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Abstract: In recent years, many studies have proposed automatic detection and localization tech-
niques for myocardial infarction (MI) using the 12-lead electrocardiogram (ECG). Most of them
applied preprocessing to the ECG signals, e.g., noise removal, trend removal, beat segmentation, and
feature selection, followed by model construction and classification based on machine-learning algo-
rithms. The selection and implementation of preprocessing methods require specialized knowledge
and experience to handle ECG data. In this paper, we propose an end-to-end convolutional neural
network model that detects and localizes MI without such complicated multistep preprocessing. The
proposed model executes comprehensive learning for the waveform features of unpreprocessed raw
ECG images captured from 12-lead ECG signals. We evaluated the classification performance of the
proposed model in two experimental settings: ten-fold cross-validation where ECG images were
split randomly, and two-fold cross-validation where ECG images were split into one patient and the
other patients. The experimental results demonstrate that the proposed model obtained MI detection
accuracies of 99.82% and 93.93% and MI localization accuracies of 99.28% and 69.27% in the first and
second settings, respectively. The performance of the proposed method is higher than or comparable
to that of existing state-of-the-art methods. Thus, the proposed model is expected to be an effective
MI diagnosis tool that can be used in intensive care units and as wearable technology.

Keywords: myocardial infarction; electrocardiogram; 12-lead ECG; convolutional neural network

1. Introduction

Myocardial infarction (MI) is a heart disease that causes necrosis of the myocardium
due to obstruction of the coronary arteries [1,2] and is still associated with substantial
morbidity and mortality. Necrosis of the myocardium is irreversible; thus, early diagnosis
and appropriate treatment of MI are essential. The 12-lead electrocardiogram (ECG), which
records cardiac electrical activity from 12 sites on the body, is widely used to diagnose
MI [3]. The site of MI is diagnosed by observing and assessing the waveforms of the ECG
signal in each lead and combinations of leads exhibiting abnormalities [4–6]. Typically, an
MI diagnosis by visual observation of a 12-lead ECG requires both significant time and
specialized experience.

To date, many research groups have attempted to predict the prognosis from ECG
progression in patients with MI [7–9]. In these studies, the prognostic prediction was
performed using parameter values calculated from ECG signals. However, the appropriate
parameters needed to be identified by trial and error based on researchers’ experience
and knowledge from a large number of combinations of statistics or feature values. Thus,
effective AI-based approaches such as data mining and machine learning are needed in
this research area to automatically discover ideal parameters [8].
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In contrast, in recent years, many AI-based methods have been proposed to automati-
cally detect and localize MI using ECG data [10–17]. Most of these methods handled ECG
data as time-series data and involved complicated preprocessing techniques, e.g., noise
reduction, trend removal, beat segmentation, and feature selection. Typically, preprocess-
ing methods involve direct modifications of the ECG data; thus, the performance of the
preprocessing methods can directly affect the MI detection and localization performance.
In contrast, Jun et al. [18] employed two-dimensional ECG images as the training and
testing data to classify arrhythmias using a convolutional neural network (CNN), which is
a deep-learning technique. They demonstrated that arrhythmia can be classified with high
accuracy without preprocessing, and that the use of ECG images reduced the effect of noise
in the ECG signals.

Thus, in this paper, we propose an end-to-end CNN model to detect and localize MI
using only ECG images captured from ECG signals without preprocessing. This study was
motivated by the work of Jun et al. [18]; however, in the model proposed by Jun et al., the
training and classification of the ECG images were performed using only a single-lead ECG
signal. However, MI requires the comprehensive assessment of 12-lead ECG signals; thus,
it is necessary to extend this model to handle 12-lead ECG images.

Our primary contributions are summarized as follows. First, as in the study by Jun
et al. [18], ECG images acquired from ECG signals are used directly as both the training
and testing data; thus, we eliminate the need for complicated multistep preprocessing
techniques, noise reduction, trend removal, beat segmentation, and feature selection. This
simplifies the model, reduces the effect of noise on the ECG signals, and enables quick
diagnosis in actual medical practice. Second, the proposed model enables the comprehen-
sive training and classification of 12 sets of ECG images obtained from each lead; thus,
diagnoses similar to those of medical professionals can be realized.

The remainder of this paper is organized as follows. Section 2 describes the construc-
tion method of the proposed model. Section 3 describes the experimental methodologies,
and Section 4 presents the experimental results. Section 5 discusses the observations.
Finally, Section 6 concludes the paper, including suggestions for potential future work.

2. Materials and Methods
2.1. Datasets

In this study, we used 12-lead ECG data from 175 subjects (51 normal subjects and
124 MI patients) collected from the PhysioBank (PTB Diagnostic ECG Database) open access
database [19,20]. MI is classified into ST elevation MI (STEMI) and non-ST elevation MI
(NSTEMI) based on ECG findings. However, the PhysioBank did not provide information
regarding whether the ECG data corresponded to STEMI or NSTEMI. Thus, we collected
ECG data for MI as exhaustively as possible without distinguishing between STEMI and
NSTEMI. Note that 12-lead ECG data with waveforms deformed by artifacts or those that
included arrhythmia were excluded.

2.2. Methods

We employed image-converted ECG signals as the training and testing data for the
CNN. The proposed method comprises two steps, i.e., (1) ECG image generation, and
(2) CNN model construction and classification. Detailed explanations of each step are given
in the following.

2.2.1. ECG Image Generation

Figure 1 illustrates how ECG images were created from the 12-lead ECG data. First, a
subsequence of W milliseconds was taken from the beginning of the ECG data. Next, it
was converted to a grayscale image with 256 levels consisting of 64 × 64 pixels in order
to express oblique lines and curves smoothly, i.e., to reduce aliasing. This operation was
performed on the ECG data acquired by each of the 12 leads. In this paper, the 12 ECG
images obtained in this manner are referred to as an ECG image set. This process was
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repeated via window shifting in increments of W milliseconds toward the terminal direction
of the ECG data. Here, W was set to 1000 milliseconds because the average ECG beat in a
resting condition is 1 beat/second. The ECG image sets were collected from a normal class
and 10 classes of different infarction sites. Table 1 lists the details of the ECG image sets
obtained from the 11 classes.
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Table 1. Details of ECG image set for each class.

Class (Abbreviation) Number of Subjects Number of ECG Data Number of ECG Image Sets

Normal (N) 51 74 4837
Anterior (A) 17 47 2812

Anterior–Lateral (AL) 14 39 2580
Anterior–Septal (AS) 27 77 4620

Inferior (I) 30 87 5268
Inferior–Lateral (IL) 23 55 3315

Inferior–Posterior (IP) 1 1 38
Inferior–Posterior–Lateral

(IPL) 8 19 1118

Lateral (L) 1 3 180
Posterior (P) 1 4 240

Posterior–Lateral (PL) 2 5 300

Total 175 411 25,308

2.2.2. CNN Model Construction and Classification

A CNN is a deep-learning technique that has been used successfully in various tasks,
e.g., image recognition and speech recognition [21]. Feature extraction with a CNN is
performed by repeating the combination of the convolution layer and pooling layer multiple
times [22,23]. The feature maps extracted from the final convolution and pooling layer are
converted to a vector and inputted into a fully connected layer to classify the input data [24].
One advantage of CNNs is the high degree of translation invariance, i.e., the ability to
identify a particular object in an image even if its position in the image changes [25].

The proposed CNN model is unique in that it separately learns the characteristics
of the ECG image in each lead using the convolution and pooling layers. Figure 2 and
Table 2 show the architecture of the proposed CNN model and the details of the structure,
respectively. Here, the input to the proposed model is the ECG image set. First, feature
extraction is performed on the ECG image of each lead using the convolution and pooling
layers. Then, the features extracted from each lead are unified and inputted into the fully
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connected layer, which realizes comprehensive learning of the 12-lead ECG images. Finally,
the vector output from the fully connected layer is converted to a probability vector using
the SoftMax function. In the model-training process, the cross-entropy error is calculated
between the probability vector and a one-hot vector corresponding to the true label, and
the weights and bias are updated using the backpropagation process. In the model-testing
process, i.e., the classification test, the proposed model outputs a class label corresponding
to the maximum elements in the probability vector generated from the SoftMax function.
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Table 2. Details of the structure of proposed CNN model.

Layer Number of Input
Nodes

Number of ECG Output
Nodes Kernel Size Batch

Normalization
Activation
Function

Convolution 1 642 4 × 622 3 × 3 True ReLU
Convolution 2 4 × 622 8 × 602 3 × 3 Ture ReLU

Pooling 1 8 × 602 8 × 292 4 × 4 False -
Convolution 3 8 × 292 16 × 272 3 × 3 True ReLU
Convolution 4 16 × 272 16 × 252 3 × 3 True ReLU

Pooling 2 16 × 252 16 × 122 3 × 3 False -
Convolution 5 16 × 122 32 × 102 3 × 3 True ReLU
Convolution 6 32 × 102 32 × 82 3 × 3 True ReLU

Pooling 3 32 × 82 32 × 32 4 × 4 False -

The flattened vectors of the 12 leads are concatenated

Fully connected 1 3456 2048 - True ReLU
Fully connected 2 2048 1024 - True ReLU
Fully connected 3 1024 11 - False SoftMax

Loss function Cross-entropy loss
Optimizer Adam

As described in the previous section, ECG images are obtained via window shifting in
the ECG signal. Thus, the ECG beats (i.e., waveforms comprising P, Q, R, S, and T waves)
are not always fixed at a particular position in the image. However, the proposed CNN
model allows us to capture the features of the beats at different locations according to the
translation invariance in the CNN.
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3. Experiments
3.1. Experimental Setup

In this study, cross-validation experiments were conducted to evaluate the classifica-
tion performance of the proposed CNN model. These experiments were performed under
the following two settings.

• Setting 1:

In the first experiment, ten-fold cross-validation was conducted, where the ECG image
sets of each class were divided equally and randomly. In this setting, we allowed the ECG
image sets derived from the same subject (i.e., a normal subject or patient) to be included
in both the training and testing data. Note that this is the experimental setting considered
in most previous studies.

• Setting 2:

In the second experiment, two-fold cross-validation was conducted, where the data
for one patient were used for testing, and the data for all other subjects were used for
training. Liu et al. stated that a classifier based on fixed training data may misclassify new
patients because ECG data frequently exhibit different characteristics depending on the
patients [26]. In fact, it is extremely rare that the ECG data of a patient to be diagnosed exist
in the training data. Thus, this experimental setting allowed us to evaluate the performance
from a practical perspective.

In Setting 1, we performed binary classification of the normal and MI class, as well
as multiclass classification of the normal class and the 10 classes of different infarction
sites. In Setting 2, it was necessary to divide the ECG image sets for each patient. Thus,
we excluded the class with only one patient and used the remaining eight classes (i.e., the
normal class and seven infarction site classes).

3.2. Evaluation Indices

The classification performance was evaluated using the following indices.

Sensitivity =
TP

TP + FN
, (1)

Speci f icity =
TN

TN + FP
, (2)

Accuracy =
TP + TN

TP + FP + TN + FN
, (3)

Here, TP TN, FP, and FN indicate the number of true positives, true negatives, false
positives, and false negatives, respectively.

4. Experimental Results
4.1. Classification Results for Setting 1
4.1.1. MI Detection Results

Table 3 shows the confusion matrix obtained via binary classification between the
normal class and the MI class, and Table 4 shows the scores for each index calculated from
the classification results. As can be seen, binary classification was achieved with high
accuracy. These results demonstrate that there were clear differences in the features of the
ECG images between the two classes and that the proposed CNN model could extract
features that were effective for the discrimination of the two classes from the ECG images
of each lead.
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Table 3. Confusion matrix for normal and MI classes in Setting 1.

Predicted Class
N MI

Tr
ue

C
la

ss

N 4822 15

MI 31 20,440

Table 4. Classification performance of normal and MI classes in Setting 1.

Index Score

Sensitivity 0.9985
Specificity 0.9969
Accuracy 0.9982

4.1.2. MI Localization Results

Table 5 summarizes the confusion matrix for the MI localization and classification
accuracy for each class. As can be seen, all infarction sites and the normal class were
classified with high accuracy. However, the misclassification percentage of the normal
class increased compared to the binary classification. In addition, misclassifications were
scattered among different infarction sites, especially anterior wall infarction (A, AL, and
AS) and inferior wall infarction (I and IL). These misclassifications were due to the fact that
the decision boundary became complicated by the increased number of classes.

Table 5. Confusion matrix for MI localization and classification accuracy for each class in Setting 1.

Predicted Class
N A AL AS I IL IP IPL L P PL Accuracy

Tr
ue

cl
as

s

N 4818 1 0 5 13 0 0 0 0 0 0 0.9961
A 2 2782 3 15 7 3 0 0 0 0 0 0.9893

AL 3 5 2551 17 2 2 0 0 0 0 0 0.9888
AS 3 11 4 4590 9 1 0 1 0 1 0 0.9935

I 6 5 0 5 5243 6 0 2 1 0 0 0.9953
IL 1 1 3 1 14 3286 0 9 0 0 0 0.9913
IP 0 0 0 0 0 0 38 0 0 0 0 1.0000

IPL 0 0 1 1 4 6 0 1106 0 0 0 0.9893
L 0 0 0 0 0 0 0 0 180 0 0 1.0000
P 1 0 0 1 2 0 0 0 0 236 0 0.9833

PL 0 0 0 1 2 0 0 0 0 0 297 0.9900
Total 0.9928

4.2. Classification Results for Setting 2
4.2.1. MI Detection Results

Table 6 shows the confusion matrix obtained by the binary classification between the
normal and MI classes, and Table 7 shows the scores for each index calculated from the
classification results. Compared to the results obtained in Setting 1, there was a significant
decrease in the specificity score, i.e., in many cases, a normal ECG was misclassified as
the MI class. This may have been due to the imbalance in the class distribution within the
training data. In fact, the number of ECG image sets in all the MI classes was approximately
four times greater than that of the normal class.
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Table 6. Confusion matrix for normal and MI classes in Setting 2.

Predicted Class
N MI

Tr
ue

C
la

ss

N 3718 1119

MI 390 19,623

Table 7. Classification performance of normal and MI classes in Setting 2.

Index Score

Sensitivity 0.9805
Specificity 0.7687
Accuracy 0.9393

4.2.2. MI Localization Results

Table 8 summarizes the confusion matrix for the MI localization and the classification
accuracy for each class. As can be seen, the overall accuracy was 0.6927, which is signifi-
cantly less than that of Setting 1. This indicates that the characteristics of the ECG signals
differ more or less between different patients (even for the same infarction site).

Table 8. Confusion matrix for MI localization and classification accuracy for each class in Setting 2.

Predicted Class
N A AL AS I IL IPL PL Accuracy

Tr
ue

cl
as

s

N 4012 24 21 85 515 132 26 22 0.8294
A 91 1524 646 329 177 45 0 0 0.5420

AL 79 311 1692 329 152 16 1 0 0.6558
AS 156 140 731 3239 207 145 1 1 0.7011

I 471 158 167 75 3876 429 90 2 0.7358
IL 118 64 10 113 790 2098 92 30 0.6329

IPL 16 3 8 0 190 256 622 23 0.5564
PL 13 0 9 4 59 59 6 150 0.5000

Total 0.6927

5. Discussion
5.1. Results of Setting 1

As shown in Table 9, the proposed model exhibited performance that is comparable to
that of state-of-the-art methods. Note that the proposed method obtained such results de-
spite the simple approach of learning ECG images obtained via window shifting. However,
the proposed model also demonstrated a serious drawback. The proposed method extracts
ECG images by shifting from the start to the end of the ECG signal using a fixed window
width. Thus, these images may contain ECG waveforms exhibiting both the characteristics
of individual classes and unclear characteristics. Such ECG waveforms can have a negative
impact on the model’s training and testing processes. Therefore, we investigated ECG
waveforms that caused misclassification, and we found that misclassified ECG waveforms
fall into four major patterns: (1) ECG waveforms with strong noise; (2) ECG waveforms
with strong trend; (3) ECG waveforms with two beats; and (4) ECG waveforms with most
of the beat missing. Each pattern is illustrated in Figure 3a–d. First, we discuss Figure 3a,b.
We expected that the influence of noise and trends could be reduced by imaging the ECG
signal with a smaller window width; however, in reality, the ECG images with strong noise
and trends were generated, and such ECG images can cause a reduction in classification
performance. A possible solution to this problem is to incorporate residual blocks [27]
and an attention mechanism [28] into the model. This would enhance the noise-reduction
performance of the model [29] and realize the dynamic identification of waveform regions
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to focus on. Thus, the noise and trend in the ECG signal can be reduced. Next, we discuss
Figure 3c,d. In this study, the window width was fixed at 1000 milliseconds; thus, individ-
ual differences in heart rate could cause duplicating and missing waveforms in a single
ECG image. Such ECG images also cause a reduction in classification performance. This
problem can be addressed by calculating the heart rate when imaging the ECG signal and
dynamically switching the window width depending on the individual patient.

Table 9. Comparison of classification performance between proposed model and existing methods
under Setting 1.

Author (Year) Methods MI Detection Results MI Localization Results

Arif et al., 2012 [10] k-NN
Sensitivity = 99.97% Accuracy = 98.8%
Specificity = 99.9%

Safdarian et al., 2014 [11]

• Probabilistic Neural
Network (PNN)

Accuracy = 94% Accuracy = 76%• k-NN
• Multilayer

Perceptron (MLP)
• Naive Bayes
Classification

Sharma et al., 2015 [12]
• SVM-Lin Accuracy = 96%

Accuracy = 99.58%• SVM-RBF Sensitivity = 93%
• k-NN Specificity = 99%

Acharya et al., 2016 [13] k-NN
Accuracy = 98.8% Accuracy = 98.74%

Sensitivity = 99.45% Sensitivity = 99.55%
Specificity = 96.27% Specificity = 99.16%

Baloglu et al., 2019 [14] Deep CNN N/A Accuracy = 99.78%

Sugimoto et al., 2019 [15]
• Convolutional

autoencoder
• k-NN

Accuracy = 99.87% Accuracy = 99.88%
Sensitivity = 99.91% Sensitivity = 99.12%
Specificity = 99.59% Specificity = 99.92%

Cao et al., 2022 [17] • SENet
• Grad-CAM

Accuracy = 99.98% Accuracy = 99.79%
Sensitivity = 99.94% Sensitivity = 99.88%
Specificity = 99.94% Specificity = 99.98%

Proposed model CNN
Accuracy = 99.82% Accuracy = 99.28%
Sensitivity = 99.85% Sensitivity = 99.21%
Specificity = 99.69% Specificity = 99.61%

5.2. Results of Setting 2

In Setting 1, we allowed ECG images derived from the same subject to be included
in both the training and testing data. Thus, as shown in Table 9, many existing methods
(including the model proposed in this paper) have obtained very high classification accuracy.
However, in Setting 2, the subjects used in the training and testing data were separated
completely; thus, classification was more difficult in Setting 2 than in Setting 1. To date,
several studies have conducted experiments similar to Setting 2 of this study. Table 10
compares the results of the current study and those of previous studies based on deep-
learning algorithms. As can be seen, the scores are quite low for all techniques compared
those of Setting 1 in this study. Typically, ECG abnormalities in MI vary according to the
location of the infarction and various other factors, e.g., individual differences, progression,
and the measurement environment. Thus, it is difficult to comprehensively learn the
characteristics of the ECG waveform for all MI types. In the medical field, data from
patients not included in the training data will be inputted; thus, it is necessary to increase
the training data of MI patients as much as possible to construct a model with sufficiently
high generalizability.
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Table 10. Comparison of classification performance between our method and the existing methods
under Setting 2.

Author (Year) Methods MI Detection Results MI Localization Results

Fu et al., 2020 [30] MLA-CNN-BiGRU
Accuracy = 96.50% Accuracy = 62.94%
Sensitivity = 97.10% Sensitivity = 63.97%
Specificity = 93.34% Specificity = 63.00%

Han et al., 2020 [31] ML-ResNet
Accuracy = 95.49% Accuracy = 55.74%
Sensitivity = 94.85% Sensitivity = 47.58%
Specificity = 97.37% Specificity = 55.37%

Proposed model CNN
Accuracy = 93.93% Accuracy = 69.27%
Sensitivity = 98.05% Sensitivity = 65.96%
Specificity = 76.87% Specificity = 82.94%

Table 10 shows that the proposed model obtained the highest sensitivity score in
terms of MI detection. This means that the proposed model identified MI most accurately
among all the compared methods. However, the specificity of the proposed model was
considerably less than that of the other methods. This means that the proposed model
misclassified normal ECGs as MI classes in more cases than the compared methods. This
was due to the imbalance in the class distribution within the training data, as mentioned
in Section 4.2.1. In addition, this imbalance increases the likelihood that the normal ECG
images with unclear characteristics, e.g., those shown in Section 5.1, will be misclassified
as the MI class. This problem can be addressed by increasing the number of normal ECG
images to the same extent as that of the MI class.

In the MI localization task, the proposed model obtained the highest scores for all
indices. The existing methods employed five classes of the infarction sites, whereas seven
classes of infarction sites were considered in the current study. Note that the proposed
model demonstrated more accurate results despite the use of additional classes. In addition,
the proposed model obtained state-of-the-art performance even when raw ECG images
without preprocessing were used as both the training and testing data.

5.3. Study Advantages and Limitations

The primary advantages of the proposed model are summarized as follows.

• The proposed model does not require complicated preprocessing, e.g., noise reduction,
trend removal, beat segmentation, and feature selection.

• With the proposed model, it is possible to detect and localize MI by comprehensively
checking the characteristics of the ECG images for each lead (similar to the diagnoses
of medical professionals).

The primary limitations of the proposed model are summarized as follows.

• It is possible to misclassify ECG images with extremely strong noise and trends.

• It is possible to misclassify ECG images with multiple beats or ECG images with most
of the beats missing.

5.4. Discussion for Practical Application of the Model

Here, we discuss important issues to be addressed and validated for the practical
application of the model in the medical field. There are three main issues. The first
issue concerns the number of subjects used in the proposed model. In this study, we
collected ECG data of MI patients for each infarction site as exhaustively as possible
from the PhysioBank database. However, for some infarction sites, ECG data from only
one or two patients were used as shown in Table 1. This is not a sufficient number of
patients. Thus, it may lead to overfitting in the model by using only biased cases as well
as poor classification performance due to the class imbalance problem. To improve the
generalization ability of the model, the number of subjects in such minor classes needs to be
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further increased. The second issue concerns the explainability of the model. The proposed
model outputs class labels as classification results, but cannot present information regarding
diagnostic rationales, such as abnormal ECG regions that contributed to the classification.
The diagnostic rationales output from the model would be important information to
support the physician’s subsequent decision making. This issue can be solved using
visualization techniques such as Grad-CAM [32], which can display image areas that
contribute to classification. In addition, it is important to present scores based on ECG
indices as proposed in the previous research [7–9,33]. Such scores can provide important
information regarding fast triage and prognostic effects for MI patients. The third issue
concerns model complexity. In general, neural network models require a large number of
computational resources to process a huge number of parameters. Therefore, the use of
high-performance GPU computers is essential. To realize a wide range of uses in medical
practice, it is necessary to construct a simpler model that can even work on small-scale
electronic devices such as smartphones and wearable terminals. To address this issue,
model-compression techniques [34,35] would be an effective approach.

6. Conclusions

In this paper, we proposed an end-to-end CNN model to detect and localize MI using
12-lead ECG images captured via window shifting from ECG signals without complicated
preprocessing. We found that the proposed model demonstrated a classification perfor-
mance that is higher than or comparable to that of existing state-of-the-art methods. Thus,
we consider that the proposed model can be used as an effective MI diagnosis tool in
medical practice.

In the future, we plan to solve the two limitations stated in Section 5.3 and improve
the model for practical use as discussed in Section 5.4. AI-based techniques will be able
to provide scoring systems in patients with MI similar to diastolic heart failure and other
diseases. We believe that a scoring system implementing an accurate MI classifier such as
the proposed model would be a powerful tool for physicians to support rapid diagnosis,
triage, and prognosis prediction.
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