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Abstract: Linking community composition and ecosystem function via the cultivation-independent
analysis of marker genes, e.g., the 16S rRNA gene, is a staple of microbial ecology and dependent
disciplines. The certainty of results, independent of the bioinformatic handling, is imperative for any
advances made within the field. In this work, thermophilic anaerobic co-digestion experimental data,
together with primary and waste-activated sludge prokaryotic community data, were analyzed with
two pipelines that apply different principles when dealing with technical, sequencing, and PCR biases.
One pipeline (VSEARCH) employs clustering methods, generating individual operational taxonomic
units (OTUs), while the other (DADA2) is based on sequencing error correction algorithms and
generates exact amplicon sequence variants (ASVs). The outcomes of both pipelines were compared
within the framework of ecological-driven data analysis. Both pipelines provided comparable results
that would generally allow for the same interpretations. Yet, the two approaches also delivered
community compositions that differed between 6.75% and 10.81% between pipelines. Inconsistencies
were also observed linked to biologically driven variability in the samples, which affected the
two pipelines differently. These pipeline-dependent differences in taxonomic assignment could
lead to different conclusions and interfere with any downstream analysis made for such mis- or
not-identified species, e.g., network analysis or predictions of their respective ecosystem service.

Keywords: OTU; ASV; Illumina; pipelines; bioinformatics; wastewater treatment; microbiome;
sequence processing; sequence data handling; microbial community composition

1. Introduction

The most important tool in a microbiologist’s toolbox for unraveling the composition,
and per proxy functioning, of microbial ecosystems today is the analysis of the 16S riboso-
mal RNA gene via next-generation sequencing (NGS) methods. As only a small fraction of
the microbiome is accessible for cultivation, cultivation-independent methods are obliga-
tory to identify the full range of organisms involved in various microbe-driven ecosystem
services [1–3]. Using the 16S/18S ribosomal RNA gene as a phylogenetic marker has, with
ongoing validation and improvement [4–8], been at the center of such efforts over the past
decades. Its suitability for this purpose lies in its conserved function, omnipresence in all
three domains of life, and the contained variable and conserved regions. Major drawbacks
of NGS methods are typically short fragment lengths and sequencing-technology-related
technical artifacts, which often accumulate toward the end of a read [9–11]. Such problems
may often be mitigated by the choice of region and increased overlap. Yet, doing so further
reduces the output fragment length, and consequently decreases taxonomic resolution.
NGS methods, in a historical compromise to those technological restrictions [4], typically
only look at small but highly variable regions of the 16S rRNA gene to assess taxonomic
relationships. Among those, the V3–V4 region is probably the most frequently used [12–15].
However, the above-mentioned drawbacks fall far short of the benefits that NGS methods
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provide; they still need to be addressed appropriately. In the past, this has been carried out
by quality filtering and averaging them out via sequence-clustering at a similarity thresh-
old [16–18]. The resulting consensus sequences are referred to as operational taxonomic
units (OTUs). Said threshold is typically set at 97% identity, with the OTU representing
a consensus sequence at the respective centroid of the cluster. The inherent problem is
that these OTUs are internally generated and analysis-specific. Thus, there is no direct
comparability given with other studies, and each comparison has to be made indirectly
via cross-referencing with databases such as Greengenes or SILVA [5,19]. This, in turn, has
to be performed under the assumption that both OTUs, i.e., both 97% sequence similarity
threshold centroids, accurately represent the organism present in the respective sample.
This typically limits comparisons to be made at the Genus level at best.

Recent alternative analysis pathways seek to incorporate sequencing error profiles
in order to compute algorithms that correct these technical artifacts and revert them into
exact amplicon sequence variants (ASVs). These claim to be accurate up to a resolution of
single-base transitions and, instead of short-hands (OTU), generate actual sequences (ASV)
that are directly comparable across studies [20,21]. Their contra-point is a limited capability
to deal with small or missing overlap regions, and an inability to deal with undefined bases
(i.e., N’s), which is less of a problem for the OTU approach. Additionally, ASVs are also
less widely accepted and used, which may partially be linked to them being less easily
incorporated into text, given the name may be as long as a 300 bp sequence instead of
a three-letter word and a three-digit number [22,23]. However, simplifying and using a
short-hand for an ASV would somehow equally distort its original intent, while it may still
be necessary for publication purposes. On the plus side, such newer approaches also come
with a greatly reduced need for computation power and a much-improved ease of access
compared with the more hands-on and individualized pipelines. However, this might also
be a slightly double-edged blade, as it includes a potential for user- and input-defined
biases or errors to be more frequent, and they potentially go unnoticed altogether.

Additional recent work has shown that individual pipelines themselves may be biased
toward certain phyla [15,21]. This stands in harsh contrast to the attempted certainty of
results, which is inadmissible for comparisons and accurate predictions of the function of
microbial communities, and their respective individual members. Thus, there is a growing
need to no longer assess sequencing data in isolation, but instead more often test and
re-evaluate the common ground. This aims to close the gaps and uncertainties that arise
between the available pathways of data-handling in order to more accurately, and with
more certainty, explore the underlying biological facts.

The same is also true with an eye on current advances in technology such as nanopore
sequencing [24], which could allow a return to the use of the entire 16S rRNA gene for
taxonomic assignments, without sacrificing throughput quantity or speed. However, this
might come at the cost of a slightly lowered average sequence quality, which might present
a new challenge, especially for the more advanced pipelines [4].

In order to address the pros and cons of both options for sequence data analysis, this
work aims to raise awareness for some of the aforementioned challenges, with special
emphasis on implications for wastewater treatment data, where sequencing methods are
becoming more frequent for assessing and even monitoring functionality via community
composition and amplicon sequencing [25–27]. However, the description of methods and
interpretation of results are also applicable to other fields of research, and different habitats
and microbiomes. To elucidate some of the underlying challenges, within the framework
of research outside of a proof-of-principles scenario, lab-scale anaerobic co-digestion (Co-
AD) of primary and waste-activated sewage sludge (PWASS) together with food and
kitchen waste (FW) are used as a mostly well understood, yet still current, field of research,
simulating wastewater treatment processes that are linked to various disciplines ranging
from microbiology to energies [28–30].
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2. Materials and Methods
2.1. Sampling and Experimental Setup for Simulation of Anaerobic Co-Digestion Co-AD

Six lab-scale reactors, 1 L total reactor volume, each with 500 mL of continuously
stirred working volume, were operated over a period of 170 days, during which the
temperature was kept constant at 55 ◦C. Inoculum was obtained from a thermophilic
anaerobic digester located at a midsized wastewater treatment plant (WWTP) in northern
Germany on 11 January 2021. For daily feeding, a mixture (PWASS) of primary sludge
(PS, ~40%) and waste-activated sewage sludge (WAS, ~60%) was collected from a pre-
thickener, directly upstream of an AD reactor at another midsized WWTP in northern
Germany, approximately every 4 weeks. PWASS was mushed, distributed in daily portions,
and stored frozen before use. For feeding, 50 mL of reactor content of each control reactor
(n = 3) was replaced with 50 mL of temperature-equilibrated PWASS every 24 h, excluding
weekends, leading to a hydraulic retention time (HRT)-stabilized system with an HRT
of 14 days. Experimental reactors (n = 3) were treated equally, but, following a one-
month feeding period without co-substrate addition (T1 = 0%), were supplemented with
food waste (FW) as a locally available and easy degradable co-substrate. The added
amount of the co-substrate was calculated as a percentage of the volatile solids (VS) of the
respective PWASS-batch and increased stepwise in 10% increments over the duration of
the experiment from 0% to 40%. Food and kitchen wastes were obtained from a Chinese
restaurant where they were collected over one day, after which they were mushed and
stored at −20 ◦C until use. The chemical composition of the co-substrate and example of
the PWASS can be seen in [31].

2.2. Analytical Procedures

Reactor performance was controlled via online-monitoring methane and biogas pro-
duction using methane sensors (BlueSens, Herden, Germany) and MilliGascounter®(Ritter,
Bochum, Germany). Volatile Fatty Acids (VFAs) were measured weekly via gas chro-
matography according to [32], and pH was measured offline in the reactor excess daily
during feeding (Hanna Instruments, Vöhringen, Germany). Total (TS) and volatile solids
(VS) were measured by gravimetric analysis according to the Standard Methods 2540B
and 2540E, respectively [33].

2.3. DNA Extraction and 16S rRNA Gene Amplicon Sequencing

Samples for DNA extraction were taken regularly from the lab-scale reactors and
stored at−20 ◦C. Samples at the end of each co-substrate addition period (nT = 5) from each
reactor (nR = 6) were used together with the PWASS (nP = 5) and the inoculum sample for
DNA extraction, resulting in a total of 36 individual samples. DNA for amplicon sequencing
was extracted using the Soil DNA Isolation Plus Kit (Norgen, Thorold, ON, Canada) in
triplicates according to the manufacturer’s instructions. DNA concentrations ranged
between 10.7 ng µL−1 and 338.6 ng µL−1 with an average of 50.9 ng µL−1. Extractions
yielding less than 10 ng µL−1 were repeated until sufficient DNA (quality and quantity)
was obtained. The hypervariable V3–V4 region of the 16S rRNA gene was used as marker
to analyze the microbial community composition in the thermophilic lab-scale reactors
and the “psychrophilic” PWASS (mixture of primary and excess sludge from the activated
sludge system operated under ambient conditions). Sequencing of barcoded amplicons was
performed using the Illumina MiSeq platform, with V2 chemistry (Illumina Inc., San Diego,
CA, USA) according to the manufacturer’s instructions. Primers Pro341f/Pro805r [14]
targeting both the domain Archaea and Bacteria, respectively, were used to generate barcoded
amplicons for sequencing. Libraries were prepared using the NexteraXT kit (Illumina Inc.,
San Diego, CA, USA).

2.4. Sequence Analysis OTU

Sequence processing was performed according to the method of Dyksma et al. [34]
In summary, raw reads were filtered and low-quality reads removed. Paired end reads
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were then assembled, trimmed, denoised, had chimeras removed, and aligned to SILVA
database v138.1. Sequences were then clustered into operational taxonomic units (OTUs)
at 97% similarity level with VSEARCH [16] and classified using the SINA-classifier. After
quality filtration, a total of 18,397,934 reads were obtained from 36 samples. For Cutadapt,
a minimum adapter overlap threshold for the trimming of 6 bases was used, with an
adapter error rate of 0.1. BBMerge was set to default merging strictness with a quality
trim threshold set to 10. SINA classification was performed with a minimum length of
100 bp with a quality score filter of 20 applied to the 3′ end for filtering, and alignment was
performed based on the SILVA REF99 SSU reference database version 138.1.

2.5. Sequence Analysis ASV

Analysis of the sequencing data using the ASV-based pipeline was performed us-
ing the DADA2 pipeline, with DADA2 v1.18.0 and R version 4.1.0 (2021-05-18)—“Camp
Pontanezen.” Sequences were processed according to the tutorial instructions for the A
DADA2 workflow for Big Data: Paired-End (1.4 or later) [20,35], with the following adjust-
ments made. Sequences were trimmed left 17 bases to remove residual primers, truncQ
was lowered to 2, and the option to truncLen was removed. For chimera removal, the
minFoldParentOverAbundance threshold was increased to 8. Taxonomy assignment was
performed based on the SILVA REF99 SSU reference database version 138.1.

2.6. Data Handling

Sequence analysis was performed with R [36] version 4.1.2 (2021-11-01)—“Bird Hippie”
using the packages phyloseq [37], vegan [38,39], and microbiome [40]. OTU data were
used unrarefied and rarefied by the minimum number of reads (41,635) with vegan, and
subsequently converted to a phyloseq object. Only rarified data were used for final com-
munity analysis. Eukaryotic, mitochondrial, and chloroplast sequences were removed, as
well as OTUs that remained unclassified on the domain taxonomic level. Equally, an ASV
phyloseq was created according to the tutorial described in 2.5. Both phyloseq objects were
then merged. The resulting phyloseq was rarefied using the rarefy_even_depth function by
minimum sample_sums, as included in the phyloseq package, and thereafter condensed
at the Genus level by taxa agglomeration for further processing and combined analysis.
Alpha diversity was analyzed using vegan and microbiome. The relative abundance of the
different taxons was determined using the transform “compositional” function included
in the microbiome package, after normalization via rarefying. Permanova analysis was
performed using the adonis2 function implemented in vegan. NMDS ordination was per-
formed based on the bray-curtis dissimilarity on scaled reads using functions implemented
in the vegan and phyloseq packages, and graphical presentations were made using the
packages base, ggplot2 [41] and cowplot [42]. For statistical analysis, PWASS, control,
and experimental reactors were regarded as three distinct levels of the factor treatment.
Similarly, temperature was considered a factor with two levels, either thermophilic or
psychrophilic, and pipeline was considered as a factor, also with two levels (OTU/ASV).
Timepoint, i.e., the experiment runtime, was treated as a continuous time variable.

3. Results
3.1. Operational Data and Reactor Performance

In order to show the capacity of a WWTP with a thermophilic anaerobic digestor for
producing additional biogas when feeding available and easily degradable substrates
such as food waste, semicontinuous operated lab-scale reactors were operated with
the same HRT (days) and OLR (g VS m3 d−1) as the full-scale WWTP. Food waste as
a co-substrate was added as a percentage of the organic loading rate OLR of the main
substrate PWASS. The average daily biogas production and methane content of both
control and experimental reactors of each phase (0–40% co-substrate) are summarized
in Table A1. With increasing amounts of co-substrate, the total amount of biogas and
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methane increased, and the control and experimental reactors ran stable for the whole
operation period without any process disturbances.

3.2. Sequencing Pipeline Data Overview

The Illumina sequencing output reported an average quality of Q30 ≥ 81.9%. Using
Cutadapt, the OTU-based pipeline converted the raw reads into 18,397,934 total reads
from forward and reverse reads, with 9,198,967 total reads each. These represent 3,695,630
and 3,061,507 unique sequences from forward and reverse reads, respectively, from which
BBmerge, dereplication, and chimera removal using VSEARCH [16] produced a total of
7,643,311 remaining reads (≈82.4%), with 73,003 unique sequences after clustering at a
97% identity threshold. Those were then converted to a phyloseq database for further
processing, both with and without rarefying [43,44]. The ASV-based pipeline combines all
of the above-stated steps but also includes a quality-based error correction mode instead
of the 97% clustering inherent in the OTU-based approach. Using this error correction
and manual, size, and base-position-based trimming and merging of the samples, the
DADA2 [20] pipeline produced a total of 13,342,124 reads with 2,327,901 unique sequences.
The error algorithm that is hardcoded in the pipeline uses a user-defined minimum of bases
to calculate the error rates and reads in bases successively from one sample after another,
until it reaches a solution. In this case, the standard number of bases suggested was used,
resulting in 126,004,658 total bases in 539,888 reads from 3 samples for the forward reads,
and 100,116,913 total bases in 427,973 reads from 2 samples from the reverse reads being
used to calculate the error rates. Furthermore, an abundance threshold of 0.001% was
applied to the ASV and OTU datasets to eliminate rare taxa. Parallel OTU and ASV datasets
were agglomerated at the Genus level to be processed and compared within one dataset.
The resulting number of taxa for each approach can be seen in Table 1.

Table 1. Number of taxa derived from the two different sequencing data handling pipelines across
different applied abundance and taxa thresholds.

Number of Taxa
Threshold OTU Based 1 OTU Based 2 ASV Based Merged 3

full Dataset 67,015 50,065 8005
>0.001% relative

Abundance 1,204 1,201 1,089

Genus level 910 877 781 1053
Genus level > 0.001%
relative Abundance 285 283 279 348

1 = unrarefied; 2 = rarefied with vegan; 3 = based on rarefied OTU dataset, from merging the datasets, i.e., sum of
shared and unique sequences.

3.3. α-Diversity Comparison of Pipeline Outcomes

Based on the full, but rarefied, dataset, α-diversity indices were calculated including
the Shannon Wiener index, richness, and evenness estimates (Figure 1). Largely stable
communities were observed over time in the lab-scale reactors, with only little changes
over time in both experimental and control reactors. Trends for diversity development
in the anaerobic digester/experimental reactor community were similar across time and
diversity index between the two pipelines, although the OTU-based pipeline data typically
reported slightly higher diversity than what was observed for the ASV pipeline. However,
differences were observed for the PWASS microbial communities, where, while some
diversity indices (e.g., Shannon Wiener index) reported similar values, other diversity
estimators strongly differed between the two pipelines (Figure 1). In the PWASS, and
in opposition to the experimental reactors, very different behavior, up to a partial trend
reversal, was observed for some estimators—especially, but not limited to, evenness indices.
The inverse Simpson index is especially notable, for which OTU und ASV indices for the
AD communities were almost identical, while the PWASS differed at times by a factor
greater two.
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Figure 1. Comparison of the two pipelines for observed α-diversity over time, expressed via a set of
different α-diversity indices. Sample types, i.e., treatments, are represented with color-coding, while
pipelines are represented by differing symbols, and dashed and solid lines.

3.4. β-Diversity Comparison of Pipeline Outcomes—Prokaryotic Community Composition on
Phylum Level

The Phylum level composition was overall in good agreement between both pipelines,
for the 36 samples and the 4 respective treatments (control, experiment, inoculum, and
PWASS) with individual variations between samples and treatments being identified by
both pipelines, mostly to similar degrees (Figure 2). The bacterial community in the ex-
perimental and control reactors consisted of decreasing relative abundance, primarily of
members of the Phylum Thermotogota, followed by Coprothermobacterota, Synergistota, Firmi-
cutes, and Bacteroidota, with members of the phyla Dictyoglomota, Clocacimonadota, Calda-
tribacteriota, and Proteobacteria contributing in the lower single-digit percentages (Figure 2).
The archaeal community contributed 5% of the total relative abundance, as identified
almost identically by both pipelines. Of those, 59% were identified as members of the
Halobacterota, primarily Methanothrix, and 40% and 41% in the control and experimental
reactors, respectively, being assigned as members of the Euryarchaeota (Methanothermobacter).
A similar composition was observed in the inoculum, although there, both pipelines de-
tected Archaea, Dictyoglomota, and Cloacimonadota with 0.9%, and Synergistota with 3% only,
with an increased relative abundance of Coprothermobacterota and even more pronounced
Bacteroidota (see Figure 2 and Table S1 in Supplementary Materials for a comprehensive
list). The PWASS microbial community differed considerably from the above-described
microbial assemblages, with more pronounced variability between samples, i.e., timepoints,
than what was observed for the more stable AD laboratory reactors.

The between-pipeline variability was also much greater in the PWASS than in the
other treatments. Both pipelines reported an overall similar microbial community compo-
sition, typical for PWASS. As such, a majority of the microbial community was made up
of Proteobacteria and Firmicutes (Figure 2), together already contributing 63% of the total
microbial community, although with individual contributions differing. In decreasing rela-
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tive abundances, Bacteroidota, Chloroflexota, Actinomycetota, Campylobacterota, Fusobacteriota,
and Synergistota, as well as some Archaea belonging to the phylum Halobacterota, all in the
single-digit range, made up the majority of the remaining microbial community. Among
those, only Halobacterota and Fusobacterota (Figure 2) were reported in equal numbers by
both pipelines. All other phyla differed between 1% and 4%. This encompassed ranges
between 34% and 36%, i.e., a difference of ~2% total community composition, and ~5%
relative to one another for Proteobacteria, to 1.2% and 0.3% for Acidobacteriota, equaling
~1% of the total community, but deviating by 400% between the two pipelines (Table 2).
Pipeline-based deviations in abundances on the Phylum level that are either greater than
1% total community composition or deviate by more than 20% between pipelines (times
fold change equal to a factor 1.2), while, at the same time, contributing at least 0.5% to the
total community composition in at least one of the pipelines can be seen in Table 2, with
a comprehensive list of Phylum-level relative abundances in Table S1. In sum-total, the
community composition differed between 6.75% and 10.81% (sum ∆ of total community per
treatment—PWASS, inoculum, control, experiment, Table S1 in Supplementary Materials)
on Phylum-level composition based purely on the used pipeline.

Figure 2. Taxonomic profiles of the microbial populations observed by the two pipelines presented as
bar charts. For better visibility, only those phyla that represent more than 2% of the total community
are included in the bar-chart. Microbial community composition observed by the ASV-pipeline is
shown on the left; those observed in the OTU-based pipeline are shown on the right. Bars from left
to right of each plot represent: control samples over five individual timepoints spanning 170 days
in biological triplicates, experimental reactors over the same five individual timepoints, with 10%
increment increases in co-substrate addition from 0% (T1) to 40 % (T5), also in biological triplicates,
and inoculum (T0) and PWASS samples correlating to the five experimental timepoints.
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3.5. β-Diversity Comparison of Pipeline Outcomes—Prokaryotic Community Composition on
Genus Level

While often being consistent between the two pipelines in general, differences that
already became apparent on the Phylum level subsequently also manifested on the Genus
level. As such, the general Genus representation in the AD reactor samples were largely
similar, with, however, a few selected taxa differing significantly between the two pipelines
(Figure 3). Especially, genera belonging to the Firmicutes, Chloroflexota, Patescibacteria, and
Hydrothermae were affected, especially with Chloroflexota and Firmicutes contributing signifi-
cantly to pipeline-based differences, and with several genera not being picked up by one or
the other pipeline (Table 2, Figure 3). As observed with the α-diversity indices, differences
between the pipelines were more prominent in the PWASS sludge samples. Especially, gen-
era belonging to the Campylobacterota and the Proteobacteria were assigned with significantly
different abundances, differing by as much as 3% of the total microbial community for
Aeromonas, or by 400% between the pipelines (4% ASV, 1% OTU), respectively (Figure 3).

Table 2. Phyla differences based on choice of pipeline.

Phylum Treatment ASV OTU ∆ of Total
Community Fold Deviation

Acidobacteriota Control 1.12% <0.01% 1.11% 839
Armatimonadota 0.40% <0.01% 0.40% 510

Coprothermobacterota 16.46% 18.45% 2.00% 1.12
Firmicutes 21.10% 18.82% 2.28% 1.12

Hydrothermae 1.47% ND 1.47% ∞
Patescibacteria 0.41% 0.01% 0.40% 32.6
Synergistota 13.62% 15.59% 1.97% 1.14

Thermotogota 18.30% 19.48% 1.18% 1.06

Acidobacteriota Experiment 0.64% <0.01% 0.64% 271
Armatimonadota 0.31% <0.01% 0.31% 519

Chloroflexota 0.48% 0.35% 0.13% 1.36
Coprothermobacterota 17.44% 18.94% 1.50% 1.09

Firmicutes 13.99% 11.91% 2.08% 1.17
Hydrothermae 0.71% ND 0.71% ∞
Synergistota 12.90% 14.28% 1.38% 1.11

Thermotogota 30.40% 31.43% 1.03% 1.03

Chloroflexota Inoculum 1.24% 0.94% 0.30% 1.32
Coprothermobacterota 19.72% 25.31% 5.58% 1.28

Patescibacteria 3.22% 0.12% 3.10% 26.9
Verrucomicrobiota 0.29% 0.39% 0.09% 1.32

Acidobacteriota PWASS 1.22% 0.29% 0.93% 4.22
Caldatribacteriota 0.32% 0.26% 0.07% 1.26

Caldisericota 0.43% 0.58% 0.15% 1.36
Halobacterota 1.43% 1.83% 0.40% 1.28
Patescibacteria 1.00% 0.02% 0.98% 46.2
Proteobacteria 34.55% 36.33% 1.78% 1.05
Synergistota 2.06% 2.47% 0.41% 1.20

ND = not detected; phyla presented are selected if they are differing by more than 1%, or by a factor <1.2 (20%
deviation) if Phylum is detected with at least 0.5% relative abundance in one of the two pipelines.

3.6. Statistical Analysis of Pipeline Outcomes in the Light of Ecological Data

Several models were tested via Permanova analysis to identify correlations between
the observed community composition and the different sample types and pipelines—only
including the thermophilic AD reactors; with AD-reactors and PWASS combined; and both
sets either as a single combined dataset or with the samples being nested in the respective
pipeline. Significant differences in the individual factors, as well as interacting effects, can
be seen in Table 3, and in the corresponding NMDS analysis (Figure 4A). With inclusion of
the PWASS samples in the analysis, all factors except the treatment (PWASS was weighed
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in as a treatment level) were found to be less significantly correlated. Simultaneously, when
the design was crossed, i.e., the factors were nested within the respective pipeline, the null-
hypothesis could no longer be rejected, in the AD-only dataset and the dataset including
the PWASS as well. The latter, however, did show significant results when temperature
was included as an interaction factor together with the treatments. Corresponding NMDS
analysis of the full dataset revealed six separate clusters (Figure 4A). These were found
to be two for the PWASS, one for each pipeline, and another set of two for each pipeline,
for the experimental and control AD reactors, respectively. To better resolve pipeline-
derived differences, the NMDS was also repeated on the reduced dataset only including
the AD-Reactors (Figure 4B,C), and again, two larger clusters were found, representing
the pipelines, that were internally divided by the respective treatment levels along a
runtime—i.e., timepoint—gradient.

Figure 3. Divergence bar plot showing samples from the inoculum, representative lab-scale reactors,
and the PWASS. Plotted are the taxa agglomerated at Genus level with the top 20 Permanova coeffi-
cients identified as a response to the pipeline as a categorical factor. Bars are plotted Phylum-wise,
with bars extending from the centerline to the left representing the relative abundance of the respec-
tive taxon in the VSEARCH-based OTU pipeline, and bars extending to the right representing the
ASV-generating DADA2-pipeline.

Table 3. Simplified Permanova analysis results.

AD Reactors Only AD and PWASS
Explanatory Variable Without Pipeline Interaction Including Pipeline Without Pipeline Interaction Including Pipeline

Pipeline *** NA . NA
Treatment *** . . . *** ..
Timepoint *** . . . * . . .

Timepoint * Treatment *** . . . * . . .
Timepoint * Treatment *

Temperature NA NA *** *

Significance codes: NA = not applicable; 0 = ***; 0.001 = **; 0.01 = *; 0.5 = . ; 0.75 = .. ;1 = . . .
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Figure 4. Nonmetric multidimensional scaling plot of the microbial populations identified by the
two pipelines. (A) Shown is the full set of samples including PWASS, inoculum and control, and
experimental reactor samples for both pipelines. Treatment levels, i.e., sample origin, is depicted
by colors, with numbers representing the sampling time-point between 1 and 5 (0 for inoculum).
The two pipelines are represented by different shapes. (B) and (C) Nonmetric multidimensional
scaling ordination of the experimental and control thermophilic anaerobic digestion reactors only.
Shape represents the pipeline, with triangles representing the OTU and circles representing the
ASV pipeline. Added to the ordination is experimental runtime as contour lines, and pipelines are
additionally depicted by polygons encompassing all samples belonging to either one or the other
pipeline. 95% confidence intervals are included in the ordination as ellipsoids (red = experimental
reactors, blue = control reactors); (B) 95% confidence intervals are calculated and plotted pipeline
wise; (C) 95% confidence intervals are calculated for the whole set of samples, with addition of
confidence intervals for the two pipelines in yellow (ASV) and grey (OTU).

4. Discussion
4.1. Minimizing Sequencing Data Bias during Microbial Community Analysis

The presented results outline several challenges for methods handling sequencing
data bias, which originate in the use of different approaches, which attempt to overcome
sequencing and PCR bias in community analysis [10,11,20,45]. On a broader scale, this
work also looks at the implications different handling approaches might have on the
interpretation of data in microbial ecology. This is exemplified on a WWTP experimental
setup. Established systems of sequence and data handling, and workflows are constantly
changing, while the amount of data available, and in parts also the computation power
to deal with them, is also increasing exponentially. The increase in options of workflows,
pipelines, and data analysis pathways brings more choice, but also more doubt into the
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reliability of current and previous data. The goal in going forward thus has to be to optimize
data handling in order to consistently and reliably improve the comparability between
studies, despite the approaches of how to get there becoming more and more diversified.
Switching from de novo operational taxonomic units (OTUs) to amplicon sequencing
variants (ASVs) has the potential to achieve these goals and allow for such required direct
comparisons across studies, especially in the backlight of the current ongoing revision of
nomenclature in prokaryotes [46]. Consequently, it is imperative that the quality of analysis
and data for each workflow ultimately meets even higher standards than OTU-derived data
have achieved so far. This also means that the algorithms that are being used to produce
these data are constantly improved upon and checked for their validity, applicability, and
robustness. As for now, two main operational frameworks are at play on how to deal with
sequencing biases.

These are OTU-generating approaches based on clustering of sequences (e.g., USEARCH-
UPARSE, VSEARCH) [16,18], k-mer-based strategies basically averaging out sequencing
errors, and ASV-generating algorithms based on inferred error frequency to correct and
revert sequencing errors (e.g., DADA2, Qiime2, UNOISE3) [17,20,45]. While OTUs have
been used for a long time, and data and experience on them are plentiful, recent work has
repeatedly proven the robustness and reproducibility of ASV-generating algorithms in mock
communities [17,47], or in community data from environmental studies, often centered
around the human microbiome or human microbiome-associated environments [48,49].
One or both of these approaches were applied to a wastewater treatment setting combined
with experimental manipulation, and with samples from thermophilic and psychrophilic
environments. The ease of use that some pipelines provide unfortunately also increases
the probability of user-derived errors, which, due to the ease of use, have an additional
potential to go unnoticed more readily. In general, the comparability between pipelines
is excellent [21,47,48,50]. However, as this work outlines, some particular prerequisites
should be met, in sequencing and sequence handling design that otherwise may affect
pipelines differently, and thus will potentially lead to pipeline-derived differences in the
interpretation of what factually is identical data.

4.2. Equalizing Sequencing Data Bias during Microbial Community Analysis

Previous research has repeatedly reported that clustering and OTU-based approaches
such as that used here, VSEARCH, but similar for USEARCH-UPARSE, MG-RAST, or
QIIME and others [16,48,51,52], have the frequent problem of overestimating diversity and
producing spurious amounts of OTUs, especially including singletons and doubletons.
The results presented in this work are no exception to this; however, problems arising
from such spurious OTUs are easily mitigated via relative abundance thresholds (Table 1).
Reitmeier et al. [51] proposed abundance cutoffs as strict as 0.25% relative abundance to be
used as a threshold for OTU-based analysis. For data in this work, a cutoff as little as 0.001%
was sufficient to remove enough spurious or rare taxa to be within the ranges produced
by the ASV pipeline used (Table 1). The ASV pipeline itself is specifically designed to
output fewer to no spurious sequence variants at all, while also retaining the precision to
identify single-base difference variants [20]. A measure as small as that, combined with
rarefication [43,44,53], already led to good agreement of the resulting data, and thus to the
interpretation of alpha diversity data for the experimental and control reactors (Figure 1).
Both pipelines, to similar degrees, allow for the same interpretation of the observed alpha
diversity indices for the thermophilic laboratory reactors. Both pipelines picked up to a
similar degree on the slightly increased diversity in the control reactors when compared to
the, with runtime increasing, co-substrate-fed experimental reactors. In contrast, diversity
indices diverged between pipelines for the psychrophilic PWASS samples. Alpha diversity
in the PWASS samples was expected to show different characteristics overall in comparison
with the AD reactors [31]. Differences were expected on a basal level, readily explained by
the vastly different habitats. Differences were also expected over time, given the exposure
of the PWASS to seasonal, especially temperature, variations [54,55], which is a nonfactor
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in the temperature-controlled experimental reactors. Following the good agreement of
the above-described thermophilic AD reactors, it was also expected that both pipelines
would show similar levels of agreement between-pipelines in the PWASS. Yet, several quite
drastic differences were observed, which can only be retraced to differences in how the
data are being handled by the pipelines. This raises questions concerning the reliability
of at least one of those pipelines, when such strongly differing habitats are investigated
simultaneously, which is not uncommon in environmental studies.

4.3. Complex Relationships: Dissimilar or Similar

In this work, the prominent factor, which apparently affected pipeline-dependent
community composition, aside from inherent pipeline biases [15,47,48], was temperature,
but any range of strongly differing environmental gradients may lead to similar sequencing
analysis, or rather, algorithm-derived biases. NMDS analysis at first glance revealed a
similar, clear pipeline dependency of the sequencing outcome. Both pipelines paint a
comparable picture concerning the separation of the PWASS from the AD reactors, as
well as the internal separation between the AD-reactor treatments. At the same time,
both pipelines are equally clearly separated from one another. Alpha-diversity indices
had already revealed pipeline-dependent differences in the PWASS samples, so these
were removed from the dataset to investigate whether pipelines would lead to different
conclusions, when comparing samples from habitats that are more closely related but differ
based on experimental treatment levels. NMDS and Permanova of this reduced dataset
identified that the choice of pipeline significantly influences the reported community
composition, as does the treatment applied to the reactors (Table 3). Additionally, NMDS
also revealed that differences between the pipelines are in fact greater than those observed
in the divergence of the treatments over time and with increasing co-substrate addition.
This becomes especially apparent in Figure 4B,C with the added 95% confidence intervals
included in the illustration for either treatment levels (experiment and control)—either
being displayed nested within the pipeline (B) or for the two datasets combined (C). Both
pipelines were able to identify a drift in community composition along a time axis, which
is co-correlated with the increasing substrate addition. The ASV-Pipeline especially did
this in a clearer fashion, suggesting a stronger influence of time and co-substrate than the
OTU-based pipeline did. However, similar earlier experiments, with mesophilic reactor
conditions, would suggest a less strong influence on the community [25,31]. Strikingly,
NMDS and confidence intervals also suggest that even over a duration of more than
170 days, dissimilarities in community composition between pipelines are factually greater
than dissimilarities between the microbial populations in the experimental treatments. So
far, this would have limited implications on the initial interpretation of the data in isolation;
yet, it brings doubt to comparisons made across other studies of a similar scale and focus,
if the choice of pipeline differs between studies. With sequencing methods becoming more
frequent in direct monitoring of WWTP functioning [26,27], a good level of comparability
is imperative even on small scales. While AD reactors typically harbor unique but similar
microbial populations [56–58], differences on the exact scale observed to differ in this study
could very likely be the important common denominator, or dissimilarity, that needs to
be identified reliably for cross-study comparisons, including networking and functional
approaches. It has to be noted that these results are exemplified with WWTP data but are
likely not limited in their applicability to other systems.

Permanova analysis revealed another dividing factor between the two pipelines,
which, in parts, had already been identified in the analysis of the alpha diversity. On
the whole dataset, the pipeline was found to not be a significant factor correlating with
community composition. However, as soon as an interaction of the pipeline with treatment,
thus addressing the strong biologically backed differences between the PWASS and the AD
reactors, was included in the analysis, the pipeline was found to significantly correlate with
the community composition. In theory, this should not affect the outcome, if both pipelines
would give the same, or at least highly similar, results. Permanova, furthermore, identified
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several significant factors correlating with the community composition such as co-substrate
addition and concentration, i.e., runtime of the experiment, or combinations of these factors.
All of these are known and likely to impact community structure from a perspective of
biological reasoning, which is also represented in their respective statistical significance.
Yet, once pipeline was included in the analysis, meaning the treatments, temperature,
and timepoint individually were analyzed in respect of—i.e., in an interaction with—the
pipeline (Table 3), the combination of those factors with the pipeline would no longer
return a statistically significant result, unlike that in isolation. This means the differences
between the pipelines were large enough that the individual null-hypothesis concerning a
non-normal distribution of the microbial populations as a response to the changes in their
environment could no longer be rejected. On the reduced dataset, this would lead to the
conclusion that the choice of pipeline would affect the community composition more than
any of the actual treatments or environmental factors would, which has no foundation in
experimental reality.

One peculiar observation was made in the full dataset, as once temperature was
also included as a co-correlating factor, thus dividing the experimental reactors and the
PWASS in another dimension, a statistical significance of the combined effects, nested in
the pipeline, could be detected (Table 3). The ASV algorithm used here calculates error
rates to correct for sequencing errors on a subset of samples, which are then applied
to each sample of the entire run, individually. This means that error rates, which are
unknowingly trained and calculated on a sample possibly exclusive from a thermophilic
environment, are then applied to correct sequencing data, and base transition rates, from
a psychrophilic environment. In opposition, the k-mer-based clustering strategy that is
used in the OTU-based approach is performed on the entire dataset at once, with the
downside of being extremely demanding in computation power, but not affected by such
random factors, i.e., data that are used to train the algorithm having to also accurately
represent base transition rates of the entire dataset. The latter, however, is a statistical
fallacy that is in contradiction with the underlying biology and rarely in agreement with the
study design, when samples that are analyzed together in one run, coming from different
extremes and temperate habitats at the same time, encompass different codon usage for
functional genes and metagenomic studies [59], GC content [60,61], and eukaryotic and
prokaryotic sequences simultaneously in one sample, but only prokaryotic in another,
etc. A difference in the treatment of extreme environments by theses pipelines has been
addressed in parts [21], but the authors are, at this point, not aware of studies where
these were investigated together. In this work, this became apparent in the differences
of the psychrophilic PWASS when analyzed with different pipelines, compared to the
thermophilic AD reactors. The algorithm was trained on the (majority of the samples)
thermophilic AD reactor communities, where OTU and ASV pipelines produced largely
similar results, while results from the two pipelines diverged with the output of the PWASS
microbial communities. Such was not only observed in the Permanova and NMDS analysis
but could also be seen more directly in the community assembly, where, especially within
the PWASS, different taxa or taxa with more differing relative abundances were observed.
However, differences in outcome between the pipelines were not limited to the PWASS,
and variability in the resulting assignments from the AD reactors, or other samples, might
still lead to different conclusions, especially if these are intended to make predictions about
the function from taxonomic assignment [62].

5. Conclusions

Going forward, while OTUs and clustering pipelines are well established, the use of
ASV has the major benefit of direct comparability between studies without the need to
reanalyze original data, binding computation and work time and power, while still being
accurate down to a single base. ASV algorithms have the capability to even reduce and
scale-down computation power, making sequence analysis more accessible on a broad scale.
On the flip side, there is still a need on how to actually deal with those from a publication
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perspective, as there is currently no short-hand available to easily identify them in a written
form. Ideas on how to overcome this include using the first few letters of md5 checksums
or similar calculation-based short-names, alongside extended supplementary materials,
which, however, still do not improve the ease of access from a reader’s perspective. The
presented output of this study shows some of the steps that should be considered, as
there is a growing need for unification in how to proceed in dealing with the growing
mountains of data, with machine learning and AI algorithms and immense possibilities
for uncertainties and improvements alike in the interpretation of sequencing data, and
the growth of knowledge that comes with them. Furthermore, for comparability, how to
better include access to the pipelines and workflows that are currently being used should
be explored. This means quality scores or proxies for them, and also more comprehensive
ways on which metrics were used to generate data, i.e., common grounds for the settings
used in the individual pipelines and based on which criteria they are chosen. Both OTU
and ASV approaches can only throw light on “who is potentially present,” but the overall
certainty about microbial community composition is based on statistics and algorithms and
needs much more than analyzing sequence data.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering9040146/s1. Table S1: Phylum-level prokaryotic
community composition by pipeline and treatment.

Author Contributions: Conceptualization, C.G. and J.T.J.; methodology, J.T.J.; software, J.T.J.; formal
analysis, J.T.J.; data curation, J.T.J.; writing—original draft preparation, J.T.J.; writing—review and
editing, C.G.; visualization, J.T.J.; investigation J.T.J.; supervision, C.G.; project administration, C.G.;
funding acquisition, C.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the German Federal Ministry of Education and Research
(BMBF) within the framework of the CLIENT II - International partnerships for sustainable innova-
tions, PIRAT systems project (02WCL1469D). The BMBF had no involvement in the study design,
data collection, analysis, or the writing of the manuscript.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Sequencing data deposition—All nucleotide sequences obtained in
this study were deposited in GenBank. Amplicon sequences from the 16S rRNA gene survey were
deposited in the NCBI short read archive with the BioProject ID: PRJNA812418.

Acknowledgments: We would like to thank the staff of the wastewater treatment plants for their
continued help and support.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Reactor performance.

Biogas in mL Day−1 Reactor−1,b CH4 in % Day−1 Reactor−1

Timepointc Control d Experiment d Control Experiment

1 413.8 ± 18.9 349.6 ± 2.6 69.8 ± 2.8 68.2 ± 3.2
2 476.5 ± 10.9 507.7 ± 15.1 69.8 ± 5.0 69.9 ± 1.2
3 520.0 ± 69.0 587.7 ± 12.0 71.4 ± 6.1 69.2 ± 2.0
4 265.8 ± 88.1 434.6 ± 50.8 73.6 ± 8.8 66.5 ± 2.3
5 367.4 ± 50.1 721.8 ± 11.2 74.3 ± 8.7 70.8 ± 1.9

a not including weekends; b 500 mL reactor working volume; c Timepoint equals phase of co-substrate addition to
experimental reactors in 10% increments; T1 = 0%–T5 = 40%; d biogas-yield co-correlating with PWASS-batch
quality (VS content).

https://www.mdpi.com/article/10.3390/bioengineering9040146/s1
https://www.mdpi.com/article/10.3390/bioengineering9040146/s1
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