
Citation: Araújo, T.; Teixeira, J.P.;

Rodrigues, P.M. Smart-Data-Driven

System for Alzheimer Disease

Detection through

Electroencephalographic Signals.

Bioengineering 2022, 9, 141. https://

doi.org/10.3390/bioengineering9040141

Academic Editor: Christoph Herwig

Received: 26 February 2022

Accepted: 23 March 2022

Published: 28 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

Smart-Data-Driven System for Alzheimer Disease Detection
through Electroencephalographic Signals
Teresa Araújo 1, João Paulo Teixeira 2 and Pedro Miguel Rodrigues 1,*

1 CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia,
Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal;
teresa.mendonca.araujo@gmail.com

2 CEDRI—Research Centre in Digitalization and Intelligent Robotics and UNIAG—Management Applied
Research Unit, Instituto Politécnico de Bragança (IPB), Braganca, Campus de Sta Apolónia, Apartado 134,
5301-857 Bragança, Portugal; joaopt@ipb.pt

* Correspondence: pmrodrigues@ucp.pt; Tel.: +351-225580027

Abstract: Background: Alzheimer’s Disease (AD) stands out as one of the main causes of dementia
worldwide and it represents around 65% of all dementia cases, affecting mainly elderly people. AD
is composed of three evolutionary stages: Mild Cognitive Impairment (MCI), Mild and Moderate
AD (ADM) and Advanced AD (ADA). It is crucial to create a tool for assisting AD diagnosis in
its early stages with the aim of halting the disease progression. Methods: The main purpose of
this study is to develop a system with the ability of differentiate each disease stage by means of
Electroencephalographic Signals (EEG). Thereby, an EEG nonlinear multi-band analysis by Wavelet
Packet was performed enabling to extract several features from each study group. Classic Machine
Learning (ML) and Deep Learning (DL) methods have been used for data classification per EEG
channel. Results: The maximum accuracies obtained were 78.9% (Healthy controls (C) vs. MCI),
81.0% (C vs. ADM), 84.2% (C vs. ADA), 88.9% (MCI vs. ADM), 93.8% (MCI vs. ADA), 77.8% (ADM
vs. ADA) and 56.8% (All vs. All). Conclusions: The proposed method outperforms previous studies
with the same database by 2% in binary comparison MCI vs. ADM and central and parietal brain
regions revealed abnormal activity as AD progresses.

Keywords: Alzheimer disease; nonlinear multi-band analysis; electroencephalographic signals;
classic machine learning; deep learning; wavelet packet; classification

1. Introduction

There are many factors that have repercussions on ageing. During life, social and
physical environment, as well as behavioural attitudes have a major impact on human
ageing process. Nowadays, as a result of medical improvements, people are living longer—
both an increase in the average life expectancy and a drop in the fertility rate has been
observed. The World Health Organization (WHO) states that there are 125 million of people
80 years old or more, which is expected to increase to 434 million by 2050 [1].

Over the years, it is predictable that more ageing health problems will arise. Thus,
it is crucial to consider not only the physical deterioration (the visible one), but also the
nervous system deterioration. Concerning elderly people, it is proved that they have a
greater propensity to develop neurodegenerative diseases such as dementia. Neurode-
generative disease is a serious clinical condition since it truly affects the nervous system
functioning and progresses irreversibly. Epidemiological data state that 1 in 3 seniors dies
with dementia [2,3].

Every 3 seconds, a new case of dementia is diagnosed. The WHO estimates that there
are around 50 million people suffering from dementia worldwide. It is estimated that
this value may reach about 82 million and 152 million in 2030 and 2050, respectively. In
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terms of geographic distribution, there is an expected higher rate of incidence in low- and
middle-income countries compared with high-income countries [4].

Alzheimer Disease is known as the most common form of dementia, representing
65% of all dementia cases. It is characterised by the deterioration of human cognitive
functions, affecting behaviour, language, memory and reasoning, among others. Alzheimer
is a neurodegenerative disease in which the accumulation of certain toxic substances in the
brain leads to the progressive death of neuronal cells. The major brain changes that AD
causes are the accumulation of an atypical form of the tau protein within neurons, as well
as the accumulation of the β-amyloid fragments outside neurons [5,6].

The AD progress can be described over four development stages: Pre-clinical, Mild
Cognitive Impairment (MCI), Moderate AD and Severe AD. In the first stage, there are no
associated symptoms (asymptomatic period). It is believed that AD arises at least 20 years
before symptoms appear, hence the patient could stay in this initial phase for a long period
of time. During the second phase, MCI, symptoms like memory lapses begins. The concept
of MCI was created with the aim of including individuals with mild symptoms who might
eventually progress to AD. It is stated that 6% to 25% of MCI patients later develop AD.
The moderate stage is typically the longest one—frequent memory lapses and difficulty in
performing daily routine tasks are faced, as well as other psychological symptoms. Lastly,
the severe stage is the moment that patient loses the ability to interact with those who are
around, having cognitive and motor functions extremely altered [5,7,8].

There are several factors that increase the risk of developing AD. Genetics, age, sex,
lifestyle and other diseases are considered the main ones. Concerning family history, having
one and two first-degree relatives with AD increases the risk of developing the disease by
four and eight times, respectively. As it can be expected, dementia is scarce before the age
of 65. Concerning sex, statistical data shows that AD is more common in women. As far
as lifestyle habits are concerned, smokers and inactive people develop a propensity for
this disease. The level of education also has impact since more years of education means a
constant brain stimulation. There is also a strong evidence that having a healthy diet may
reduce the probability of developing dementia. People diagnosed with depression and
cardiovascular diseases are considered equally susceptible [5,9–12].

To date, there is no cure for this disease. However, there are several medical exams
that support the diagnostic when someone reveals signs of dementia during life—Magnetic
Resonance Imaging (MRI), Positron Emission Tomography (PET), Cerebrospinal Fluid
(CFS) Analysis and Electroencephalogram (EEG). Besides that, Neurologists consider the
medical history and perform several neurological and cognitive tests. It is important to
note the true diagnosis of Alzheimer is only achieved with autopsy exam, after patient’s
death [13].

EEG is a non-invasive and painless medical exam that aims to record and evaluate
brain electrical activity. EEG signal is acquired by placing electrodes on the scalp and its
frequency and amplitude values are contained in the range of 1 to 100 Hz and 10 to 100 µV,
respectively. EEG enables to identify potential abnormalities in brain wave patterns [14].
Those abnormalities may be linked with brain illnesses such as dementia [15].

In the clinical branch, it is possible to evaluate brain abnormalities in a patient’s
brain activity by analysing the EEG signal frequency. In this way, it is considered five
conventional frequency bands—delta, theta, alpha, beta and gamma. Delta waves (δ) are
the slowest and highest amplitude waves, belonging to the frequency range of 0.5 to 4 Hz.
These waves are related to events such as deep sleep and wakefulness. Theta waves (θ)
have an amplitude greater than 20 µV and are contained within the frequency range of
4 to 8 Hz. The presence of these waves is associated with moments of emotional stress,
deep meditation and creative inspiration. Alpha waves (α) belong to the frequency and
amplitude range of 8 to 13 Hz and 30 to 50 µV, respectively. When a person is with the eyes
closed or in a relaxed state, these waves appear mostly in the occipital lobe. Beta waves
(β) refer to rhythms in the frequency range of 13 to 30 Hz, having amplitude values less
than 30 µV. This wave type is commonly observed in the brain of a healthy adult and it is
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associated with active brain activity, active thinking and problem solving. Finally, gamma
waves (γ) are the fastest and lowest amplitude waves, lying above the frequency of 30 Hz
(normally the upper limit is 100 Hz). The activity of these waves are of rare occurrence—a
brain disease can be confirmed by an abnormal presence of this rhythm [16,17].

An AD patient reveals changes in the EEG signal compared to the normal patterns
observed in a healthy individual. The main phenomenon is named slowing effect. As the
disease progresses, there is an increase in power in the lower frequency bands (δ and θ),
as well as a decrease in power in the higher frequency bands (α, β and γ). Additionally,
shift-to-the-left phenomenon is also observed. A shift of the power spectrum peak at the
alpha band to the lower frequency bands occurs. The surface distribution of these rhythms
becomes emphatic in anterior regions, instead of in the occipital region (healthy subject).
Briefly, these signal power modifications are essentially due to the lack of acetylcholine in
the AD brain. Insufficient amounts of acetylcholine result in failures in the synchronisation
of synaptic potentials [8,18,19].

Given the large number of people affected and the inherent severity, it is urgent to
find a method capable of assisting in the AD early stages diagnosis. For this reason, the
main goal of the present work is to create an intelligent system that can be useful for that
purpose—a tool that could detect anomalies in the EEG signal of an Alzheimer carrier
during the asymptomatic period so that the disease evolution can be delayed. This paper
proposes a new method based on a nonlinear multiband analysis of the EEG signals. By
the extraction of relevant features, it was feasible to perform the data classification per
electrode by means of Classic ML and DL.

In terms of structure, this paper is organized in five main sections: In Section 2, the EEG
database is described. Thereafter, the methodology concerning the signal processing and
the classification procedure is explained in Section 3. The obtained results and the inherent
discussion were covered in Section 4. Lastly, Section 5 makes remarks about conclusions.

2. Materials

The EEG signals have been collected at Hospital de São João in Porto, Portugal, with
the approval of the local ethics committee and the hospital’s administration board within
the project CES198-14. The data were acquired at a sampling rate of 256 Hz through
19 electrodes placed on the scalp, using the common reference electrode at CPz, according
to the 10–20 system (see Figure 1, image generated by authors in Matlab using EEGLab [20]),
covering the frontal (Fz, FP1, FP2, F3, F7), temporal (T7, T8), parietal (Pz, P3, P4, P7, P8,
PO7, PO8), occipital (O1, O2), and central (Cz, C3, C4) regions, resulting in 19 waveforms
per exam. During the acquisition, it was ensured that all the study subjects were relaxed
and with the eyes closed. The DC component was removed. It is important to note that
only signals without any kind of artefacts are selected.

Figure 1. 10–20 EEG system—electrodes positions at scalp level.
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This database includes 38 subjects split into 4 distinct groups—11 healthy subjects
called healthy controls (C), 8 MCI, 11 AD mild and moderate (ADM) patients and 8 AD
advanced (ADA) patients. The average Mini Mental State Examination (MMSE) and age
average of each group are presented in Table 1. MMSE is the most common exam used
in clinics and hospitals to assess patients’ major cognitive domains, such as visuospatial
abilities, attention, memory and language. Its scores range from 0 to 30. Scores on the
higher end indicate a higher cognitive function, while lower scores mean more severe cases
of dementia [21].

Table 1. EEG Database.

Subjects C MCI ADM ADA

# 11 8 11 8

Age Average 74 80 79 79

MMSE Average 28.68 26.29 18.89 11.50

3. Methods

The proposed methodology is divided into three main steps—(1) Preprocessing, (2)
Signal Processing and Feature Extraction and (3) Classification. Figure 2 summarizes the
methodology implementation steps.

Figure 2. Methodology workflow.

3.1. Preprocessing

The EEG signals belonging to the database were loaded into the Matlab software and
then split in 5 seconds segments of 1280 samples per segment. Each signal has 19 channels
and the number of segments is variable between subjects. Thereafter, each segment was
normalized per channel according to Equation 1. It is important to emphasize that these
signals had already been submitted for noise removal and they were digitally filtered by a
1–40 Hz band-pass filter.

y(n) =
x(n)

∑N−1
n=0 x2(n)

(1)

3.2. Signal Processing and Feature Extraction

This section describes the set of features extracted from each segment of the EEG signal.

3.2.1. Wavelet Packet Decomposition

Wavelet analysis is a method that benefits from the power of a variable-sized window,
being able to analyse a specified area of a large signal. On the one hand, the use of a
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large window size (long time intervals) provides the capture of low-frequency information.
On the other hand, the capture of high-frequency information is achieved by applying a
reduced size window (short time intervals) [22,23].

This technique aims to decompose the original waveform (mother wavelet) into several
versions of it (single wavelet). Basically, the signal is decomposed into low (approximation
coefficients) and high frequencies (detail coefficients). Generally, the low frequency compo-
nents are the most important since they characterize the signal identity. In turn, the high
frequency components analysis reflects the more specific details of a signal [23].

More specifically, Discrete Wavelet Packet Transform (DWPT) provides a simultaneous
decomposition of low and high frequencies. Unlike the Discrete Wavelet Transform (DWT),
it also considers high frequencies after the 1st level of decomposition. This procedure is
iterative, as the signal is successively filtered both by a low-pass and a high-pass filter
(obtaining approximation and detail coefficients, respectively) [24,25].

The DWPT equation is defined as follows:

Ws,m(n) =


√

2s
N−1

∑
k=0

h0(2n− k)W(s−1),(m/2)
(k), if m even

√
2s

N−1

∑
k=0

h1(2n− k)W(s−1),(m−1/2)
(k), if m odd

(2)

where s is the scale of decomposition (s = {0, 1, 2, . . . , log2(n)} ∈ Z), N corresponds to
the signals length, m denotes the position in the tree at scale s (m = {0, 1, 2, . . . , 2j − 1}),
n are the samples (n = {0, 1, 2, . . . , N − 1}), and k represents the time (k ∈ R). Ws,m
are the coefficients of the Wavelet Packet at the scale s and position m as can be seen in
Figure 3. h0 and h1 are the high-pass and low-pass Wavelet filters, respectively. These
filters depend from the selected wavelet [24]. It must be pointed out that W0,0 is the
original normalized signal — y(n), the sub-band signal Ws,m(n) has its frequency limited in
[mπ/2s, (m + 1)π/2s)], where π is the normalized angular frequency. The filters applied
vary according to the mother wavelet family and subfamily [24].

In this work, the DWPT is applied until scale level 6 to each 5 s EEG segment per
channel for computing 18 nodes through Wavelet Packet Tree, i.e., 18 EEG frequency
subbands have been reached, analysing on this way all frequency band range that includes
the conventional bands δ, θ, α, β and γ.

W0,0(n)

W1,0(n)

W2,0(n)

W3,0(n) W3,1(n)

W2,1(n)

W3,2(n) W3,3(n)

W1,1(n)

W2,2(n)

W3,4(n) W3,5(n)

W2,3(n)

W3,6(n) W3,7(n)

Figure 3. Wavelet Packet Tree - Example of decomposition until scale level 3.

3.2.2. Non-Linear Analysis

According to the nonlinear dynamic theory, a complex system (such as the human
brain) is characterized by nonlinear dynamic properties. Due to physiological events, the
brain environment is constantly changing over time. Consequently, brain waves exhibit
a nonlinear and chaotic behavior. Additionally the degree of complexity of the brain
represents the time series randomness. Depending on the intensity of the brain activity, the
EEG signal can be more or less complex, containing more or less information per signal
fragment. Briefly, many methods of extracting nonlinear features have been increasingly
explored, making them a powerful approach for EEG signal characterization. Indeed,
through the detection of patterns in the time series, it is possible to infer about EEG signal
behavior and predict the same kind of occurrences in the future [26].
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The present method suggested the extraction of 20 nonlinear and statistic features from
each node and from each one of the 19 channels of all participants’ signal segments with the
purpose of accomplish a non linear and multiband analysis. Generally, the non-linearity
characteristics correspond to entropy, exponents and fractal dimensions parameters.

Energy

The sub-bands energies are the most used EEG features for detecting AD due to the
power shift effect from high to low frequencies that progressively occur as AD progresses.
The energy of a signal x(n) is defined as

EN =
N

∑
n=1
|x(n)|2 (3)

Entropy

Entropy concept arises with the intention of describing the molecules distribution in
a given system. This thermodynamic definition explains how molecules are organized,
considering the size and atomic configuration of each one. Thus, the assessment of entropy
allows the quantitative evaluation of the degree of randomness and uncertainty of a given
sequence of data. Entropy is a measure that considers the amount of energy present in the
complex system. In fact, entropy features are commonly used, as their analysis allows us to
accurately evaluate the non-linear behaviour characteristic of the EEG signals [17,24,26].
Several measures of entropy were used (Shannon, logarithmic, norm, approximate, sample,
and permutation entropy), leaving the feature selections process elect the one(s) more
relevant for the EEG classification.

• Shannon Entropy [27]:

ShE = −
N

∑
n=1
|x(n)|2log[|x(n)|2] (4)

• Logarithmic Entropy [28]:

LE =
N

∑
n=1

log[|x(n)|2] (5)

• Norm Entropy:

NE =
N

∑
n=1
|x(n)|l (6)

where l represents the normalized power equal to 1.1 on present study [29].
• Approximate Entropy:

AE(e, r, N) = He(r)− He+1(r) (7)

where N is the data length (suggested to be 1000 of the signal standard deviation), r is
the similar tolerance (between 0.1 and 0.25) and e represents the embedding dimen-
sion (between 2 and 3). H is the Heaviside function that results from intermediate
calculations [29].

• Sample Entropy:

SE(e, r, N) = − ln
Ae+1(r)

Be(r)
(8)
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where,

Ae+1(r) = d[xe+1(i), xe+1(j)] < r; (9)

and

Be(r) = d[xe(i), xe(j)] < r; (10)

as the factors N, r, e are the same used in Approximate Entropy, the recommended
values are similar, and d is the Chebyshev distance between two sets of simultaneous
data points [29].

• Permutation Entropy:

PE(e) = −
m!

∑
j=1

pj ln pj (11)

where e is the embedding dimension and pj represents the probability of the jth

permutation occurring [30].

Chaos Theory

Chaos theory is an approach closely related to dynamic systems. A dynamic system
does not share the properties of a system in equilibrium, wherefore certain unpredictable
disturbances may influence its behavior. In this way, those perturbations cause the system
transition from one state to another. The concept of phase space represents the set of all
possible states through which a dynamic system can pass over time. There are two main
exponents which provide a comprehensive framework of chaos [17,31].

• Hurst Exponent:

HE =
ε− 1

2
(12)

where ε derives from power-law [26].
• Lyapunov Exponent:

LE(x0) = lim
n→∞

1
n

n

∑
k=1

ln | f ′(xk − 1)| (13)

where f ′ is the derivative of the iterator function f [17].

Fractal Analysis

Fractal structures present self-similarity properties that enable detailing both irregular
processes and structures. Regarding brain activity study, fractal geometry has been showing
to be a useful approach to identify neurological pathologies. In fact, monitoring the self-
similarity of the brain rhythms allows the characterization of the patient clinical condition.
Fractal feature extraction such as the Higuchi fractal dimension is considered to be helpful
in EEG signal classification [31].

• Higuchi Exponent:

L(k)αk−D (14)

where k indicates the time interval, L(k) is the length of the curve in the k time interval
and D is the Higuchi Exponent [32].



Bioengineering 2022, 9, 141 8 of 16

3.2.3. Feature Extraction Process

For each 38 study participants, 10 non-linear features (Energy, Shannon Entropy,
Logarithmic Entropy, Approximate Entropy, Sample Entropy, Permutation Entropy, Norm
entropy, Hurst Exponent, Lyapunov Exponent, and Higuchi Exponent) are calculated from
the 18 DWP nodes signals of all 5 s segments per channel. At the same time, 10 time-
series statistics used for a fast signal analysis, such as Maximum, Mean, Median, Mode,
Kurtosis, Standard Deviation, Variance, Skewness, Root Mean Square and Asymmetry [33],
have been also extracted from each 18 DWP nodes. Thus, a total of 20 features have been
computed in each DWP node 5 s signal analysis per channel.

Treating the 20 extracted features of all segments per DWT Node analysis as time
series distributions, 3 statistics have been used to compress them along the channel, re-
ducing in this way the dimensionality of the problem. Mean, variance (var) and standard
deviation (sd) have been picked for this purpose.

At the end of the process, each DWT node analysis per channel produced 60 features
(20 time series features digitally compressed by 3 statistics, respectively).

3.3. Wavelet Selection Process

Since the values of each feature depend on the wavelet used in the signal decomposi-
tion, a search to find the wavelet that results in features with greater discriminant capacity
for all comparisons at the same time was performed. The wavelet families evaluated
have been Biorthogonals, Reverse Biorthogonals, Daubechies, Coiflets, Symlets and Fejer-
Korovkin. The values of each feature computed from the segments have been organized
for each combination of study groups pair, wavelet, feature, statistic and node. Within each
combination, the values are normalized using z-score [34]. Then, for each combination,
the normalized values are applied to the the Kruskal–Wallis test. Figure 4, presents the
number of features with accepted p-value for each mother wavelet. The wavelet which
optimizes and emphasizes the Alzheimer’s activity along its progresses was the db34, thus
this wavelet has been chosen for feature selection and classification procedure steps.

Figure 4. Kruskal–Wallis test—10 best performances achieved by wavelets.

3.4. Feature Selection and Classification Procedure

The main goal of this study is to infer about the capacity of Classic ML and DL methods
to evaluate the scalp activity evolution of AD along its different stages. For the propose, a
set of Classic ML tools, such as decision trees (DT), support vector machines (SVM), Naive
Bayes, k-nearest neighbors (KNN), logistic regression and discriminant analysis and one
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Deep Learning classifier (Convolution Neural Networks, CNN) have been used (please
check Table 2 for more details).

Table 2. Used classifiers and optimal parameters.

Classifier Optimal Parameters

Decision Trees

Fine Tree—FT Maximum number of splits = 150

Medium Tree—MT Maximum number of splits = 150

Coarse Tree—CT Maximum number of splits = 150

Discriminant Analysis

Linear Discriminant—LD Covariance structure: Full

Quadratic Discriminant—QD Covariance structure: Full

Logistic Regression - LR Covariance structure: Full

Naive Bayes
Gaussian Naive Bayes— GNB -

Kernel Naive Bayes—KNB -

SVM

Linear SVM—LSVM Box constraint level = 3

Quadratic SVM—QSVM Box constraint level = 3

Cubic SVM—CSVM Box constraint level = 4

Fine Gaussian SVM—FGSVM Box constraint level = 3

Medium Gaussian SVM—MGSVM Box constraint level = 3

Coarse Gaussian SVM—CGSVM Box constraint level = 1

KNN

Fine KNN—FKNN Number of neighbors = 3

Medium KNN—MKNN Number of neighbors = 3

Coarse KNN—CKNN Number of neighbors = 3

Cosine KNN CosKNN Number of neighbors = 3

Cubic KNN—CubKNN Number of neighbors = 3

Weighted KNN—WKNN Number of neighbors = 3

Ensemble

Boosted Trees—BossT Maximum number of splits = 150

Bagged Trees—Bagt Maximum number of splits = 150

Subspace Discriminant—SubD Covariance structure: Full

Subspace KNN—SubKNN Number of neighbors = 3

RUSBoosted Trees—RUSBT Maximum number of splits = 150

CNN

imageInputLayer = 1
convolution2dLayer = 1

reluLayer = 1
fullyConnectedLayer = 3

softmaxLayer = 1
classificationLayer = 1

Training algorithm = adam
Max epochs = 1000

In each group comparison, to find the best feature combination for classifiers entries
the non-normalized values of each feature, computed from all segments of all channels of
all research participants, were splited by each study group pair per channel.

In each comparison, this results in 1080 features values (60 features per DWT node
analysis × 18 DWT nodes) per each subject channel analysis. Within each comparison, the
values are normalized by z-score [34]. After being normalized, the features extracted are
applied to a f-score algorithm [35] in order to select the best set of features per compari-
son according with the maximum accuracy achieved on the 19 channels analysis. Thus,
11 different features combinations were applied to the entries of Classic ML and DP algo-
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rithms: 2 features, 3 features, 4 features, 5 features, 10 features, 15 features, 20 features,
5% of features, 10% of features, 20% of features and 100% of features. In all cases, in order
to verify the generalization capacity of the classifiers, a leave-one-out cross-validation pro-
cedure is used. Due to the dataset limited size, all data have been used in cross-validation
procedure, using the leave-one-out methodology. Table 3 presents the maximum accuracy
achieved on the 19 classifications per channels obtained for each binary comparison. It
was concluded that the range up to 5 features contains the highest discriminative power in
all comparisons.

Table 3. Features combination.

Features
Maximum Accuracy

C-MCI C-ADM C-ADA MCI-ADM MCI-ADA ADM-ADA

1080 73.7% 76.2% 68.4% 83.3% 87.5% 72.2%

20% 73.7% 76.2% 78.9% 88.9% 93.8% 72.2%

10% 78.9% 76.2% 78.9% 88.9% 93.8% 72.2%

5% 78.9% 76.2% 78.9% 83.3% 93.8% 77.8%

20 73.7% 81.0% 78.9% 88.9% 93.8% 77.8%

15 78.9% 81.0% 78.9% 88.9% 93.8% 77.8%

10 78.9% 76.2% 78.9% 88.9% 87.5% 77.8%

5 78.9% 76.2% 84.2% 88.9% 93.8% 77.8%

4 78.9% 76.2% 84.2% 83.3% 93.8% 77.8%

3 78.9% 81.0% 84.2% 83.3% 93.8% 77.8%

2 73.7% 81.0% 84.2% 83.3% 93.8% 77.8%

4. Results and Discussion

The final results of the classification for each comparison case are shown in Table 4,
where the best classifier, the maximum accuracy and the electrode scalp position are
indicated per classifier modality (Classic ML and Deep Learning).

Table 4. Classic Machine learning vs. Deep Learning classification.

Comparison Classic ML Accuracy (Position) DL Accuracy (Position)

C vs. MCI FT, MT, & CT 78.9% (P7 & Pz) CNN 78.9% (P8)

C vs. ADM CSVM & FGSVM 81.0% (C4 & P7) CNN 76.2% (Pz)

C vs. ADA LSVM & GNB 84.2% (F7, C4 & T8) CNN 78.9% (F7 & F8)

MCI vs. ADM CosKNN 88.9% (P7) CNN 83.2% (Pz)

MCI vs. ADA FT, MT & CT 93.8% (O1) CNN 93.8 (P4)

ADM vs. ADA FKNN & SubD 77.8% (F3, F8, C3, C4 & O1) CNN 72.2% (Fz, F4 & C4)

All vs. All MGSVM 56.8% (Pz) CNN 51.4% (Pz)

Analysing the results presented Table 4, the binary classification of C vs. MCI exhibits
a maximum accuracy of 78.9% on P7 and Pz electrodes, being noticeable that those are the
ones with the greatest discriminate power. Regarding this comparison, the classifier which
presented this best performance was Decision Tree (Fine, Medium and Coarse Tree). In
turn, DL selected the P8 electrode as the one which present more significant differences
between groups, reaching 78.9% as maximum accuracy.
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Regarding Classic ML, and when comparing C vs. ADM, it is observed that the
C4 and P7 electrodes present a maximum accuracy of 81.0%, being the ones that reveal
more significant differences. The classifiers Cubic SVM and Fine Gaussian SVM were the
ones who correspond to the highest accuracy result. In contrast, through DL, a maximum
accuracy of 76.2% was achieved in the Pz electrode, this being the one that corresponds to
the scalp region with the highest discriminative power between subjects.

Concerning Classic ML, the binary classification of C vs. ADA exhibits a maximum
accuracy of 84.2% visible in the F7, C4 and T8 electrodes, being noticeable that those are
the ones with the greatest discriminative power. Regarding this comparison, the classifiers
which presented this best performance were Linear SVM and Gaussian Naive Bayes. In turn,
DL selected the F7 and F8 electrodes as the scalp regions which present more significant
differences between groups, reaching 78.9% as maximum accuracy.

Regarding Classic ML, and when comparing MCI vs. ADM, it is observed that the
P7 electrode present a maximum accuracy of 88.9%, being the one that reveals more
significant differences. The classifier Cosine KNN was the one who correspond to the
highest accuracy result. In contrast, through DL, a maximum accuracy of 83.3% was
achieved in the Pz electrode, this being the one that corresponds to the scalp region with
the highest discriminative power between subjects.

Concerning Classic ML, the binary classification of MCI vs. ADA exhibits a maximum
accuracy of 93.8% visible in the O1 electrode; it is noticeable that this is the one with the
greatest discriminative power. Regarding this comparison, the classifier which presented
this best performance was Decision Tree (Fine, Medium and Coarse Tree). In turn, DL
selected the P4 electrode as the scalp region which present more significant differences
between groups, reaching 93.8% as maximum accuracy.

Regarding Classic ML, and when comparing ADM vs. ADA, it is observed that the F3,
F8, C3, C4, O1 electrodes present a maximum accuracy of 77.8%, being the ones that reveal
more significant differences. The classifiers Ensemble Subspace Discriminant and Fine
KNN were the ones who correspond to the highest accuracy result. In contrast, through
DL, a maximum accuracy of 72.2% was achieved in the Fz, F4 and C4 electrodes, these
being the ones that correspond to the scalp regions with the highest discriminative power
between subjects.

Concerning Classic ML, the multiclass classification of All vs. All exhibits a maximum
accuracy of 56.8% visible in the Pz electrode, being noticeable that this is the one with the
greatest discriminative power. Regarding this comparison, the classifier which presented
this best performance was Medium Gaussian SVM. In turn, DL selected the Pz electrode
as the scalp region which present more significant differences between groups, reaching
51.4% as the maximum accuracy.

In fact, Classic ML shows better results than DL with the exception of 2 out of 7 com-
parisons. This being the best technique, it is relevant to deepen the results obtained. To this
end, the topographic maps were elaborated (Figure 5) with the Classic ML results in order
to visualise the scalp regions that present the best values of accuracy.

When observing the topographic maps, it is possible to conclude that C4 and P7 are
the electrodes which best distinguish the differences between subjects. Those electrodes
correspond to the brain central region and to the parietal lobe, respectively. Depending
on the disease stage and which stages are being compared, the area which is considered
to be the most affected may vary. Although the temporal lobe is typically responsible for
memory functions, it does not mean that the other scalp regions are not equally affected
by the disease. According to Siuly and Zhang [16], the parietal area is very important in
recognition and orientation. Actually, AD patients tend to lose these abilities, for example,
at the moments when they do not recognise their family or when they feel lost in a physical
space they previously knew. This conclusion sustains the results obtained.
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Figure 5. Topographic maps provided by a Classic ML classification.

Additionally, it is crucial to reflect on the work considered closest to this one in order
to draw some further conclusions. To this end, Tables 5 and 6 present a direct comparison
between the developed work and others—same EEG database and different EEG database:
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Table 5. Comparison with previous works with the same EEG database.

Study Signal
Processing Features Feature

Selection Best Classifier Classification
Accuracy

[18] Multiband Spectral
Analysis via DWT

RP, Spectral Ratios,
Maxima, Minima and
Zero Crossing

KW Test ANN

C vs. MCI—77%

C vs. AD—95%

MCI vs.
AD—83%

All vs. All—90%

[19]
Multiband Cepstral
and Lacstral Analysis
via DWT

Cepstral and Lacstral
Distances Genetic Algorithms ANN

C vs. MCI—98%

C vs.
ADM—96%

C vs. ADA—96%

C vs. ADM-
ADA—96%

MCI vs.
ADM—87%

MCI vs.
ADA—99%

MCI vs. ADM-
ADA—94%

All vs. All—96%

Present
Study

Nonlinear and
Multiband Analysis
via DWPT

Nonlinear and Statistic
Parameters F-score SVM

C vs. MCI—79%

C vs.
ADM—81%

C vs. ADA—84%

MCI vs.
ADM—89%

MCI vs.
ADA—94%

ADM vs.
ADA—78%

All vs. All—57%

Table 6. Comparison with previous works with different EEG databases.

Study Signal Processing Features Feature Selection Best Classifier Classification Accuracy

[36]
Fourier and Wavelet
Analysis via FFT and
DWT

Fourier and
Wavelet
Coefficients

Not applied DT
C vs. AD—83%
C vs. MCI—92%

MCI vs. AD—79%

[37] Multiband Analysis
via DWT and EMD

Variance, Kurtosis,
Skewness, Shannon
Entropy, Sure En-
tropy and Hjorth
Parameters

Not applied KNN C vs. AD1 vs. AD2—98%

Present
Study

Nonlinear and
Multiband Analysis
via DWPT

Nonlinear and
Statistic Parameters

F-score SVM

C vs. MCI—79%

C vs. ADM—81%

C vs. ADA—84%

MCI vs. ADM—89%

MCI vs. ADA—94%

ADM vs. ADA—78%

All vs. All—57%
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1. Compared to other methods of diagnosing AD through EEG signals from the same
database (Table 5), the proposed method outperformed the study developed by
Rodrigues et al. [19] by 2% in the binary comparison MCI vs. ADM. It can be seen
that CNNs have never been applied to this dataset, so this work is the first and the
only one that follows this approach. Indeed, this works presents added value to the
scientific community, as it has the potential to be improved and become a powerful
tool for AD diagnosis in all its stages.

2. Compared to other techniques of diagnosing AD through EEG signals from different
databases (Table 6), it is observed that the present study outperformed the work
carried out by Fiscon et al. [36] by 13% in the pair MCI vs. AD. It is noteworthy that
the present study has the peculiarity of being the only one that applied the F-score
technique, so it may have highly contributed to the good classification results.

In general, Classic ML proved to have more capacity to identify AD activity along
its progression than DL. One of the reasons for this happening is that DL is commonly
used for analysing large amounts of data. According to Esteva et al. [38], and particularly
regarding the medical field, DL methods are benefic because of the capacity to generate
sheer volume of data. In fact, this database only contains 38 participants, so the simpler
methods (such as Classic ML) were sufficient to get better results than CNN.

5. Conclusions

AD is a neurodegenerative disease marked by a rapid progression, leading to total loss
of cognitive functions. As with other types of dementia, the prevalence is increasing and
forecasts show no improvements. During the early stages, patients do not have symptoms—
the disease is silent. As soon as the symptomatic phase begins, there is a worsening of the
clinical condition. Since AD is considered one of the most severe diseases and there is still
no cure, the main goal of this work was to develop a strong system proficient of assisting in
the AD diagnosis.

Hence, and taking benefit from Wavelet Packet Transform for multi-band analysis,
several statistics and nonlinear features were extracted from EEG signals. The most inter-
esting features were used to evaluate the significant differences between the study groups
through Classic ML and DL classification methods. The main results indicate that Classic
ML algorithms showed a higher discriminant power to emphasize AD activity than DL,
except in the binary comparisons C vs. MCI and MCI vs. ADA where they achieved exactly
the same accuracy.

In conclusion, the aim of this work was accomplished according to what was expected,
since it corroborated the state of the art, having exceeded some discriminant accuracies
comparing to others studies. Regarding the state of the art with the same EEG database,
the proposed method outperforms previous works by 2%, in the binary comparison MCI
vs. ADM. It is relevant to highlight that the remaining comparisons performed (C vs. MCI,
C vs. ADM, C vs. ADA, MCI vs. ADA, ADM vs. ADA and All vs. All) did not show better
results. Indeed, this improvement reflects the impact that this tool can have, particularly in
distinguishing these two consecutive stages of AD.

Author Contributions: Conceptualization, T.A. and P.M.R.; methodology, T.A.; validation, T.A., J.P.T.
and P.M.R.; investigation, T.A.; data curation, P.M.R.; writing—original, T.A.; writing—review and
editing, J.P.T. and P.M.R.; supervision, J.P.T. and P.M.R.; funding acquisition, J.P.T. and P.M.R. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Funds from FCT - Fundação para a Ciência e a
Tecnologia through projects UIDB/50016/2020 and UIDB/05757/2020.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Local Ethics Committee of the University Hospital Center of São João
(UHCSJ), Porto, Portugal (protocol number CES198-14 approved and authorized on 20 March 2015).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.



Bioengineering 2022, 9, 141 15 of 16

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the Neurological Unity of University Hospital
Center of São João, Porto, Portugal, for supplying the EEG signals.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. United Nations: Department of Economic and Social Affairs: Population Division. World Population Ageing 2015 Highlights;

United Nations: New York, NY, USA, 2015.
2. Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor for neurodegenerative

disease. Nat. Rev. Neurol. 2019, 15, 565–581. [CrossRef]
3. Alzheimer’s Association. 2021 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2021, 17, 327–406. [CrossRef]
4. Shirai, K.; Iso, H. Dementia. In Social Determinants of Health in Non-Communicable Diseases; Springer: Singapore, 2020; pp. 105–123.

[CrossRef]
5. Alzheimer’s Association. 2019 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2019, 15, 321–387. [CrossRef]
6. Revett, T.; Baker, G.; Jhamandas, J.; Kar, S. Glutamate system, amyloid β peptides and tau protein: Functional interrelationships

and relevance to Alzheimer disease pathology. J. Psychiatry Neurosci. 2013, 38, 6–23. [CrossRef]
7. Cassani, R.; Estarellas, M.; San-Martin, R.; Fraga, F.J.; Falk, T.H. Systematic Review on Resting-State EEG for Alzheimer’s Disease

Diagnosis and Progression Assessment. Dis. Markers 2018, 2018, 1–26. [CrossRef]
8. Houmani, N.; Vialatte, F.; Gallego-Jutglà, E.; Dreyfus, G.; Nguyen-Michel, V.H.; Mariani, J.; Kinugawa, K. Diagnosis of

Alzheimer’s disease with Electroencephalography in a differential framework. PLoS ONE 2018, 13, e0193607. [CrossRef]
9. Scheltens, P.; Blennow, K.; Breteler, M.M.B.; de Strooper, B.; Frisoni, G.B.; Salloway, S.; der Flier, W.M.V. Alzheimer’s disease.

Lancet 2016, 388, 505–517. [CrossRef]
10. Fishman, E. Risk of Developing Dementia at Older Ages in the United States. Demography 2017, 54, 1897–1919. [CrossRef]
11. Eratne, D.; Loi, S.M.; Farrand, S.; Kelso, W.; Velakoulis, D.; Looi, J.C. Alzheimer’s disease: Clinical update on epidemiology,

pathophysiology and diagnosis. Australas. Psychiatry 2018, 26, 347–357. [CrossRef]
12. Kester, M.I.; Scheltens, P. Dementia: The bare essentials. Pract. Neurol. 2009, 9, 241–251. [CrossRef]
13. Pietrzak, K.; Czarnecka, K.; Mikiciuk-Olasik, E.; Szymanski, P. New Perspectives of Alzheimer Disease Diagnosis—The Most

Popular and Future Methods. Med. Chem. 2018, 14, 34–43. [CrossRef] [PubMed]
14. Rodrigues, P.M.; Teixeira, J.P. Classification of Electroencephalogram signals using Artificial Neural Networks. In Proceedings of

the 2010 3rd International Conference on Biomedical Engineering and Informatics, Yantai, China, 16–18 October 2010; Volume 2,
pp. 808–812. [CrossRef]

15. Blocka, K. EEG (Electroencephalogram): Purpose, Procedure, and Risks. Available online: https://www.healthline.com/health/
eeg (accessed on 10 February 2022).

16. Siuly, S.; Li, Y.; Zhang, Y. Electroencephalogram (EEG) and Its Background. In Health Information Science; Springer International
Publishing: Berlin/Heidelberg, Germany, 2016; pp. 3–21. [CrossRef]

17. Sanei, S.; Chambers, J. EEG Signal Processing; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2007. [CrossRef]
18. Rodrigues, P.M.; Freitas, D.R.; Teixeira, J.P.; Alves, D.; Garrett, C. Electroencephalogram Signal Analysis in Alzheimer’s Disease

Early Detection. Int. J. Reliab. Qual. E-Healthc. 2018, 7, 40–59. [CrossRef]
19. Rodrigues, P.M.; Bispo, B.C.; Garrett, C.; Alves, D.; Teixeira, J.P.; Freitas, D. Lacsogram: A New EEG Tool to Diagnose Alzheimer’s

Disease. IEEE J. Biomed. Health Inf. 2021, 25, 3384–3395. [CrossRef] [PubMed]
20. Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent

component analysis. J. Neurosci. Methods 2004, 134, 9–21. [CrossRef]
21. Galea, M.; Woodward, M. Mini-Mental State Examination (MMSE). Aust. J. Physiother. 2005, 51, 198. [CrossRef]
22. Bajaj, N. Wavelets for EEG Analysis. In Wavelet Theory; IntechOpen: London, UK, 2021. [CrossRef]
23. Misiti, M.; Misiti, Y.; Oppenheim, G.; Poggi, J.M. Wavelet Toolbox User’s Guide Version 3; MathWorks: Natick, MA, USA, 2004.
24. Sairamya, N.; Subathra, M.; Suviseshamuthu, E.S.; George, S.T. A new approach for automatic detection of focal EEG signals

using wavelet packet decomposition and quad binary pattern method. Biomed. Signal Process. Control 2021, 63, 102096. [CrossRef]
25. Al-Qammaz, A.Y.; Yusof, Y.; Ahamd, F.K. An enhanced Discrete Wavelet Packet Transform for Feature Extraction in Electroen-

cephalogram Signals. In Proceedings of the International Conference on Imaging, Signal Processing and Communication—ICISPC
2017, Penang, Malaysia, 26–28 July 2017; ACM Press: New York, NY, USA, 2017. [CrossRef]

26. Hu, L.; Zhang, Z. EEG Signal Processing and Feature Extraction; Springer: Singapore, 2019. [CrossRef]
27. Das, A.B.; Bhuiyan, M.I.H. Discrimination and classification of focal and non-focal EEG signals using entropy-based features in

the EMD-DWT domain. Biomed. Signal Process. Control. 2016, 29, 11–21. [CrossRef]
28. Rodríguez-Sotelo, J.; Osorio-Forero, A.; Jiménez-Rodríguez, A.; Cuesta-Frau, D.; Cirugeda-Roldán, E.; Peluffo, D. Automatic Sleep

Stages Classification Using EEG Entropy Features and Unsupervised Pattern Analysis Techniques. Entropy 2014, 16, 6573–6589.
[CrossRef]

29. Faust, O.; Bairy, M. Nonlinear analysis of physiological signals: A review. J. Mech. Med. Biol. 2012, 12, 1–21. [CrossRef]

http://doi.org/10.1038/s41582-019-0244-7
http://dx.doi.org/10.1002/alz.12328
http://dx.doi.org/10.1007/978-981-15-1831-7_11
http://dx.doi.org/10.1016/j.jalz.2019.01.010
http://dx.doi.org/10.1503/jpn.110190
http://dx.doi.org/10.1155/2018/5174815
http://dx.doi.org/10.1371/journal.pone.0193607
http://dx.doi.org/10.1016/S0140-6736(15)01124-1
http://dx.doi.org/10.1007/s13524-017-0598-7
http://dx.doi.org/10.1177/1039856218762308
http://dx.doi.org/10.1136/jnnp.2009.182477
http://dx.doi.org/10.2174/1573406413666171002120847
http://www.ncbi.nlm.nih.gov/pubmed/28969570
http://dx.doi.org/10.1109/BMEI.2010.5639941
https://www.healthline.com/health/eeg
https://www.healthline.com/health/eeg
http://dx.doi.org/10.1007/978-3-319-47653-7_1
http://dx.doi.org/10.1002/9780470511923
http://dx.doi.org/10.4018/IJRQEH.2018010104
http://dx.doi.org/10.1109/JBHI.2021.3069789
http://www.ncbi.nlm.nih.gov/pubmed/33784628
http://dx.doi.org/10.1016/j.jneumeth.2003.10.009
http://dx.doi.org/10.1016/S0004-9514(05)70034-9
http://dx.doi.org/10.5772/intechopen.94398.
http://dx.doi.org/10.1016/j.bspc.2020.102096
http://dx.doi.org/10.1145/3132300.3132303
http://dx.doi.org/10.1007/978-981-13-9113-2
http://dx.doi.org/10.1016/j.bspc.2016.05.004
http://dx.doi.org/10.3390/e16126573
http://dx.doi.org/10.1142/S0219519412400155


Bioengineering 2022, 9, 141 16 of 16

30. Olofsen, E.; Sleigh, J.; Dahan, A. Permutation entropy of the electroencephalogram: A measure of anaesthetic drug effect. Br. J.
Anaesth. 2008, 101, 810–821. [CrossRef]

31. Albertovich, T.D.; Aleksandrovna, R.I. The Fractal Analysis of the Images and Signals in Medical Diagnostics. In Fractal
Analysis—Applications in Health Sciences and Social Sciences; InTechOpen: London, UK, 2017. [CrossRef]

32. Wijayanto, I.; Hartanto, R.; Nugroho, H.A. Higuchi and Katz Fractal Dimension for Detecting Interictal and Ictal State in
Electroencephalogram Signal. In Proceedings of the 2019 11th International Conference on Information Technology and Electrical
Engineering (ICITEE), Pattaya, Thailand, 10–11 October 2019.

33. Peck, R. Preliminary Edition of Statistics: Learning from Data (with Printed Access Card for Jmp); Thomson Learning: Boston, MA,
USA, 2013.

34. Priddy, K.L.; Keller, P.E. Artificial Neural Networks: An Introduction; SPIE: Bellingham, WA, USA, 2005. [CrossRef]
35. Sevani, N.; Hermawan, I.; Jatmiko, W. Feature Selection based on F-score for Enhancing CTG Data Classification. In Proceedings

of the 2019 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom), Banda Aceh,
Indonesia, 22–24 August 2019. [CrossRef]

36. Fiscon, G.; Weitschek, E.; Cialini, A.; Felici, G.; Bertolazzi, P.; Salvo, S.D.; Bramanti, A.; Bramanti, P.; Cola, M.C.D. Combining
EEG signal processing with supervised methods for Alzheimer’s patients classification. BMC Med. Infor. Decis. Mak. 2018, 18.
[CrossRef]

37. Safi, M.S.; Safi, S.M.M. Early detection of Alzheimer’s disease from EEG signals using Hjorth parameters. Biomed. Signal Process.
Control 2021, 65, 102338. [CrossRef]

38. Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to
deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [CrossRef]

http://dx.doi.org/10.1093/bja/aen290
http://dx.doi.org/10.5772/intechopen.68167
http://dx.doi.org/10.1117/3.633187
http://dx.doi.org/10.1109/cyberneticscom.2019.8875656
http://dx.doi.org/10.1186/s12911-018-0613-y
http://dx.doi.org/10.1016/j.bspc.2020.102338
http://dx.doi.org/10.1038/s41591-018-0316-z

	Introduction
	Materials
	Methods
	Preprocessing
	Signal Processing and Feature Extraction
	Wavelet Packet Decomposition
	Non-Linear Analysis
	Feature Extraction Process

	Wavelet Selection Process
	Feature Selection and Classification Procedure

	Results and Discussion
	Conclusions
	References

