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Abstract: The continuous prediction of arterial blood pressure (ABP) waveforms via non-invasive
methods is of great significance for the prevention and treatment of cardiovascular disease. Photo-
plethysmography (PPG) can be used to reconstruct ABP signals due to having the same excitation
source and high signal similarity. The existing methods of reconstructing ABP signals from PPG only
focus on the similarities between systolic, diastolic, and mean arterial pressures without evaluating
their global similarity. This paper proposes a deep learning model with a W-Net architecture to
reconstruct ABP signals from PPG. The W-Net consists of two concatenated U-Net architectures, the
first acting as an encoder and the second as a decoder to reconstruct ABP from PPG. Five hundred
records of different lengths were used for training and testing. The experimental results yielded
high values for the similarity measures between the reconstructed ABP signals and their reference
ABP signals: the Pearson correlation, root mean square error, and normalized dynamic time warping
distance were 0.995, 2.236 mmHg, and 0.612 mmHg on average, respectively. The mean absolute
errors of the SBP and DBP were 2.602 mmHg and 1.450 mmHg on average, respectively. Therefore,
the model can reconstruct ABP signals that are highly similar to the reference ABP signals.

Keywords: digital health; data science; intensive and critical care; cardiology; electrocadiogram; vital
sign analysis; biosignal reconstruction; signal mapping

1. Introduction

Cardiovascular disease (CVD) is the leading cause of death worldwide, and its preva-
lence is increasing yearly [1]. Arterial blood pressure (ABP) is an essential indicator of the
functioning of the cardiovascular system. An ABP that is too high or too low will affect
the blood supply of all organs and increase the burden on the heart. If the ABP is too low,
the blood supply to the organs will be reduced, especially to vital organs, such as the brain
and heart, which could lead to severe consequences. At the same time, the heart and blood
vessels are overburdened if the blood pressure is too high. In clinical practice, non-invasive
cuff-based or the continuous invasive arterial catheters measure blood pressure depending
on the patient’s situation. The cuff-based non-invasive blood pressure monitoring method
has played a significant role in detecting hypertension and preventing cardiovascular
diseases. However, only systolic and diastolic blood pressure values, and not waveforms,
can be obtained. An ABP waveform contains further information about the heart rate, heart
rate variability, and arrhythmia, besides the systolic and diastolic blood pressure. Further-
more, the morphological characteristics of ABP signals can be used to assess the cardiac
output [2]. However, in continuous monitoring, invasive (intravascular) measurements
have potential risks for patients, such as infection, site bleeding, and vascular damage.
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Therefore, non-invasive continuous blood pressure-monitoring has a significant clinical
value.

The photoplethysmogram (PPG), another signal reflecting the state of the cardiovascu-
lar system, has attracted extensive attention in recent years due to its ease with respect to
collection, its small sensor size, and its non-invasiveness. The PPG has been used to esti-
mate oxygen saturation [3], blood pressure [4], cardiac output [5], and other physiological
characteristics. Figure 1 shows a pair of synchronized ABP and PPG signals. It is easy to
see that the ABP and PPG are highly similar in their waveforms. The two main feature
points in an ABP cycle are the systolic blood pressure (SBP) and diastolic blood pressure
(DBP). In a clinical setting, blood pressure classification is usually based on the values of
these two feature points. There are also two main features of a PPG cycle: the onset and
the systolic peak. However, because there is no uniform standard, the systolic peak and
onset values in PPG are usually of no physiological significance. It should be noted that for
the same heartbeat cycle, the delay in the systolic peak of the PPG relative to the SBP of
ABP is mainly due to the difference in the measurement site. In terms of physiology, the
pressure and volume of the arteries change periodically during each cardiac cycle, such as
the heart’s systole and diastole phases. These changes propagate as pulse waves along the
arterial wall toward the peripheral blood vessels. The PPG signal is the pulse wave signal
of the blood volume changes in the peripheral blood vessels obtained by an optical method.
Although ABP and PPG are measured at different sites and with different methods, they
share the same excitation source of the heart. As shown in Figure 1, the blue part of the
ith beat in the ABP, defined as a systolic wave, stands for the heart’s systole. While the
red part, which was defined as a reflection wave, stands for the heart’s diastole [6,7]. The
dicrotic notch demarcates the end of systole and the beginning of diastole [8,9]. Similar
to the ABP signal, there is also a systolic wave, a dicrotic notch, and a diastolic wave in
a PPG beat [10–12]. Furthermore, in signal analysis, the PPG and ABP are consistent in
the time and frequency domains, and there is a significant causality from ABP to PPG [13].
Therefore, it is reasonable to use PPG to reconstruct the ABP signal.

Bioengineering 2022, 9, x FOR PEER REVIEW  2  of  12 
 

invasive (intravascular) measurements have potential risks for patients, such as infection, 

site  bleeding,  and  vascular  damage.  Therefore,  non‐invasive  continuous  blood  pres‐

sure‐monitoring has a significant clinical value. 

The photoplethysmogram (PPG), another signal reflecting the state of the cardiovas‐

cular system, has attracted extensive attention in recent years due to its ease with respect to 

collection, its small sensor size, and its non‐invasiveness. The PPG has been used to esti‐

mate oxygen saturation [3], blood pressure [4], cardiac output [5], and other physiological 

characteristics. Figure 1 shows a pair of synchronized ABP and PPG signals. It is easy to see 

that the ABP and PPG are highly similar in their waveforms. The two main feature points 

in an ABP cycle are the systolic blood pressure (SBP) and diastolic blood pressure (DBP). In 

a clinical setting, blood pressure classification is usually based on the values of these two 

feature points. There are also two main features of a PPG cycle: the onset and the systolic 

peak. However, because there is no uniform standard, the systolic peak and onset values in 

PPG  are  usually  of  no  physiological  significance.  It  should  be  noted  that  for  the  same 

heartbeat  cycle,  the delay  in  the  systolic peak of  the PPG  relative  to  the SBP of ABP  is 

mainly due to the difference in the measurement site. In terms of physiology, the pressure 

and  volume  of  the  arteries  change  periodically  during  each  cardiac  cycle,  such  as  the 

heart’s systole and diastole phases. These changes propagate as pulse waves along the ar‐

terial wall toward the peripheral blood vessels. The PPG signal is the pulse wave signal of 

the blood volume changes in the peripheral blood vessels obtained by an optical method. 

Although ABP and PPG are measured at different sites and with different methods, they 

share the same excitation source of the heart. As shown in Figure 1, the blue part of the ith 

beat  in the ABP, defined as a systolic wave, stands  for the heart’s systole. While  the red 

part, which was defined as a reflection wave, stands for the heart’s diastole [6,7]. The di‐

crotic notch demarcates the end of systole and the beginning of diastole [8,9]. Similar to the 

ABP signal, there is also a systolic wave, a dicrotic notch, and a diastolic wave  in a PPG 

beat [10–12]. Furthermore, in signal analysis, the PPG and ABP are consistent in the time 

and frequency domains, and there is a significant causality from ABP to PPG [13]. There‐

fore, it is reasonable to use PPG to reconstruct the ABP signal. 

 

Figure 1. A synchronized ABP and PPG signal. SBPi and DBPi in ABP refer to the ith systolic and diastolic 

blood pressure, respectively. Oi and Si stand for the ith onset and systolic peak, respectively. For the 

ith beat, the blue line is the systolic wave in ABP and PPG. This figure was used to show the corre‐

lation between ABP and PPG. 

Regarding the reconstruction of ABP signals using PPG signals, to our knowledge, 

there are only two ways to accomplish this. The PPG2ABP method takes segments of a 

Figure 1. A synchronized ABP and PPG signal. SBPi and DBPi in ABP refer to the ith systolic and
diastolic blood pressure, respectively. Oi and Si stand for the ith onset and systolic peak, respectively.
For the ith beat, the blue line is the systolic wave in ABP and PPG. This figure was used to show the
correlation between ABP and PPG. Note that PPG = Photoplethysmogram, ABP = Arterial blood
pressure, SBP = Systolic blood pressure, and DBP = Diastolic blood pressure.

Regarding the reconstruction of ABP signals using PPG signals, to our knowledge,
there are only two ways to accomplish this. The PPG2ABP method takes segments of a
long period of PPG and ABP as inputs and compares the performance of U-Net and Multi-
ResUNet architectures in converting PPG segments into ABP waveform segments [14].
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The other approach is the ABP-Net, which is an improved version of the Wave-U-NET
architecture. The model’s input contains three signals: PPG, the PPG’s first derivative
(VPG), and the PPG’s second derivative (APG) [15]. These two studies used SBP, DBP,
and MAP to evaluate the model’s performance [14,15]. However, the ABP is a time series
signal, and feature points cannot accurately evaluate the morphological similarity between
the original ABP signal and the reconstructed ABP. Therefore, the use of some similarity
measures of the waveform is needed in the performance evaluation.

In this study, we propose a W-Net deep neural network structure to reconstruct
the ABP signal from PPG. In contrast to previous studies, to better evaluate the global
similarity between the reconstructed ABP and the reference ABP, the Pearson’s correlation
coefficient [16] and the dynamic time warping [17] measures are introduced for evaluating
the model’s performance

2. Methodology

The flowchart of the proposed method is shown in Figure 2. All steps will be described
in detail in this section. This neural network was implemented in Tensorflow 2.8.0 for
Python 3.9. All models were run in NVIDIA GeForce RTX 3060 Ti and Intel Core i7-11700 @
2.50 GHz.
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Figure 2. Flowchart of the proposed method. For each record, the PPG was detrended, and the
ABP was scaled in preprocessing. Then, they were segmented into 8.2 s. The first 80% of segments
were used for training, and the last 20% were used for testing. For the test set, the ABP signal of the
segments was stitched to generate the reference ABP. In addition, the model’s outputs were stitched
to generate the reconstructed ABP. Note that PPG = Photoplethysmogram and ABP = Arterial blood
pressure.

2.1. Dataset

The data used in this article are from a cuffless blood pressure estimation data set [18].
This data set is one that Kachuee et al. compiled from the MIMIC II database [19]. It consists
of a total of 12,000 records with varying lengths that contain synchronized PPG, ABP, and
lead II ECG signals. All signals were sampled at 125 Hz. In this study, only PPG and ABP
signals were used. Referring to previous works, we removed records less than 8 min in
length [13,14]. In addition, records with a maximum value above 200 mmHg in the ABP
signal were removed. After this removal, the number of records decreased to 2064. This
paper uses only the first 500 of these 2064 records. Histogram distributions of the SBP and
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DBP of these records are shown in Figure 3. In this study, the SBP and DBP were extracted
by an ABP delineator algorithm [20].
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Figure 3. Histogram distributions of SBP and DBP of the data set. This figure shows that the dataset
has a population with a large spectrum of blood pressure values. The used dataset can test the
model’s performance under different blood pressures. Note that SBP = Systolic blood pressure and
DBP = Diastolic blood pressure.

2.2. Preprocessing

• Detrending. Since the PPG can be easily corrupted by movement [21], it is necessary
to remove the trend in PPG signals. In this study, the results of the linear least-squares
fit to PPG were removed from PPG as trends.

• Scaling. The activation function of the last layer in the model architecture is tanh, so
the amplitude of the output should range from [−1, 1]. For this paper, all ABP signals
were divided by 200 to scale them in a range of [0, 1].

• Segmentation. After detrending and scaling, the PPG and ABP signals were divided
into segments of 8.192 s (including 1024 samples). The overlap between the two
consecutive segments was 75%. Due to the varying lengths of records in the dataset,
the number of segments generated by this step for each record may differ.

• Split training and test set. The segments generated by the segmentation step were
then split into training and test sets. The first 80% of the segments were defined as
the training set, and the last 20% were defined as the test set to generate a continuous
ABP signal.

2.3. Model Choice

As shown in Figure 4, the proposed network architecture consists of two U-Net blocks.
The method comprising two U-blocks has been proven to obtain better performance than
one U-block in the image analysis area [22,23].

“Conv” in Figure 4 denotes a one dimensional convolution layer. “Pooling” and
“Upsampling” stand for the average pooling layer and the up-sampling in the time direc-
tion by 2, respectively. “Tanh” and “LeakyReLU” refer to the activation functions of the
corresponding convolution layers. “BN” denotes a 1D batch normalization layer. The slope
of the leakyReLU activation was set to 0.1.
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Figure 4. Architecture of the proposed network. The architecture consists of two concatenated U-Net
architectures, the first acting as an encoder and the second as a decoder reconstructing ABP from
PPG. Due to the shape of the whole architecture, this neural network was named W-Net.

2.4. Restoring Amplitude of the ABP

The signal values of the output by the model were in the range of [0, 1]. This is
because the ABP in the training set had been scaled during the preprocessing step. This
step multiplied the output signal by 200 to restore the actual amplitude.

2.5. Stitching the Reconstruction of ABP Segments

The model’s output consisted of ABP segments with a length of 1024 samples with
75% overlap between the two consecutive segments. Therefore, we needed to stitch the
segments together to obtain a continuous predictive ABP signal. When the two segments
were stitched together, the last 75% of the ABP of the first segment was discarded, and the
second segment was placed behind the remaining segments. The stitched signal was then
used as the first signal and the next segment was stitched as the second segment. This step
was repeated until all segments of the record were stitched.

2.6. Training Options

The optimization method of this proposed model is the Adam optimizer. This model
was trained for 500 epochs with a batch size of 128. The learning rate was set to 0.001 for
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an initial value and decayed by 0.1. The loss function used in this study was defined as
follows: 

mse = 1
l ∑l

i=1

(
ABPre f (i)− ABPrec(i)

)2

r = ∑l
i=1(ABPre f (i)−ABPre f )∑l

i=1(ABPrec(i)−ABPrec)√
∑l

i=1(ABPre f (i)−ABPre f )
2
√

∑l
i=1(ABPrec(i)−ABPrec)

2

mal = max1≤i≤l

(
| ABPre f (i)− ABPrec(i) |

)
Loss = 0.05×mal + mse + (1− | r |),

(1)

where mse, r, and mal are mean squared error, Pearson’s correlation coefficient (r), and
maximal absolute loss (MAL), respectively. ABPref(i) and ABPrec(i) are the individual sample
points of the reference ABP and the reconstructed ABP indexed with i, respectively. The
variable l is the sample size of the reference ABP. The variables ABPre f and ABPrec are the
means of the sample values of the reference ABP and the reconstructed ABP, respectively.

The mean squared error and (r) were used to restrict the global similarity between
the reconstructed ABP and the reference ABP. The r was applied to measure the linear
correlation between the two variables [16]. The value of r was in the range of [−1, 1],
where ±1 indicates the strongest possible agreement and 0 indicates the strongest possible
disagreement. The MAL was used to punish the abnormal samples, which has already
been proven to improve the ABP-Net’s performance [15]. Since the maximum ABP signal
used in this study is 200 mmHg, the MAL was divided by 200 to scale it to [0, 1].

2.7. Performance Evaluation

Five measures were used to evaluate the performance of the reference ABP signal and
the reconstructed ABP in the proposed model: root mean squared error (rmse), Pearson’s
correlation coefficient (r), normalized dynamic time warping (DTW) distance, and mean
absolute error of SBP and DBP.

2.7.1. Root Mean Square Error (rmse)

In machine learning, rmse is commonly used to measure the model’s estimated and
observed values. The formula for rmse is as follows:

rmse =

√
1
l ∑l

i=1

(
ABPre f (i)− ABPrec(i)

)2
. (2)

2.7.2. Mean Absolute Error (MAE) of SBP and DBP

SBP and DBP are the main features of the ABP signal, so their accuracy is important
when evaluating the model’s performance. The ABP delineator may have errors when
extracting SBP and DBP. To decrease the error in calculating the MAE, we found the SBP in
the reconstructed ABP that corresponded to the SBP in the reference signal. That is, for each
SBP extracted from the reference ABP, we found one of the SBPs of the reconstructed ABP
that differed from its position by less than 10 sampling points and then defined it as the
corresponding SBP. If it was not found, this SBP point in the reference ABP was discarded.
Similarly, the DBP in the reconstructed ABP also corresponded to the DBP in the reference
ABP. Then, the MAE between the corresponding SBP and DBP was calculated as a measure
of similarity. The MAE of the SBP and DBP was defined as follows:

MAESBP =
1
n ∑l

i=1 | SBPre f (i)− SBPrec(i) |, (3)

MAEDBP =
1
n ∑l

i=1 | DBPre f (i)− DBPrec(i) |, (4)

where SBPref(i) and SBPrec(i) are the ith subjects of the average of the reconstructed and
reference SBPs, respectively. DBPref(i) and DBPrec(i) are the ith subject of the average of the
reconstructed and reference DBPs, respectively. The n stands for the number of SBPs and
DBPs.
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2.7.3. Normalized DTW Distance

To calculate the normalized DTW distance, it was first necessary to obtain the DTW
distance. DTW can be used to measure the similarity between two time-series with poten-
tially different velocities [17]. The reconstructed ABP signals might have had a small offset
from the reference ABP, and their similarity under the best matching conditions could be
assessed using DTW. The steps to calculate DTW were as follows:

• Create a N×N matrix. An element in the ith row and the jth column in the matrix is
the Euclidean distance between the ith sample point in the reconstruction ABP and jth

sample point in the reference ABP, which is defined as di j.
• Look for the optimal path to minimize the sum of d11 to dNN along this path. This path

is defined as the warping path, and the sum is the DTW distance.

The smaller the DTW distance, the more similar the two time series were. However, it
can easily be seen that the DTW distance increased as the time series continued. To better
evaluate the similarity of the two time series, in this study, the DTW distance was divided
by the sum of the lengths of the reference ABP and the reconstructed ABP for normalization.
The formula used was as follows:

d =
d

2N, (5)

where d is the DTW distance, d is the normalized DTW distance, and N is the length of
the reference ABP signal. The rmse, r, and d were used to measure the global similarity
between the reconstructed and reference ABPs. The MAE of SBP and DBP were used to
evaluate the main feature similarity.

3. Results

To better evaluate the model’s performance, three methods were used in this study.

• Method I. Using the W-Net architecture, the model’s input was only the PPG.
• Method II. Using the W-Net architecture, three signals were used for the inputs: the

PPG, the velocity of the PPG (VPG), and the acceleration of the PPG (APG). The VPG
and APG are the first and second deviations of the PPG signals, respectively. The
ABP-Net shows that using VPG and APG as the inputs can improve the performance
of the model. In this case, it was necessary to compare the model’s performance with
and without the VPG and APG signals as inputs. In this study, the deviation step was
defined as follows:

X
′
(i) =


X(2)− X(1), i = 1
1
2 (X(i + 1)− X(i− 1)), 1 ≤ i ≤ N − 1
X(N)− X(N − 1), i = N

, (6)

where X
′
(i) and X(i) denote the ith sample point of the raw and deviation signal, respectively,

and N is the length of the PPGs. Note that the VPG and APG were generated before the
segmentation and were segmented as the PPG simultaneously. The input demotion of the
model was 3 × 1024 when trained with the VPG and APG.

• Method III. Using the left half of the W-Net architecture, which was the same as
ABP-Net, the model inputs were the PPG, VPG, and APG. This method was used to
compare W-Net’s performance with that of the ABP-Net.

Table 1 shows the results of the three methods. The average of the rmse for all the
records in Method III was 4.873 mmHg. Whereas the averages of the rmse for all the records
in Methods I and II were 2.236 mmHg and 2.234 mmHg, respectively. Both were less than
half of that in method III. For the other measures, the results of Methods I and II were better
than those of Method III. In this case, the performance of the W-Net architecture was better
than that of the U-Net.
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Table 1. Comparison of the model’s performance in different settings. The rmse and r stand for the
root mean squared error and Pearson’s correlation coefficient, respectively, and MAESBP and MAEDBP

stand for the mean absolute error between the systolic and diastolic blood pressure, respectively. The
bold indicates the best performance in each evaluation metric. Note that PPG = Photoplethysmogram,
VPG = Velocity PPG, APG = Acceleration PPG, SBP = Systolic blood pressure, DBP = Diastolic blood
pressure, and DTW = Dynamic time warping.

Net
Architecture Inputs rmse (mmHg) MAESBP

(mmHg)
MAEDBP
(mmHg) Pearson’s r

Normalized
DTW

Distance (d)

Methods I W-net PPG 2.236 ± 1.551 2.602 ± 1.886 1.450 ± 1.330 0.995 ± 0.014 0.612 ± 0.270
Methods II W-net PPG + VPG + APG 2.234 ± 1.523 2.627 ± 2.035 1.567 ± 1.432 0.995 ± 0.013 0.616 ± 0.269
Methods III U-net PPG + VPG + APG 4.873 ± 2.357 3.248 ± 2.246 2.187 ± 1.859 0.974 ± 0.029 0.889 ± 0.403

For Methods I and II, Pearson’s r was on average 0.995, which means the reconstructed
ABPs were highly correlated with the reference ABPs. For the rmse and normalized DTW
distances, the results of Methods I and II were very close.

Figure 5 shows a demonstration of the reconstructed ABP waveform in Method I.
The PPG had a delay relative to the ABP. The model can learn this delay during training.
The Pearson’s r between the reconstructed ABP and reference ABP was 0.998. In this case,
the proposed model was well matched with the waveform of the reconstructed ABP that
matched the reference one. It should be noted that an arrhythmia occurs at 20–21 s, and the
predicted ABP can match these events.
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Figure 5. Demonstration of the reconstruction of the ABP waveform, where ‘r’ and ‘rmse’ stand
for the correlation coefficient and the relative mean squared error, respectively, and ‘MAESBP’ and
‘MAEDBP’ represent the mean absolute error of systolic and diastolic blood pressure, respectively.
Note that PPG = Photoplethysmogram, ABP = Arterial blood pressure, SBP = Systolic blood pressure,
and DBP = Diastolic blood pressure.

To better evaluate the similarity between the reconstructed and reference ABPs in the
nonlinear domain, the DTW was introduced. Figure 6 shows a segment of the optimal
DTW warping path. This segment has the same time window as Figure 5. The normalized
distance of this subject was 0.366 mmHg along the optimal warping path, which resembles
a straight line. This means that a small amount of warping was required to obtain the
optimal path, and there was a high degree of similarity between the two signals.
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time warping.

4. Discussion and Limitations

In recent years, numerous studies have shown that PPG signals can be used to assess
blood pressure values. These methods can be classified into two main categories. The first
involves obtaining some handcraft features (e.g., pulse wave velocity [24], pulse transit
time [25], and pulse arrival time [26]) from a single or multiple signals to estimate the values
of SBP, DBP, and mean arterial pressure (MAP). The other is the end-to-end prediction
of blood pressure based on deep learning technology [27,28]. An ABP signal contains
SBP, DBP, and other features such as a dicrotic notch and reflected wave. These features
also include information about the cardiovascular system. Therefore, reconstructing the
complete ABP waveform can provide more information about the cardiovascular system.

We proposed the use of the W-Net architecture to reconstruct ABP waveforms from
PPG signals. Table 2 shows a comparison between this method and those from other
research on topic-specific models. Compared to the other two models, our main advantage
is that our model can evaluate the global similarity between the reconstructed ABP and
the reference ABP. The similarity between systolic and diastolic blood pressure is crucial
for the model. However, for a time series, the similarity of local feature points does not
represent global similarity. Therefore, we introduced other metrics. Pearson’s r and rmse
were mainly used to evaluate the linear similarity between the reconstructed ABP and
the reference ABP. However, the pulses of PPG are later than those of ABP. Accordingly,
deep learning models need to learn this delay to obtain more similar signals. To evaluate
similarity in the presence of a delay, we introduced the normalized DTW distance. The
DTW can find the distance under the best match between two time series to better assess
similarity. The MAE of this paper is superior to those of the other two studies for both SBP
and DBP [13,14]. However, the MAE of the SBP and DBP were affected by the accuracy of
the feature extraction algorithm, which is one of the reasons why we introduced global
similarity. It is challenging to extract a dicrotic notch due to its morphology varying
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alongside the patient-specific underlying physiological and pathological conditions. This
paper did not check the consistency of the dicrotic notches and the reflection waves between
the reconstructed and reference ABP. However, the average Pearson’s r for 500 records
reached 0.995. A high value of the Pearson’s r indicates that the dicrotic notch and reflection
wave in the reconstructed ABP were highly similar to the reference ABP.

Table 2. Comparison of the performance of W-Net with those for existing methods in subject-specific
model. The ’NR’ stands for not reported. Note that PPG = Photoplethysmogram, ABP = Arterial
blood pressure, SBP = Systolic blood pressure, DBP = Diastolic blood pressure, and DTW = Dynamic
time warping.

Inputs MAESBP MAEDBP rmse Pearson’s r
Normalized

DTW
Distance (d)

This study PPG 2.602 ± 1.886 1.450 ± 1.330 2.236 ± 1.551 0.995 ± 0.014 0.612 ± 0.270
PPG + VPG + APG 2.627 ± 2.035 1.567 ± 1.432 2.234 ± 1.523 0.995 ± 0.013 0.616 ± 0.269

PPG2ABP PPG 5.73 ± 9.16 3.45 ± NR NR NR NR
ABP-Net PPG + VPG + APG 3.27 ± 3.92 1.90 ± 2.44 3.20 ± NR NR NR

A limitation of this paper is that we focus only on subject-specific models. One reason
for this is that different circulatory diseases may alter the shape of the ABP and PPG
waveforms. Another reason is that the time delay between PPG and ABP may differ for
different subjects. Applying the model to multiple subjects means that the model needs
to learn to distinguish between different shapes and delays in PPG and ABP, which is a
challenge for our model. In future work, we will continue to improve the model so that it
can be applied to multiple subjects. Another limitation of this study is that the algorithm
was developed to reconstruct an ECG without considering the extreme blood pressure
fluctuations. Blood pressure waveforms contain rhythmic or non-rhythmic fluctuations,
such as respiration, vasodilation, and contraction, reflecting the cardiovascular control
mechanisms [29]. A consideration of the fluctuations in ABP signals can provide a broader
description of cardiovascular regulation. One of our future works will involve checking
the consistency between the fluctuation in the reconstructed and the reference ABP signal.
The dataset we used in this study was compiled from the MIMIC II dataset. However, the
subject information has been removed, and we cannot obtain disease information for the
subject. Therefore, the proposed model was not tested against different disease conditions.
On the other hand, although the data set contains various types of ABP and PPG signals
in a morphology associated with a large spectrum of blood pressure values, the subjects’
health conditions were provided. Therefore, the model’s performance on PPG signals
collected from subjects with different arrhythmia conditions needs to be examined in future
work. Multiple publicly-available PPG datasets could be used to overcome age and gender
biases [30,31].

5. Conclusions

This paper proposed a deep neural network with a W-Net architecture to reconstruct
ABP signals using PPG. A Pearson correlation was added to the loss function and used
to evaluate the similarity between the reconstructed ABP signals and the reference signal.
The experimental results show that this model can reconstruct ABP signals that are highly
similar to the reference signals. Furthermore, compared with other models, the differences
between the key features of SBP, DBP, and the reference ABP and the reconstructed ABP
signal are minor. In the future, we will consider generalizing the model by applying it to
multiple people to improve its applicability.
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