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Abstract: Tissue engineering technology has been advanced and applied to various applications in
the past few years. The presence of a bioreactor is one key factor to the successful development of
advanced tissue engineering products. In this work, we developed a programmable bioreactor with
a controlling program that allowed each component to be automatically operated. Moreover, we
developed a new pH sensor for non-contact and real-time pH monitoring. We demonstrated that
the prototype bioreactor could facilitate automatic cell culture of L929 cells. It showed that the cell
viability was greater than 80% and cell proliferation was enhanced compared to that of the control
obtained by a conventional cell culture procedure. This result suggests the possibility of a system
that could be potentially useful for medical and industrial applications, including cultured meat,
drug testing, etc.

Keywords: bioreactor; tissue engineering; automation; sensor

1. Introduction

Tissue engineering has been developed with the aim of increasing the opportunity of
substituted tissue production for restoring or regenerating tissue and organ function. In
recent years, development in tissue engineering technology has grown rapidly, and it has
been widely applied to various fields apart from the medical area, such as organs-on-chip,
bioelectronic devices, cultured meat, etc. [1,2]. The production of tissue engineering mainly
relies on the cell culture process. Therefore, quality control of cell culture conditions is
essential for tissue engineering research [3]. The critical factors for mammalian cell culture
include temperature, pH, O2 and CO2 concentrations, humidity, nutrition and growth
factor content, etc. [4–6]. In a laboratory, the cell culture process is time-consuming and
laborious. Therefore, in order to increase cell production capacity and reduce human
error, an automatic and programmable bioreactor for tissue engineering equipped with cell
condition monitoring could reduce time and workload for researchers. Also, the monitoring
system could provide useful data for profiling cell growth and enhancing the productivity
of the process [7,8].

Nowadays, automation of analytical systems has been utilized in many areas, such
as in clinical, pharmaceutical, and biomedical applications [9–11]. The automatic system
has played an important role in both qualitative and quantitative analysis. Various ana-
lytical techniques have been employed (for example, electrochemical, optical, and mass
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spectroscopic methods). The robotic automation could offer high precision and high system
throughput while reducing analysis costs. A study of integrated measurement tools or
sensors for cell metabolism monitoring through cell culture procedures has been widely
of interest for a decade. There are several types of sensors integrated into general cell
cultivation, bioreactors, and labs on a chip, such as oxygen sensors, pH sensors, and
glucose-lactate biosensors [12]. The role of a cell culture monitoring tool indicates the
viability of the cells, the consumption of nutrients, the nutrient yield in fermentation media,
and the effect of drugs [13–15].

There have been several lab-on-chip developments for cell culture and other biomedi-
cal applications. In organ-on-chip, the microfluidic platforms allowed co-culture of different
cells to mimic the organ systems for drug testing [16]. Many studies involved real-time
monitoring of cell activity and gene expression [17–19]. They provided a useful platform for
cellular investigation. However, the number of cells on the lab-on-chip is limited and the re-
sults from microscopic experiments could be different, so scale-up could be challenging [20].
Moreover, there are limitations concerning the complications and availability of fabrication
technology for general research laboratories.

In this work, an automatic programmable bioreactor with a pH monitoring system was
developed. All system components were made in-house with computer-aided design (CAD)
and 3D-printing techniques. The bioreactor consists of cell culture chamber, syringe pump,
selector, pH sensor, and a controlling program. The developed system was customizable
for different cell types, and the program was customizable for different culture conditions.

Two types of 3D printing techniques were used. The main 3D printing technology
used is liquid crystal display (LCD)-based stereolithography (SLA) that is based on pho-
topolymerization of monomer and oligomer resin layer by layer [21]. This 3D printing
technique has the advantage of high-resolution printing, but the size of printing object is
limited by the LCD size, so it was chosen for making small and detailed components such
as selector and pH sensor case. On the other hand, fused deposition modeling (FDM) 3D
printing was employed for large and less-detailed components such as a syringe pump.

The obtained data from the pH monitoring system could also be tracked for inspec-
tion. The developed system was demonstrated with cell culture of the L929 cell line in
comparison with the conventional cell culture procedure.

2. Materials and Methods
2.1. Design and Construction of Bioreactor

The bioreactor consists of cell culture chamber, syringe pump, selector, pH sensor and
controlling program as shown in Figure 1. The hardware parts were designed using a CAD
program (Fusion 360, Autodesk Incorporation, San Rafael, CA, USA). The details of each
component were described here.

2.1.1. Cell Culture Chamber

A cell culture chamber was designed to accommodate one standard cell culture well
plate size of 128 mm × 86 mm (length × width). For a prototype, a 6-well plate was
used as a model, as shown in Figure 2. The main body and lid of the chamber were
made of transparent acrylic with a thickness of 5 mm that was sterilized with ethanol and
UV radiation before use. Each well was covered with a piece of polydimethylsiloxane
(PDMS; Dow Inc., Midland, MI, USA) and a flow channel was connected to a selector
outside of the chamber via a luer connector. The cell culture chamber is also equipped with
6 micro-stirrers that can be used for suspension cell culture.
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Figure 1. A bioreactor with a pH monitoring system: (a) a schematic diagram showing components
of the bioreactor; (b) a photo of the bioreactor inside an incubator.

2.1.2. Syringe Pump

A syringe pump consists of a stepper motor and a syringe holder. A stepper motor
(NEMA17, Shenzhen, China) was employed, as shown in Figure 3. A syringe holder
was constructed using fused deposition modeling (FDM) 3D printing (in-house) with
acrylonitrile butadiene styrene (ABS) filament (eeSun, Shenzhen, China). The syringe
pump was designed to house a disposable sterile 10-mL syringe (Nipro (Thailand) Co Ltd.,
Ayutthaya, Thailand) that connected with a female luer adaptor and a silicone tubing (inner
diameter of 2 mm, Runze Fluid, Nanjing, China). The syringe pump was placed in a clear
acrylic box and sterilized with ethanol and UV radiation before use.
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2.1.3. Selector

A selector acts as a media flow switch between a syringe pump, a cell culture well,
a media reservoir, and sensors. It has 3 servo motors (MG996R, Shenzhen, China) that
rotate to open and close the desired channel as illustrated in Figure 4. The rotating parts
and flow channels were constructed using LCD-based 3D printing (ANYCUBIC Photon
Mono X, Hong Kong Anycubic Technology, Hong Kong, China) with acrylic-based resin
(eResin PLA biophotopolymer resin, eSun, Shenzhen, China). The outlet was fitted with
PTFE flangeless fittings and TPFE tubing (inner diameter of 1 mm, Runze fluid, Nanjing,
China). The selector was placed in a clear acrylic box and sterilized with ethanol and UV
radiation before use.
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Figure 4. Selector: (a) a CAD file of a selector design; (b) a photo of a selector with 3D-printed channels.

2.1.4. pH Monitoring System

An on-line pH monitoring system was based on colorimetric measurement of cell cul-
ture media containing phenol red indicator. As shown in Figure 5, a pH monitoring system
consists of an LED light source, an ambient light sensor (TEMT 6000, Vishay Intertechnol-
ogy, Malvern, PA, USA), and a tubing holder that allows for non-contact measurement.
The tubing holder is designed to fit a PTFE tube and was constructed using LCD-based
3D printing (ANYCUBIC Photon Mono X, Hong Kong Anycubic Technology, China) with
opaque acrylic-based resin (eResin PLA biophotopolymer resin, eSun, Shenzhen, China).
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2.1.5. Controlling Program

The bioreactor is controlled by simple software as shown in Figure 6 and Table 1. We
developed software for controlling syringe pump, which can set the volume of culture
media fed into and out of the culture chamber. For the selector, the software can control
the selector to select the channel of each culture well, fresh media, and waste. Also, this
software can control the stirrer of each well plate for mixing solution in each well. The
pH monitoring system readings are recorded and a graph was plotted on the graphic
user interface (GUI). In addition, we can write the preset script of the culture condition
in advance and this software can control the bioreactor automatically. The GUI of this
software is shown in Figure 7.
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Table 1. List of commands for controlling bioreactor.

Command Value Description

Loop number Set number of scripts to repeat
Vol number Set volume of syringe pump to fill or drain (mL)

Goto number Jump to a line number that set of the script
Wait hh:mm:ss Set delay time
Dir F or B Set syringe pump direction (Forward or Backward)

Ch Selector channel
(A or B or C or else) Select selector channel

Stir Stirrer channel
(A or B or C or else) ON/OFF selected stirrer

Start Starting syringe pump
Msgbox Text Displays the specified text in the message box
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2.2. Bioreactor Setup

Before using the developed bioreactor, a syringe pump was calibrated by weighting
water flew out at different flow rates using a four-digit balance. A pH monitoring system
was calibrated using culture media with different pH values, which were predetermined
with a laboratory pH meter.

A set of PDMS lids, containers for fresh media and waste, and silicone tubing were
sterilized using an autoclave beforehand.

All components except a microcontroller and a notebook with a controlling program
were sterilized with ethanol and then UV radiation for 15 min in a biosafety cabinet before
use. A 6-well plate containing cell culture was placed in a chamber and a media reservoir
and waste container were connected to a selector in a biosafety cabinet. A bioreactor with
cell culture was then placed in an incubator.

2.3. Bioreactor Performance Test

The performance of the developed bioreactor was tested by measuring the cell viability
and cell proliferation rate of cells cultured in the bioreactor compared with that of a
conventional cell culture procedure. A mouse fibroblast cell line (L929: NCTC clone 929,
JCRB cell bank, Osaka, Japan) was used as a model for this test. The cells were cultured in
Dulbecco’s modified Eagle medium (DMEM, Thermo Fisher Scientific, Waltham, MA, USA)
with 10% fetal bovine serum (FBS, Thermo Fisher Scientific, USA) and 1% antibiotic-
antimycotic (100X, Thermo Fisher Scientific, USA).

2.3.1. Cell Viability Testing

The L929 cells were seeded in a 6-well plate at 1 × 105 cells per well. The well plate
was then placed in the bioreactor and was incubated at 37 ◦C with 5% CO2 and a humidified
atmosphere for 48 h. The control group was place in the same incubator. The cell viability
was measured using an MTT assay [22].
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2.3.2. Cell Proliferation Assay

The L929 cells were seeded in a 6-well plate at 7 × 104 cells per well with 5 mL of
complete media and then cultured automatically in the bioreactor for 72 h using a pre-set
program where 2 mL of cultured media was disposed of and refilled every 6 h. At 24 h
and 72 h, the cells were trypsinized using 0.25% trypsin-EDTA solution (Thermo Fisher
Scientific, USA) and the number of cells was counted with an automated cell counter
(Countess II, Thermo Fisher Scientific, USA). The obtained proliferation rate was compared
to that obtained from conventional cell culture with the same starting cell numbers.

2.4. pH Monitoring System Test

The pH monitoring system was tested during the incubation of L929 cells for 48 h.
The program was set to refresh 2 mL of cell culture media every 6 h.

3. Results
3.1. Syringe Pump Calibration

A calibration of the syringe pump with a 10 mL syringe was performed. The different
flow rates were set for one minute and the flow out water was collected and precisely
weighted. In Figure 8, the calibration plot showed that the mass of flow out water is
correlated with the set flow rate. This result indicates that the flow rate of the calibrated
syringe pump was accurate.
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3.2. pH Calibration

The pH monitoring system was calibrated with DMEM media, which is used for
the culture of the L929 cell model. The media contains a phenol red indicator that
changes color in the range of 6.8–8.2 from yellow to pink, respectively, as shown in
Figure 9a. An increase in the pH of the media caused an increase in the red color in-
tensity, which absorbed more green light and will be detected by the sensor. Figure 9b
shows a calibration plot obtained from DMEM at a pH range between 6.90 and 7.83;
green intensity = −57.7 (pH) + 1032, n = 3.
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3.3. Cell Viability—MTT Assay

The cell viability of L929 cells was measured after incubation in the developed biore-
actor for 48 h. Figure 10a shows that the cell viability of the L929 cell in the bioreactor was
greater than 80% when compared to the control obtained through conventional cell culture.
In addition, no morphologic change was observed, as shown in Figure 10b. These results
suggest that the developed bioreactor including setup conditions and sterilization process
did not cause a cytotoxic effect on the cells.
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3.4. Cell Proliferation Assay

An automatic cell culture in the developed bioreactor was demonstrated. Figure 11
shows cell proliferation from L929 cells cultured in the bioreactor with the program to
refresh the media every 6 h automatically compared to that cultured parallelly in a conven-
tional manner (no media changed). It was found that the number of cells in the bioreactor
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increased significantly at 72 h in comparison with the number of cells in the control plate.
The results suggested that the automation of regular partial media change could help
enhance the cell growth in the bioreactor.
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Figure 11. Cell proliferation of L929 incubated in the developed bioreactor. The number of cells
was counted at 24 and 72 h after incubation and the data were analyzed by two-way ANOVA and
post-hoc using R program. * Statistical significance was set at p < 0.05, n = 3.

3.5. pH Monitoring Results

The pH measurement of the cultured media was displayed in real-time and recorded
as .CSV file for further analysis. The pH was measured by the pH sensor located on the
channel before the waste container, indicating the pH of the used media. In general, acidic
conditions could inhibit cell growth. A change in pH could reflect the cell condition, such
as a lower pH suggesting cell death or bacterial contamination.

Figure 12 shows a plot of the pH change with time during a 48-h cell culture of
L929 cells in the developed bioreactor. It was found that a program set for regular media
change was able to maintain the pH of the cell culture within 7.4 ± 0.2, which is suitable
for fibroblast cell line [23]. This could be related to the higher cell proliferation rate in the
bioreactor observed in Figure 11.
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4. Discussion

In this work, we developed an automatic programmable bioreactor with a pH mon-
itoring system that was suitable for tissue engineering cell culture. This bioreactor’s
components can be controlled via programable script to the desired cell culture condition,
and this system can operate automatically. This system helps to reduce time and labor
compared to manual cell culture.

For pH sensor, we applied a colorimetry technique to monitor the pH of the cell culture
on-line. This sensor was compact and easy to use. In addition, non-contact measurement
has an advantage in real-time monitoring, and there is no contamination to cell culture.
The data were collected and can be analyzed for cell culture condition scripts next time.
In future work, we plan to use machine learning methods, for example, the deep learning
method [24,25], to optimize and find the suitable parameters in controlling bioreactors in
order to enhance the productivity of the cell culture in the bioreactor.

Furthermore, this prototype can be applied to culture cells for a long period to study
cell differentiation and tissue formation, which could be potentially useful for medical
and industrial applications, including cultured meat, drug testing, etc. For example, this
system could be used to study muscle cell differentiation and determine optimal conditions
for cultured meat production. For drug testing, the bioreactor could be programmed
to vary the dose or frequency of the treatment. In the future, an additional analytical
system could be added to the bioreactor to detect disease-specific biomarkers or to monitor
other biomolecules such as glucose and lactate dehydrogenase, which would indicate
cells’ activity.
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