for
neighbor selection (automatically or specified by the user) and the number of neighbors
was automatically selected (between 3 and 5). A moderate value of k neighbors can provide
a balanced performance, can help to smooth the noise, while still capturing the data pattern.
The similarities or differences among a new sample and predefined groups were evaluated
by computing Euclidean measurements. Also, the features were weighted by importance
when the distances were computed. The maximum number of selected features was set
to 10 and forward selection was applied. Two sample subsets were created by randomly
assigning cases to partitions, as follows: 70% for the training stage, while the rest were
used for the testing stage. The results are presented in Table 7 below.

As can be observed in Table 4, the obtained results are very low compared with LDA.
For the training set, eight samples were misclassified (one apple juice sample was put in
the orange juice group, five orange juices were wrongly assigned to the other two groups,
and three juices from the third group were placed in the orange juice group), a fact that
provided a percent of 82.4% correct assignments. In the testing phase of the model, the
value obtained for classification was 81.8%. In this case, two samples from the apple
group were placed in the mixed fruit group and two samples from the orange group were
distributed to the other group. Surprisingly, all the samples from the third group, in the
testing step, taking into consideration the variability here, were correctly assigned.
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Table 7. Processed juices distribution after k-NN modeling.

Partition
Predicted

Apple Orange Other Fruits Classifications

Training

Apple 7 1 0 87.5%
Orange 2 21 3 80.8%

Other fruits 0 3 14 82.4%
Overall

classifications 17.7% 49.0% 33.3% 82.4%

Testing

Apple 3 0 2 60.0%
Orange 1 9 1 81.8%

Other fruits 0 0 6 100%
Overall

classifications 18.2% 40.9% 40.9% 81.8%

In this case, the most significant contributions (Figure 7) to this classification were
given by Cr, Na, Mn, Zn, among other features. By the forward selection option, a certain
feature is selected if the model results in the smallest error. It is interesting that the obtained
markers are complementary to those obtained from LDA. Another previous study, which
investigated the distribution of egg yolk between two grouping systems (backyard and
barn), reached the same conclusion. LDA and k-NN, even if they are both classification
methods, provide complementary markers [47].

Figure 7. The strongest elemental and isotopic markers for different fruit juice distribution.

Some recently published studies in the literature stated that, based on electrochemical
fingerprint, followed by exploratory data analysis, three types of fruit juices (apple, orange
and grapefruit) could be distinguished according to type of fruit. In the same study, a clear
differentiation between two types of apple juices (concentrated and non-concentrated) was
obtained, a fact that reinforced the potential of this comprehensive approach [48].

The k-nearest neighbor (kNN) algorithm implemented in Python to classify fruit juice
samples based on isotopic and elemental features had the following stages: standard scaling
(mean-variance autoscaling), the optimal number of neighbors was selected via grid search,
using stratified k fold on training set Model performance was assessed on both training and
testing sets using accuracy, precision, recall, F1-score (macro/micro), confusion matrices
and AUC. A separate 5-fold cross-validation confirmed the model’s prediction capabilities
and highlighted the most discriminative variables.
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For the same dataset k-NN was implemented in Anaconda notebook; the results are
presented below. The optimum number of neighbors was 1, and the features received
the F-score as followed: Co = 6.213821, δ13C = 4.732673, Pb = 4.451300, Mn = 3.873651,
K = 3.761525, Cu = 3.091055, δ18O = 3.034481, Ca = 2.874591, Zn = 2.717297, Fe = 2.171628,
δ2H = 2.100974, Na = 1.779755, Sr = 1.726436, Mg = 1.680934, Cr = 1.187886, As = 1.036946,
Rb = 0.889065, Ni = 0.085812. A high F-score means that the features’ average values
differ significantly across classes, indicating strong prediction power. The evaluation of
k-NN with optimized number of neighbors gave an accuracy of 1 for the training set, and
0.455 for the testing set. The confusion matrix and performance parameters are presented
below, in Table 8.

Table 8. The k-NN confusion matrices (counts and percentages) and macro- and micro-metrics
obtained for commercial juices.

k-NN Partition Apple Orange Other Fruits

Training
(Accuracy = 1)

Apple 9 (100%) 0 (0%) 0 (0%)
Orange 0 (0%) 26 (100%) 0 (0%)

Other fruits 0 (0%) 0 (0%) 16 (100%)
Precision Recall F1-score AUC

Macro 1 1 1 1
Micro 1 1 1 1

Testing
(Accuracy = 0.455)

Apple 0 (0%) 3 (75%) 1 (25%)
Orange 0 (0%) 8 (72.73%) 3 (27.27%)

Other fruits 0 (0%) 5 (71.43%) 2 (28.57%)
Precision Recall F1-score AUC

Macro 0.278 0.338 0.300 0.503
Micro 0.455 0.455 0.455 0.591

The gap that occurred between macro and micro metrics was somewhat expected,
given the small sample size and uneven class distribution. The particularly low macro-
average on the test set indicates that minority classes were poorly classified, and that the
model’s performance was higher for the majority class. Further studies could imply strati-
fied cross-validation, using class-weighted loss functions or employing data augmentation
strategies. For the second classification, k-NN modeling was conducted using the same
parameters as in the previous case. The results were improved, reaching a percent of 97%
for the training set (only one sample of apple juice was misclassified), while the testing
stage resulted in an overall classification of 82.4%. The results are summarized in Table 9.

Table 9. Commercially apple and orange juice distribution after k-NN modeling.

Partition
Predicted

Apple Orange Classifications

Training

Apple 8 1 88.9%
Orange 0 24 100%
Overall

classifications 24.3% 75.8% 97.0%

Testing

Apple 1 3 25.0%
Orange 0 13 100.0%
Overall

classifications 5.9% 94.1% 82.4%
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The decreasing order of main discriminant features is presented in Figure 8. In the
herein case, some of the obtained markers are complementary to those obtained from LDA.

Figure 8. The strongest elemental and isotopic markers for commercial distribution of apple and
orange juices.

For the same dataset k-NN was implemented in Anaconda notebook; the results
are presented below. The optimum number of neighbors was 1 (established via grid
search procedure), and the features received the F-score as followed: Pb = 8.280409,
δ18O = 7.592272, Co = 6.095005, δ2H = 5.280132, Na = 3.741775, Fe = 3.260273, Sr = 3.039438,
Zn = 2.918290, Mg = 2.556000, δ13C = 2.471367, Ca = 2.018293, Cu = 1.828603, Cr = 1.677375,
Mn = 1.486894, K = 0.110866, Ni = 0.076611, As = 0.002599, Rb = 0.002512. The presented
F-scores were computed using a univariate ANOVA F-test, which compares the variance
of the feature values between groups to the variance within each group. A high F-score
means that the feature’s average values differ significantly across classes, indicating it’s a
useful predictor, while a low F-score suggests that the feature does not separate the classes
well and may be less informative.

The evaluation of k-NN with optimized number of neighbors gave an accuracy
of 1 for the training set, and 0.733 for the testing set. The confusion matrix and per-
formance parameters are presented below, in Table 10. Although the k-NN model achieved
perfect accuracy on the training set, for the test set, the performance was a little bit lower
(0.733), indicating an overfitting phenomenon. In order to overcome this inconvenience,
several strategies were implemented, which included feature selection using SelectKBest
method and hyperparameter tuning via GridSearchCV. A stratified 5-fold cross-validation
was also conducted to better estimate generalization performances.

The k-NN algorithm provided the same degree of separation, the best markers in this
case being Na, Mg and K.

For the same dataset k-NN was implemented in Anaconda notebook; the results are
presented below. The optimum number of neighbors was 1, and the features received the F-
score as followed: K = 299.945575, Mg = 103.012821, Mn = 56.399466, Cu = 53.028053,
Ca = 51.541488, Fe = 41.014175, Na = 30.621821, H = 29.613217, O = 25.851024,
Zn = 17.433719, Rb = 15.781985, Cr = 14.099524, Sr = 11.899781, C = 10.362635, Co = 9.817302,
Ni = 8.355571, As = 7.205356, Pb = 3.540496. The evaluation of k-NN with optimized number
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of neighbors gave an accuracy of 1 for both datasets. The confusion matrix and performance
parameters are presented below, in Table 11.

Table 10. The k-NN confusion matrices (counts and percentages) and macro- and micro-metrics
obtained for apples and orange juices.

k-NN Partition Apple Orange

Training
(Accuracy = 1)

Apple 9 (100%) 0 (0%)
Orange 0 (0%) 26 (100%)

Precision Recall F1-score
Macro 1 1 1
Micro 1 1 1

Testing
(Accuracy = 0.733)

Apple 1 (25%) 3 (75%)
Orange 1 (9.09%) 10 (90.91%)

Precision Recall F1-score
Macro 0.635 0.580 0.583
Micro 0.733 0.733 0.733

Table 11. The k-NN confusion matrices (counts and percentages) and macro- and micro-metrics
obtained for apple juices.

k-NN Partition Processed Freshly Squeezed

Training
(Accuracy = 1)

Processed 9 (100%) 0 (0%)
Freshly squeezed 0 (0%) 19 (100%)

Precision Recall F1-score
Macro 1 1 1
Micro 1 1 1

Testing
(Accuracy = 0.733)

Processed 4 (25%) 0 (75%)
Freshly squeezed 0 (9.09%) 9 (90.91%)

Precision Recall F1-score
Macro 1 1 1
Micro 1 1 1

As in the case of LDA, when a perfect separation was obtained for apples classification
(processed vs. freshly squeezed), the limited number of samples, as well as class imbalance
from the testing set should be considered. Future studies should validate these findings
on larger datasets and consider additional evaluation strategies, such as stratified cross-
validation or external validation, to provide more reliable performances.

3.3.3. Development of ANNs for Fruit Juices Classifications

For the enhancement of previous results, the ANNs were applied. The first neu-
ronal network model was assembled using the first data matrix with 73 juice samples,
having as characteristics the isotopic and elemental contents. Its purpose is to classify
the juice samples into the three fruit classes: apples, oranges and other fruits. Thus, the
network architecture includes 18 input neurons, corresponding to 18 measured parameters,
and 3 output neurons, corresponding to the three classification classes (apples, oranges,
other fruits). All variables were min–max normalized to ensure an equal contribution before
any other step. The sample set was split randomly between training (70%) and testing (30%)
subgroups, based on relative number of samples. The number of units from the hidden
layer was automatically selected between 1 and 50, while the training of the network was
made in batch mode. Optimization was made by applying a scale conjugate gradient. The
hidden and the output layers used a hyperbolic tangent and Softmax function, respectively.
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As in the case of LDA and k-NN, the result of classification was not satisfactory,
around 78.4% for the training subset and 68.2% for the testing subset. The most significant
contribution to this classification, based on the importance of independent variables in the
importance chart, in decreasing order, was given by the following: Mn, K, Na, As, δ13C,
Cr and Ca. The AUC values were 0.703, 0.877 and 0.965 for the three investigated classes,
the resulting macro-AUC being 0.848, suggesting that the model does not perfectly fit the
experimental data and does not perfectly separate between the three classes.

The main characteristics that were used for implementing ANNs in Python are de-
scribed below. Firstly, all features (18 variables corresponding to isotopic and elemental
content) were scaled with StandardScaler to normalize the input variables. The target vari-
able was encoded using numeric values corresponding to each, for multi-class classification.
The ANN model was constructed using Keras. The following parameters were selected
for optimization: number of hidden layers (1–2), neurons per layer (16, 32 or 64), and a
dropout layer (rate 0.1–0.3) applied after each dense layer to prevent overfitting. The ReLU
activation function was used for hidden layers, and Softmax for the output layer. The
model was compiled using the Adam optimizer, sparse categorical cross-entropy, and accu-
racy as the evaluation metric. Hyperparameter tuning was performed via GridSearchCV,
including parameters such as number of epochs (50–100), batch size (16–64), dropout rate
and hidden layer structure. A 5-fold stratified cross-validation was employed to ensure
generalization, and the best model was refit on the entire training data. Model performance
was evaluated on both training and test sets using confusion matrices and classification
metrics (accuracy, precision, recall, F1-score), including both macro and micro averages.
Finally, SHAP (Shapley additive explanation) was applied to assess feature importance
and model interpretability. This approach is a powerful tool in machine learning analysis,
which assigns importance values to each characteristic from the model, corresponding to
its contribution to the final model prediction.

After implementing the ANNs in Anaconda notebook, for the first classification, the
following results were obtained (Table 12). The optimized parameters in this case were as
follows: batch size: 16; number of epochs: 50; dropout rate: 0.1; number of hidden layers: 1;
number of neurons: 32.

Table 12. The ANN confusion matrices (counts and percentages) and macro- and micro-metrics
obtained for commercial fruit juices.

ANN Stage Apple Orange Other Fruits

Training
(Accuracy = 0.863)

Apple 6 (66.67%) 2 (22.22%) 1 (11.11%)
Orange 0 (0%) 24 (92.31%) 2 (7.69%)

Other fruits 0 (0%) 2 (12.5%) 14 (87.5%)
Precision Recall F1-score AUC

Macro 0.894 0.822 0.846 0.977
Micro 0.863 0.863 0.863 0.976

Testing
(Accuracy = 0.682)

Apple 1 (25%) 2 (50%) 1 (25%)
Orange 0 (0%) 10 (90.91%) 1 (9.09%)

Other fruits 0 (0%) 3 (42.86%) 4 (57.14%)
Precision Recall F1-score AUC

Macro 0.778 0.577 0.595 0.867
Micro 0.682 0.682 0.682 0.857
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In the training phase, the model exhibited good prediction for the “orange group”
(92.31%) and lower for the other two groups, and this tendency was maintained in the
testing step, but with lower accuracy. The diminished values of AUC from training to
testing phase suggest a reduced discrimination potential for new data, especially for less
representative classes. The second use of ANNs was for the prediction of fruit juices, using
the sample set containing only apple and orange juices. In this case, all the running parame-
ters were the same as in the previous case. The architecture was identical for the input layer,
containing 18 neurons, while the output layer contained only 2 neurons, corresponding to
the apple and orange juice classes. The results were very much improved: 100% for the
training subset and 91.7% for the testing subset. The most significant parameters were Mn,
Pb, Zn, Mg, Co and Na. Among these predictors, some of them are essential elements (Zn,
Co) and are required by the human body, but heavy metals like (Pb) are potentially toxic to
humans [49]. Also, the graphical representation of the ROC is improved; the two curves,
corresponding to the two classes, are quite high, suggesting a well-fitted model. The AUC
values were 0.981 for both groups. The results are presented in Table 13, presented below:

Table 13. ANN results classification for commercial apple and orange juices.

Sample Groups Apple Juices Orange Juices Classifications

Training
Apple juices 12 0 100%

Orange juices 0 26 100%
Overall percent 31.6% 68.4% 100%

Testing
Apple juices 1 0 100%

Orange juices 1 10 90.9%
Overall percent 16.7% 83.3% 91.7%

After implementation of ANNs in Anaconda notebook, the optimized parameters in
this case were as follows: batch size: 16; number of epochs: 100; dropout rate: 0.1; number
of hidden layers: 1; number of neurons: 32. The following results were obtained (Table 14).

Table 14. The ANN confusion matrices (counts and percentages) and macro- and micro-metrics
obtained for apple and orange fruit juices.

ANN Stage Apple Orange

Training
(Accuracy = 1)

Apple 9 (100%) 0 (0%)
Orange 0 (0%) 26 (100%)

Precision Recall F1-score
Macro 1 1 1
Micro 1 1 1

Testing
(Accuracy = 0.800)

Apple 1 (25%) 3 (75%)
Orange 0 (0%) 11 (100%)

Precision Recall F1-score
Macro 0.893 0.625 0.640
Micro 0.800 0.800 0.800

The difference between micro and macro precision from the training and testing phases
is an indicator of the fact that the model has limited generalization capabilities, especially
when using small sample datasets.

The last type of ANNs was applied to predict the method of obtaining apple juices
(processed vs. freshly squeezed). All the running parameters were the same as in previous
case, the architecture was identical for the input layer, containing 18 neurons, while the
output layer contained only 2 neurons, corresponding to processed apple juices (code 1),
having a regular label, and freshly squeezed class (code 2), having a special mark “100%
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fruit juices not from concentrate, without added sugar”. This is the best obtained model
(Table 15), with the best evaluation parameters (AUC = 1 for both classes and perfect
representation of ROC). All the results suggested a perfect discrimination, with the most
representative factors being the content of 13C, K, Mg and Ca.

Table 15. ANN classification results for apple juices.

Sample Groups Processed
Juice

Directly
Pressed Juice Classifications

Training
Processed juice 9 0 100%

Directly pressed juice 0 24 100%
Overall percent 27.3% 72.7% 100%

Testing
Processed juice 4 0 100%

Directly pressed juice 0 4 100%
Overall percent 50% 50% 100%

After implementation of ANNs in Anaconda notebook, the optimized parameters in
this case were as follows: batch size: 16; number of epochs: 50; dropout rate: 0.1; number
of hidden layers: 1; number of neurons: 16 (Table 16).

Table 16. The ANN confusion matrices (counts and percentages) and macro- and micro-metrics
obtained for apple juices.

ANN Stage Processed Freshly Squeezed

Training
(Accuracy = 1)

Processed 9 (100%) 0 (0%)
Freshly squeezed 0 (0%) 19 (100%)

Precision Recall F1-score
Macro 1 1 1
Micro 1 1 1

Testing
(Accuracy = 1)

Processed 4 (100%) 0 (0%)
Freshly squeezed 0 (0%) 9 (100%)

Precision Recall F1-score
Macro 1 1 1
Micro 1 1 1

As in the case of LDA and k-NN, these optimal accuracies obtained for both training
and testing data should be interpreted in the context of a small dataset (13 processed apple
juices and 28 freshly squeezed apple juices). Future studies should take into consideration
the confirmation power of the model with a larger data sample set. In the case of three
classification, after average rank of obtained features, the marker list consisted of Ca, K, Mn
and Zn, while for apple vs. orange, it consisted of Cu, Cr, Mn and Mg. The characteristic
order for apple juice classification was Mn, Rb, δ13C and K. Regarding the main predictors
that were selected according to the SHAP method, Na and Mg were highlighted for all three
classifications. Moreover, for commercial juices, besides Na and Mg, K was given as the
main predictor. In order to test the predictive ability, the stratified 5-fold cross-validation
was also implemented in Python, for each prediction algorithm (LDA, k-NN and ANN) for
all three classification datasets. The comparative results are presented in Table 17 below:
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Table 17. Stratified 5-fold cross-validation results for LDA, k-NN and ANN. Results are expressed as
mean ± standard deviation.

Parameter
Commercial Juices Commercial Apple and Orange Juices

Processed and Freshly
Squeezed Apple

Juices

LDA k-NN ANNs LDA k-NN ANNs LDA k-NN ANNs

Accuracy 0.669 ± 0.090 0.617 ± 0.087 0.698 ± 0.085 0.820 ± 0.075 0.820 ± 0.040 0.820 ± 0.075 1.000 1.000 1.000
Sensitivity - - - 0.868 ± 0.137 0.918 ± 0.067 0.918 ± 0.067 1.000 1.000 1.000
Specificity - - - 0.667 ± 0.365 0.467 ± 0.125 0.700 ± 0.267 1.000 1.000 1.000

AUC 0.814 ± 0.054 0.674 ± 0.073 0.835 ± 0.090 0.858 ± 0.095 0.837 ± 0.135 0.927 ± 0.075 1.000 1.000 1.000

As can be observed from Table 17, for the classification of commercial juices
(three classes), the performances of all three algorithms are modest, around 0.6%, but
when the binary classes (orange vs. apples) were classified, the sensitivity achieved higher
values with k-NN and ANN rather than LDA, although k-NN showed lower specificity,
compared with ANN. For the last classification (processed apples vs. freshly squeezed
apples), all three machine learning algorithms achieved maximum accuracy, sensitivity,
specificity and AUC, suggesting well-separated clusters with low variability. Anyway, in
the context of a small dataset available in the herein case, this result should be interpreted
carefully and future studies should consider larger datasets, with a clear class balance.

The studies published by [9,21,50] revealed a few classification approaches, based on
multiple spectroscopic methods (UV–visible, NIR, fluorescence and 1H-NMR) combined
with machine learning models (SVM and ANN) for detection and classification of adul-
terants in apple juice concentrate. It was proven that through the association between
spectroscopic and machine learning techniques, unique insights could be provided. The
association between an analytical technique and a chemometric approach should be very
wisely chosen, depending very much on its purpose.

In the present study, the association between IRMS and ICP-MS data fusion and ma-
chine learning algorithms was conducted to highlight several points: δ2H isotopic results
confirmed that almost all juices (except two samples) are obtained from concentrates re-
diluted with tap water. Regarding the 13C values, among 37 orange juices, 14 samples
had values higher than those for C3 plants, confirming the presence of exogenous sug-
ars from C4 plants. For “the other fruit juices” group, one sample, with a value of
−17.7‰, was found to contain C4 sugars. The average concentration values for most
of the elements investigated in the analysis of commercial apple juice samples are lower
than the average levels obtained for orange juice samples. Regarding experimental data
processing, two approaches were conducted, as follows: the first was implemented directly
in SPSS software, by applying default parameters for each algorithm (LDA, k-NN and
ANN), while in the second case, a more rigorous configuration was implemented in Ana-
conda Notebook, and key parameters were aligned in order to ensure a fairer comparison.
This dual processing strategy allowed the enhancement of experimental data interpretabil-
ity and highlighted the model performances, even within the case of small datasets with
class imbalance. Regarding the disproportion among the three investigated class juices
(apples n = 41, oranges n = 37 and other fruits n = 23), micro-average accuracy is higher than
the macro-average, indicating that overall performance is disproportionately influenced by
the two majority classes, while the third category, “other fruits”, is misclassified. This can
be attributed to juice distribution among classes and to overcome this, other classifications
were made using only two classes.

It should be mentioned here that the current models were developed for a limited set
of fruit juices (apple, orange and mixed juices), and their applicability to other fruit types,
or products with added ingredients, has not been evaluated. Moreover, elemental and
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isotopic profiles can be influenced by external factors such as geographic origin, agricultural
practices, seasonal variation and processing methods, which were not comprehensively
covered in the present dataset. Thus, future studies should focus on expanding the dataset
in terms of diversity and quantity, incorporating metadata and exploring model adaptability
across different production systems and sample types.

4. Conclusions
The present study showed the feasibility of using isotopic and elemental finger-

prints in combination with chemometrics as a screening method for fruit juices authen-
tication, within the limits of our dataset (commercial sample juices, n = 73; and freshly
squeezed, n = 28). Afterward, the obtained predictive models, which were developed using
three different algorithms, showed high values for both classification and prediction pur-
poses. Among all three algorithms, ANNs provided the best results in terms of accuracy,
with high values for AUC parameters for all three classifications. When three categories of
fruit juices were classified, ANNs provided 78.4% correct assignments for the training set
and 68.2% for the testing set, using Mn, K, Na, As, Cr, Ca and δ13C. When the variability of
the sample set was lowered, by omitting the class that contained sample juices obtained
from other fruits except oranges and apples, the percent of correct assignment increased
up to 100% for the training set and 91.7% for the testing set, based on Mn, Pb, Zn, Mg, Co
and Na, as principal discrimination features. For the last classification, ANNs successfully
classified apple juices (100% for both subsets), according to the production system, using
fewer markers: δ13C, K, Mg and Ca. The same approach was implemented in Anaconda
notebook, and the obtained results followed almost the same pattern as before, meaning
the three-class classification was the most difficult to perform, while the binary classifi-
cation was improved, highlighting the power and the limitation of model generalization.
Moreover, k-NN sometimes matched or exceeded ANN sensitivity on apples/oranges
(0.918 vs. 0.918) and LDA remains competitive given its simplicity.

Also, the developed algorithms in the present study demonstrated good performance
within our dataset, regarding their generalizability to unseen samples. Several points must
be considered. First, the number of samples and their imbalance distribution among classes
could limit the ability to predict with sufficient accuracy new samples. Juice samples
might pose significant variations regarding the raw materials, composition and processing
technologies, which might not have been fully captured within this dataset.

For generalizability enhancement of obtained models, future studies should include a
larger dataset, covering aspects related to juice types, production systems or other condi-
tions, along with other measured parameters. In this way the robustness and predictive
power will be increased, and the risk of overfitting and class imbalance will be diminished.
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gated in this study.
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