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Abstract: The COVID-19 pandemic seems endless with the regular emergence of new variants.
Is the SARS-CoV-2 virus particularly evasive to the immune system, or is it merely disrupting
communication between the body and the brain, thus pre-empting homeostasis? Retrospective
analysis of the COVID-19 and AIDS pandemics, as well as prion disease, emphasizes the pivotal but
little-known role of the 10th cranial nerve in health. Considering neuroimmunometabolism from
the point of view of the vagus nerve, non-invasive bioengineering solutions aiming at monitoring
and stimulating the vagal tone are subsequently discussed as the next optimal and global preventive
treatments, far beyond pandemics.
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1. Introduction: Searching for a Single Anti-Infectious Solution

In the context of globalization, it is crucial to rapidly protect the world population
against new pathogens. Despite major advances in medical research, the last pandemic has
underscored the limits of our societies in overcoming atypical viruses, compelling us to use
ancestral methods such as lockdowns.

In the race against time during pandemics, two main strategies usually prevail [1]:
drug repurposing, and the development of novel therapies, including vaccines as a longer-
term solution. Both strategies are time-consuming, although unequally, because clinical
trial assessment is an unavoidably long process. Moreover, these strategies have to be
repeated for each specific pathogen involved—potentially even several times during the
same pandemic—due to the emergence of variants. Unfortunately, pandemic outbreaks
are meant to intensify over the years because of identified risk factors that are more or less
susceptible to human action, from the illegal wildlife trade to climate change [2]. In this
regard, the prospect of a unique, ready-to-use, therapeutic solution would be unhoped
but realistic, provided that the pathophysiology of the host defense is considered first
and foremost.

Effector-triggered immunity (ETI) is a conserved mechanism of pathogen sensing,
based on the detection of combinations of critical host molecules signaling the presence
of pathogens, subsequently activating innate immune signaling pathways and, ultimately,
driving inflammatory responses (see [3] for a review). Nevertheless, although cytokine
production is necessary to protect against pathogens, excessive systemic inflammation
can promote organ failure and death. Among others, neural mechanisms are deeply
involved in the control of immune responses at every level (i.e., local, systemic, and central
levels) [4]. Autonomic regulation is of particular interest because it allows a bidirectional
reflex regulation of systemic inflammation [5] thanks to the vagus nerve—the longest cranial
nerve—and its main neurotransmitter acetylcholine, most notably through a mechanism
called the “Cholinergic Anti-inflammatory Pathway (CAP)” [6]. Therefore, taking control
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over vagus-nerve-mediated homeostasis should turn out to be a single solution against
all pathogens.

This article aims at questioning the crucial role of the vagus nerve in pathogenic
invasion and neuroimmunometabolic dysfunction leading to excessive inflammation, from
the analysis of the last two (and ongoing) pandemics—namely, COVID-19 and AIDS—in
order to upgrade future therapeutic strategies worldwide.

2. Invasion of the Vagus Nerve by Pathogens Appears as a Common Key Step in Host
Defense in the Last Two Pandemics

Interestingly, SARS-CoV-2 and HIV-1 do share similarities [7,8]. Indeed, despite
engaging different entry receptors, target cells, and transcription and downstream processes,
HIV-1 and SARS-CoV-2 follow similar principles of class-I-glycoprotein-mediated viral
fusion and entry. The glycoproteins of both SARS-CoV-2 and HIV-1, named spike and
Env, respectively, are composed of an N-terminal attachment domain (S1 and gp120,
respectively) mediating receptor binding, and a C-terminal fusion domain. Thanks to
this glycoprotein similarity, shared with neurotoxins, HIV-1 and SARS-CoV-2 can bind to
nicotinic acetylcholine receptors (nAChRs) [9–13]. Thus, considering the various subunit
assemblies of this pentameric acetylcholine receptor [14] for a review, nAChRs have been
hypothesized to be co-receptors for SARS-CoV-2 [9] as well as for HIV-1 [15–17].

The nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the
nervous and immune systems (see [18] for a review), especially in cholinergic neurons.
The vagus nerve endings (parasympathetic 10th cranial nerve) largely contribute to the
cholinergic control of inflammation [5,6]. nAChRs are expressed in the nodose ganglia of
rodents [19], the latter gathering the cell bodies of vagal afferents.

As the N-terminal binding subdomain of many viruses and of neurotoxins facilitates
internalization of the virus [20], after binding to nAChRs, SARS-CoV-2 and HIV-1 could
enter the vagus nerve, wherein they induce vagal dysfunctions [21–27] before finally
invading the brain [28,29]. As a matter of fact, the vagus nerve is a common way for
various pathogens to invade the brain [30]. For instance, in prion disease, PrPC was shown
to binds to nAChRs [31] to invade the vagus nerve [32] and, subsequently, the brain.

As SARS-CoV-2 has 2–3 times more spike proteins per virus than HIV-1 [8], and as
the vagally supplied entrance organs are more numerous in COVID-19 than in AIDS (nose,
mouth, lungs, and guts versus urogenital tract, respectively), the invasion of the vagus nerve
by SARS-CoV-2 is likely to be more extensive in COVID-19. Adverse outcomes (e.g., death)
may not come from the infection itself, but may depend on the importance of vagus nerve
invasion and subsequent incapacitation to restore homeostasis. Indeed, the decreased vagal
tone, reflected by heart rate variability (HRV) measures—one of the best prognosis factors in
COVID-19 [33–35]—has also been correlated with HIV outcomes [36,37] and, more broadly,
with the outcomes of bacterial and fungal infections in mice [38]. Moreover, the epigenetic
marker miR 146a-5p has also been correlated with both COVID-19 prognosis [39–42] and
HIV progression [43,44]. Interestingly, miR 146a-5p is also considered to be a unique
biomarker of virus- and prion-induced inflammatory neurodegeneration [45]. All of these
arguments support the idea that the prognosis of both COVID-19 and AIDS depends on
the ultimate damage to the brain [46], after vagus nerve invasion and impairment by
various pathogens.

3. The Vagus Nerve Seems Essential to Neuroimmunometabolism and Health

In fact, the underlying rationale for the pivotal role of the vagus nerve in maintaining
health concerns its role in pathogens’ invasion of the host. As supported by anatomi-
cal and physiological bases, the vagus nerve has the potential to play a major role in
neuroimmunometabolism—the emerging interface between immunometabolic regulation
of the nervous system and neuroinflammation [47].

The vagus nerve can allow direct regulation of energy supply to the brain, because
it anatomically connects the gut (i.e., the site of the uptake of nutrients) and the diges-
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tive organs to the brainstem [48]. Thus, focused ultrasound stimulation of three distinct
vagus-nerve-supplied organs (i.e., the liver, pancreas, and intestine) was able to prevent
hyperglycemia following endotoxin exposure in an experimental model [49]. Moreover,
among endocrine and immune communication pathways, the vagus nerve appears as
the “fastest and most direct way for the microbiota to influence the brain” (see [50] for
a review).

Remarkably, the constant bidirectional communication within the microbiota–gut–
brain axis, mediated by the vagus nerve, is essential for maintaining homeostasis [51].
Indeed, several neuronal populations controlling feeding, showing unique transcriptional
and chromatin accessibility landscapes, were recently identified in the brainstem’s dorsal
vagal complex (DVC) [52]. In addition, the vagus nerve coordinates the peripheral (via
the cholinergic anti-inflammatory pathway) and central (via the hypothalamic–pituitary
axis) stress responses, thereby modulating neuroimmune responses globally to restore
homeostasis [53].

As a consequence, vagus nerve stimulation is a powerful anti-inflammatory tool (see [54]
for a recent review), provided the metabolic needs are met. Today, the anti-inflammatory
properties of drugs are even assessed according to their vagus-nerve-dependent effects [55].
Nevertheless, upon infection, the heightened activity of the immune system requires an
increased rate of metabolism and energy expenditure. In case of insufficient disposable
energy, excessive and damaging host inflammation occurs, leading to cytokine storm or
acute respiratory distress syndrome (ARDS)—both seen in critical COVID-19 patients [56].
Indeed, some cases of ARDS (non-mediated by SARS-CoV-2 infection) were shown to be
controlled by n-3 fatty acids, possibly through their metabolism to specialized pro-resolving
mediators (SPMs), in both experimental models and clinical trials [56]. Interestingly, this
new superfamily of lipidic mediators (SPMs) involved in the resolution of inflamma-
tion (including the lipoxins, resolvins, protectins, and maresins) was recently shown to
be enhanced in vitro by human vagus nerve electrical stimulation [57]. Likewise, long-
COVID patients present with persistent inflammation, decreased glucose metabolism, and
autonomic dysregulation involving the vagus nerve [58], reminiscent of chronic inflamma-
tion [26], vagal dysfunction [26], and the changes in glucose metabolic status of T cells and
monocytes [59,60] in HIV-infected individuals.

The crosstalk between glucose metabolism status and the anti-inflammatory power
of the vagus nerve could be mediated by neuropeptides [61]—in particular by vasoactive
intestinal peptide (VIP), along with its receptors and downstream pathway (see [62] for
a recent review). Indeed, VIP is released upon vagus nerve stimulation (VNS) [63], is
synthesized in the gut, the brain, and the vagus nerve [64], and can be co-transmitted with
acetylcholine—most notably in exocrine glands [65]. Moreover, VIP is considered to be a
key regulator of the energy metabolism of glia [66], a secretagogue in the pituitary [67] and
adrenal medullae [68], and a T-lymphocyte immunoregulator [69].

Lastly, vagus-nerve-mediated regulation of neuroimmunometabolism seems to make
use of epigenetic mechanisms—most notably of microRNAs (miRNAs) [70]. unsurprisingly,
the much-vaunted miR146a-5p, correlated with HRV and COVID-19 outcomes, has also
been involved in metabolic memory [71]. The last generation of optogenetic tools [72]
are likely to give valuable insights into the vagus nerve’s physiology, allowing us to
finally understand the characteristics of vagus nerve signals transferred throughout the
body. The differences in targeting either the vagal efferent or afferent fibers need to be
precise [73], as along with selective vagus neuromodulation [74]. Then, new preventive
therapeutic strategies should target global neuroimmunometabolic homeostasis, ideally
through genetically guided manipulation of select pools of nerve fibers [48] and minimally
invasive vagus nerve stimulation modalities.

4. Discussion: Novel Therapies Targeting Vagus Nerve Stimulation for Pandemics

Although various therapeutic approaches have been developed in light of the AIDS
and COVID-19 pandemics, remarkably, none (neither antiviral medications nor vaccines)
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has eradicated infection so far. Conversely, retrograde axonal transport of pathogens—most
notably through the vagus nerve—has been suggested for more than 10 years in order to
protect against neurotropic viruses [75]. Likewise, the efficiency of VNS against infection
has been assessed in various animal models for more than 20 years [76] and was also
suggested as a potential adjunct solution against infection in humans 15 years ago [77], as
well as for treating depression induced by HIV [78] and COVID-19 [79]. Nevertheless, no
clinical trials have ever been launched for anti-infectious purposes until 2020, during the
first wave of the COVID-19 pandemic.

Three different articles [80–82], using three different non-invasive VNS techniques, started
randomized controlled trials in 2020 in France (SOS-COVID-19) and Spain (SAVIOR I), and in
2021 in Austria, respectively, enrolling stage 3 hospitalized COVID-19 patients requiring
oxygen supply. Rangon et al. [80] treated the patients with four semi-permanent needles
on the conchae of both outer ears (without concurrent electrical stimulation) to stimulate
the auricular branch of the vagus nerve, once within the first 3 days after admission.
Tornero el al. [81] used the GammaCoreR device to provide two consecutive 2-min doses
of cervical non-invasive VNS, three times daily (5 kHz sine wave burst lasting for 1 ms,
repeated once every 40 ms for 2 min per stimulation). Seitz et al. [82] used percutaneous
auricular VNS via three miniature needle electrodes (AuristimR device) inserted into vagally
supplied regions of one auricle. The device delivered intermittent electrical stimulation
(3 h on/3 h off) with a 1 Hz frequency, 0.5–0.9 mA peak current (1.5 mA maximum), 1 ms
pulse width, and 3.8 V fixed amplitude. No study at all was able to show a significant
improvement in the clinical outcomes of the COVID-19-positive inpatients (clinical status
assessed either too early (14 [80] and 5 days [81] after the first VNS session), or not at all [82]),
but a good tolerance of the neuromodulation treatments was confirmed. Interestingly, two
studies reported a significant improvement in the biological inflammation status of the
patients (regarding C-reactive protein and procalcitonin levels [81]; or C-reactive protein,
TNF alpha, DDIMER, and IL-10 levels [82]).

More clinical trials are definitely needed to validate the efficiency of non-invasive VNS
in sepsis, even if data from animal studies are very promising [83], given the complexity
of the levels of regulation and the diversity of expression of the cholinergic system. For
instance, in addition to the impact of smoking status in humans, CHRFAM7A is a unique
human gene (expressed neither in primates nor rodents) that encodes a dominant negative
inhibitor of the α7 nicotinic acetylcholine receptor, making it difficult to infer results in
humans from animal models’ data [84]. The International Consortium on Neuromodulation
for COVID-19 (ICNC, www.covidneuromod.org, accessed on 15 May 2020) was created
during spring 2020 in order to support the rapid deployment and clinical validation of
neuromodulation technologies—especially VNS devices—through multiple modalities,
including electricity (transcutaneous cervical or auricular stimulation), ultrasound (percu-
taneous needle electrode close to the cervical vagus nerve), and focused ultrasound (spleen,
liver) (see [85] for a review). Because of their absence of side effects, non-invasive solutions
such as monitoring and restoring the vagal tone should also be systematically assessed
in clinical trials during epidemics—for instance, in the recent acute and severe hepatitis
of unknown etiology in children, probably involving an adenovirus [86], or in case of a
monkeypox epidemic [87].

The era of physiolomics has come [88]. HRV monitoring using commercial wear-
able devices or apps as sensitive but non-specific health indicators (as proposed during
COVID-19 [89,90]) could be followed by a more specific diagnosis through blood or salivary
microRNAs [91] and analyzed using machine learning systems in order to track, diagnose,
and date infection [92]. For instance, a decrease in miR146a-5p may indicate HIV infec-
tion [93] and could serve as both a diagnostic and prognostic factor in COVID-19 [36,37].
Consequently, HRV monitoring is undoubtedly worth including in smartphone-based or
other expert systems for disease prediction at early stages, or for outcome prediction, which
is not yet performed routinely [94–96].

www.covidneuromod.org
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Therefore, medical advances during the COVID-19 pandemic could incidentally im-
prove general health worldwide. Very interestingly, miR146a-5p is also involved in aging,
cardiovascular and metabolic diseases, cancers, autoimmune diseases such as rheumatoid
arthritis [97] or multiple sclerosis [98], and neurodegenerative diseases [99]. Likewise,
HRV is also a prognostic factor in several non-infectious diseases [100]. Using affordable
non-invasive vagus nerve monitoring could be helpful for early diagnosis (as recently
suggested for type 2 diabetes mellitus [101]).

Concurrently, VNS is one of the therapeutic options in many inflammatory diseases,
providing good outcomes in rheumatoid arthritis (RA), for instance. In 2016, Koopman et al.
demonstrated that in RA patients, an implantable vagus-nerve-stimulating device signif-
icantly inhibited tumor necrosis factor production for up to 84 days and was able to
significantly improve the clinical disease severity [102]. VNS has mainly been a last-resort
therapeutic option so far, e.g., in refractory epilepsy. Despite that, after two years of invasive
VNS, roughly half of patients experienced at least 50% reduced seizure frequency [103].
Moreover, in a recent pilot study, non-invasive transcutaneous cervical VNS was delivered
to 36 patients with RA of either high or low disease activity [104]. Even in the 16 patients
with high disease activity, non-invasive VNS was able to reduce the disease activity score,
C-reactive protein, and interferon gamma levels after 4 days.

As diseases are already or soon to be diagnosed earlier, minimally invasive VNS
modalities should also be proposed as a first-line treatment in several indications [54,105].
Remarkably, transcutaneous auricular VNS was recently advocated for the treatment of
endometriosis [106], which is especially interesting since the diagnosis of endometriosis
has become available with a simple salivary test [107].

As many common (e.g., type 2diabetes mellitus) [108], uncommon (e.g., narcolepsy [109]),
and emerging common disorders (e.g., autism [110], long-COVID syndrome [111]) are
immune-mediated, complete understanding of the vagus nerve’s role is likely to become
an all-in-one “Holy Grail” for the prevention, treatment, and prognosis of a large spectrum
of disorders. Notably, chronic fatigue syndrome [112]—still a challenge for physicians—
is characterized by debilitating fatigue despite rest without validated biomarkers [113].
Chronic fatigue syndrome has been presumably linked for years to a nonspecific infection
of the vagus nerve by pathogens [114], to finally be recognized as the major feature of
post-acute sequelae of COVID-19 [111]. A recent double-blind, sham-controlled pilot study
assessed the impact of a four-week at-home treatment with self-administered electrical
transcutaneous auricular vagus nerve stimulation (Soterix Medical, Inc. (Woodbridge, New
Jersey, United States); 25 Hz, 500 µs pulse width, tonically on for 1 h, twice daily, 6 days per
week, twice individual perceptual threshold intensity) to manage long-COVID symptoms.
This VNS treatment was not only safe and highly compliance-rated, but also revealed inter-
esting trends in reducing mental fatigue scores [115]. Therefore, transcutaneous auricular
VNS appears to be a promising therapeutic option to manage chronic fatigue syndrome.

5. Conclusions: The Pivotal Role of the Vagus Nerve, beyond Pandemics

The analysis of the last two pandemics underlines the central role of the vagus nerve in
maintaining homeostasis, most notably via regulation of neuroimmunometabolism. Many
viruses or pathogens invade and hijack the vagus nerve, presumably after co-binding to
nicotinic acetylcholine receptors, in order to enter the brain, resulting in brain lesions and
poor outcomes. The rapidity and the scale of SARS-CoV-2 infection in particular urge the
repurposing of drugs and/or therapeutic solutions.

The efficiency of non-invasive vagus nerve stimulation—either cervical or auricular—
definitely ought to be assessed in larger clinical trials involving severely infected patients,
in order to be able to react faster in the event of another pandemic or beyond. Indeed, the
impact of such clinical trials is also likely to be useful for the prevention and treatment of
diseases that have been poorly managed so far. “What doesn’t kill us makes us stronger. . . ”.
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