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Abstract: Ankle sprains are generally the most common injuries that are frequently experienced
by competitive athletes. Ankle sprains, which are the main cause of ankle instability, can impair
long-term sports performance and cause chronic ankle instability (CAI). Thus, a comprehensive
understanding of the key factors involved in repeated ankle strains is necessary. During jumping
and landing, adaptation to the landing force and control of neuromuscular activation is crucial in
maintaining ankle stability. Ankle mobility provides a buffer during landing, and peroneus longus
activation inhibits ankle inversion; together, they can effectively minimize the risk of ankle inversion
injuries. Accordingly, this study recommends that ankle mobility should be enhanced through active
and passive stretching and muscle recruitment training of the peroneus longus muscles for landing
strategies should be performed to improve proprioception, which would in turn prevent ankle sprain
and injury to neighboring joints.

Keywords: ankle sprain; unanticipated landing; dynamic tasks; electromyography

1. Introduction

Competitive athletes often experience lower extremity musculoskeletal injuries during
sport and military style physical activities, particularly lateral ankle sprains (LAS) [1–4].
Studies indicate that 40–75% of people who experienced LAS for the first time developed
chronic ankle instability (CAI) due to pathomechanical impairments, sensory–perceptual
impairments, or motor behavioral impairments. The updated model of CAI is usually char-
acterized by eight primary factors, including: (1) primary tissue injury; (2) pathomechanical
impairments; (3) sensory–perceptual impairments; (4) motor behavioral impairments;
(5) personal factors; (6) environmental factors; (7) component interactions; (8) the spectrum
of clinical outcomes (Figure 1) [1,5–8]. Its main symptoms include repetitive episodes
or perceptions of the ankle giving way, ongoing symptoms such as ankle pain, partial
functional impairment, weakness, structural impairment, proprioception, and reduced
ankle range of motion (ROM) [1,9,10]. CAI is associated with decreased neuromuscular
control, thus aggravating ankle instability and further reducing proprioception. Therefore,
adjustments must be made in the lower extremity kinetic chain while landing to decrease
force transfer and impact on the lower extremities [11–14].

When performing dynamic tasks such as cutting, jumping, and landing movements,
the ankles exhibit inversion and/or plantar flexion, internal rotation, and foot adduction
(calcaneal supination), which can result in ankle sprain injuries [15–17], anterior cruciate
ligament (ACL) injuries, and other lower extremity-related injuries [18]. Two studies indi-
cated that ankle sprains may be related to knee injuries, based on a significant association
between ankle sprain history and knee injury history [19–21]. As reported, an excessive
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ground reaction force (GRF) during landing can, in a non-contact situation, increase knee ab-
duction and ankle supination, thereby increasing the risk of lower extremity injuries [22,23].
Accordingly, using unfavorable coordination strategies to perform movements may greatly
increase the risk of ankle injuries [24]. In most jumping tasks, the activation levels of the
muscle groups surrounding the lower extremity joints and the amount of GRF are adjusted
from the distal to the proximal end. Inappropriate adjustment of the two mechanisms can
largely reduce their ability to protect the knee joints, resulting in ACL injury and worsening
ankle instability [25].

Theisen and Day [14] observed that people with CAI had different movement patterns
in the lower extremities, particularly, a smaller knee flexion angle, than those without
CAI. Having an ideal joint mobility is conducive to absorbing the force buffer caused by
the external environment. However, when joint mobility is limited, favorable landing
patterns can only be achieved through the musculoskeletal system [26]. Joint stability
depends on the interaction between active (muscles and proprioception) and passive (joint
capsule and ligament) tissues [27]. The muscles are activated to provide a dynamic defense
mechanism [28]; for example, the peroneus longus and tibialis anterior muscles stabilize
the ankles [29]. Because an ankle sprain greatly reduces ankle stability, the ankles must
be stabilized when performing dynamic tasks through coordination and control mecha-
nisms among other lower extremity joints [30]. The present literature review assesses the
characteristics of GRF and neuromuscular activation in people with ankle instability; this
allows understanding the movement control strategies and muscular activation control
following an ankle sprain and provides coaches, athletes, and clinicians with insights into
ankle instability and risk assessment of other lower extremity injuries. In this work, com-
prehensive literature and original and review articles searches were performed to identify
peer-reviewed journal articles on lower extremity muscle activation or GRF during landing
with ankle instability. Two independent authors (Lin, J.Z. and Lin, Y.A.) systematically
searched the literature in electronic databases. The online databases of PubMed, Web of
Science, SPORTDiscus, and CINAHL were searched from inception through to 2021 using
medical subject headings, vocabulary, and keyword searches. The keywords included terms
such as (1) ankle instability or CAI or ankle sprain; (2) biomechanics or electromyography
or EMG; (3) peroneal longus or tibialis anterior or gastrocnemius; (4) landing; (5) English
language. Duplicate studies were excluded. Inclusion criteria: all articles were considered
for inclusion, irrespective of their publication date. Studies were excluded if (1) the full
text was unavailable; (2) the text was not written in English; (3) the text did not mention
ankle instability, sprain, and CAI or muscle; (4) the text was deemed irrelevant by the
authors. Exclusion criteria: articles were excluded if (1) they investigated initial ankle
sprain injury; (2) used ankle bracing on landing; (3) examined kinematic, kinetic, and/or
muscle activity variables during bilateral jumping; (4) fatigue on landing; (5) the articles
were not published in a peer-reviewed journal.
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Figure 1. The updated model of chronic ankle instability. Note: CAI is determined at least 12 months
after the initial ankle sprain; ATFL: Anterior talofibular ligament; CFL: Calcaneofibular ligament;
HRQOL: Health-related quality of life; Modified from Hertel and Corbett (2019).

2. The Importance of Neuromuscular Control for Ankle Sprains

The ankle comprises approximately 28 bones, including the sesamoid bones in the
foot; the main bones are the tibia, fibula, talus, and calcaneus. These bones, in cooperation
with the neighboring ligaments and muscle groups, provide satisfactory joint mobility
and a complete range of joint movements in three axes: dorsiflexion and plantar flexion,
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inversion and eversion, and pronation and supination [31]. The mechanisms of ankle
injuries include bone structure, ligament strength, muscular activation, and movement
coordination. From the perspective of the benefits of lower extremity muscle activation,
this study first explored the prime movers of the ankle: the plantar flexors, invertors, and
evertors. According to the relative strength of ankle muscles (Figure 2) [31], the largest
contributor among the plantar flexors is the soleus, the tibialis anterior muscle among the
dorsiflexors, the tibialis posterior muscle among the invertors, and the peroneus longus
muscle among the evertors, which contribute the most to ankle sprain resistance [32–34].

Electromyography (EMG)—a common research instrument used to conduct neuro-
muscular activation analysis in relation to ankle instability—involves observing muscular
activation characteristics before and after landing from a jump. EMG data are represented
using the average, root mean square, and integral value [35–37], all of which can be stan-
dardized on the basis of maximum voluntary isometric contraction (or maximum voluntary
contraction from the maximum value of the task) to facilitate a comparison between dif-
ferent movements or muscles [38,39]. In summary, EMG serves as a crucial indicator for
assessing neuromuscular control capacity, reveals the level of activation and contribution
of muscle groups surrounding the ankles during landing, and offers a complete description
of the relationships between joints and muscles.
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Figure 2. Relative muscle strength percentage of ankle (%). Note: SOL: Soleus; GA: Gastrocnemius;
FPL: Flexor pollicis longus; FDL: Flexor digitorum longus; TA: Tibialis anterior; EDB: Extensor
digitoralis longus; EPL: Extensor pollicis longus; FTM: Fibularis tertius muscle; PT: Posterior tibial;
PL: Peroneal longus; PB: Peroneal brevis; Modified from Nordin and Frankle (2001).

The mechanism of an ankle sprain involves over-inversion and/or foot adduction (cal-
caneal supination), may or may not present plantar flexion [40,41], and includes the impact
of external forces during landing; an ankle sprain occurs easily when the peroneus longus
muscle cannot prevent inversion in a timely manner [25,42]. Suda et al. [43] conducted a
study of 21 people with functional ankle instability (FAI) and 19 control group participants
who were asked to perform vertical jump smashes with both feet. They analyzed the
activation of the tibialis anterior, gastrocnemius, and peroneus longus muscles 200 ms
before and after landing and found that those with FAI exhibited a significantly lower level
of peroneus longus muscle activation 200 ms before landing and a significantly higher
level of tibialis anterior muscle activation 200 ms after landing than the control group [43].
The researchers also investigated neuromuscular control in people with CAI performing
jumping and landing movements, which yielded consistent results [44]. These findings
verified that people with ankle instability sustained partial damage to their neuromuscular
control due to a history of inversion sprains, and this damage could reduce the level of per-
oneus longus activation or increase the reaction time [42,45,46]. These subjects’ movement
patterns changed after the sprains, persisting even after ≥3 months of complete recovery
from the sprain. The most direct consequence of sprains is the incomplete activation of the
peroneus longus muscle before landing, which has long been considered key to preventing
recurrent ankle sprains. Studies have shown that the subtalar joint supinates before land-
ing [36,47], and the peroneus longus activation, which stabilizes the ankle, positions the
subtalar joint from the inverted position back to the neutral position when the foot lands
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on the ground [43,48,49]. In the presence of proprioception or neuromuscular impairment,
people with ankle instability will exhibit limited peroneus longus pre-activation; in addi-
tion, ankle sprains typically occur in unexpected situations. Therefore, to prevent ankle
sprains, the subtalar joint must be in the neutral position, and the peroneus longus muscle
must be activated in a timely manner.

According to Kipp [30], to combat ankle instability following an ankle sprain, a
coordination and control strategy known as the compensatory mechanism, among other
joints, is induced to keep the joint stable [30]. The compensatory mechanism in people
with ankle instability involves a high level of activation of the proximal joint muscles,
such as muscle groups surrounding the ankle, knee, and hip joints, to compensate for
incoordination caused by ankle instability, thus stabilizing the kinetic chain in the lower
extremity. For example, the gastrocnemius and rectus femoris muscles play a critical role
in landing from a jump [50,51]. The two muscles are the concurrent prime movers of two
joints each; the gastrocnemius muscle serves as the ankle extensor and knee flexor, and the
rectus femoris muscle serves as the knee extensor and hip flexor. The two muscles act to
reduce ankle or knee injuries [52]. Overall, neuromuscular control exerts a great influence
on ankle sprains. For people with CAI, the quality of their joint movement patterns and
muscular activation is compromised to some extent; however, they can still perform high-
intensity exercises with satisfactory coordination and control strategies among their joints
and muscles. Accordingly, in addition to facilitating peroneus longus strengthening to
train muscle recruitment and reduce the occurrence of inversion sprains, the muscle groups
surrounding other joints must be enhanced to provide favorable landing patterns for people
with CAI.

3. The Influence of Landing Force on Ankle Instability

Most studies have investigated the effect of ankle instability on GRF during land-
ing; these studies analyzed the peak vertical GRF [36,53–57], peak anterior and posterior
GRF [36,53], peak medial and lateral GRF [36,53,57], and the time to peak [36,47,53,54,57,58].
A consistent finding was that people with ankle instability had a significantly higher peak
vertical GRF and a greater difference between the times of landing. Accordingly, the
landing force is a high-risk injury indicator for people with ankle instability [15,54,59,60].
The landing force is closely associated with motor coordination. An unfavorable motor
coordination results in an excessively high landing force and a low buffering effect, leading
to excessive load on the feet during landing and damaging the lower extremity muscu-
lar system [61,62]. This is one of the main causes of ankle instability [63,64]. The lower
extremity joints form a closed kinetic chain during landing, and the collision load from
the vertical GRF is transferred through the ankle, knee, and hip joints to the proximal
joints [26,61]. In this continuous process, and in the context of unfavorable neuromuscular
control coupled with ankle instability, the risk of sport injuries in athletes is markedly
increased. The amount of landing force is affected by external conditions [62]. A study
revealed that jumping down vertically from a 30 cm-high platform will yield a landing force
four times higher than the jumper’s body weight [65]. Attenborough et al. and Bates et al.
argued that an excessively high vertical GRF during landing may result in ankle or knee
instability. Therefore, vertical GRF has been a common indicator adopted by researchers to
assess load on lower extremity joints.

The buffering movement performed by humans in response to GRF is mostly limited
to the movement range of the ankle. De Ridder et al. [54] investigated the multi-segment
foot landing kinematics in 38 subjects with CAI, 28 copers, and 30 controls. The results
showed that the CAI and coper groups exhibited less ankle plantar flexion at touchdown.
Additionally, the study demonstrated that the total ROM of the ankle in the sagittal plane
decreased more in people with CAI than in the control group [54]; such a smaller move-
ment range can result in a stiffer landing, causing the vertical GRF and landing load to
soar [54,66]. A limited ankle dorsiflexion affects how people absorb the landing force
with the gastrocnemius–soleus complex, resulting in increased stress to the talar articular
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surface [67]. According to Brown et al. [53] people with LAS sustain a high level of vertical
GRF and loading rate. This is possibly because repeated sprains lead to the deterioration
of the articular cartilage and to osteoarthritis [68], which undermines the resistance of
the articular cartilage to impact, rendering it unable to react to the rapid and high load
collision force during landing and thus creating high-risk factors in the transfer of force to
the ankle [53,68]. If an invasive medical treatment is not performed on people with ankle
instability, an examination must be performed to determine whether they have developed
osteoarthritis in the ankle, because chronic ankle conditions are directly related to the effects
of the vertical landing force and the loading rate during running [25,60]. CAI subjects also
showed decreased ROM of the ankle and decreased time to peak GRF during a single leg
jump landing compared to healthy controls. This evidence indicates that CAI makes it
improbable to attenuate the landing force and increases the stress transmitted to the ankle
joint [47]. Accordingly, people with ankle instability have an unfavorable buffering effect
on the vertical load and the time of muscle action due to injuries in the proximal joints,
which in turn changes the movement patterns and even creates a unique compensatory
strategy. In the long run, this may increase the risk of injury to other joints in the lower
extremity kinetic chain [16,69].

4. How CAI Patients Show Postural Control Deficits during Landing Tasks

From a movement control perspective, the primary factors that affect motor reactions in
an unanticipated landing task are the allocation of attention and the time available to react.
The main stimulation stage for the allocation of attention occurs before the performance of
a movement until the completion of the movement task. The available time to react refers to
the performance result of an immediate reaction movement pattern affected by the attention
allocation [58,70]. However, landing tasks are usually unanticipated in most real-world
sports scenarios. Athletes who developed LAS or ACL injuries typically focused their
attention on the hand, ball, or a particular target during landing [18,70,71]. This indicates
that when people with ankle instability perform an unanticipated movement, more sensory
information is required in lower extremity activities to stimulate neuromuscular reactions.
Static and dynamic postural control deficits are consistently found in individuals with
acute LAS and CAI [72–78]. Based on the current data, evidence indicates that CAI exists
in subjects with postural control impairments. After an ankle injury, proprioceptive and
neuromuscular insufficiencies alter postural control, leading to different compensatory
strategies. Therefore, constraints of the sensory system, motor system, and central nervous
system may lead to alterations in lower extremity joints and subsequently altered joint
loading [67]. Accordingly, sensory information stimulation is greater in gait than in an
unanticipated landing. When people with ankle instability perform an unanticipated
landing, functional ankle instability (FAI) and the lack of stimulation by sensory information
may result in inadequate lower extremity muscle activation, thus increasing the risk of
injury during landing.

The ideal balancing movement during landing involves integration among the sensory
system, central nervous system, and motor system [79] (Table 1). The inner ear’s vestibule,
the optic verve, and proprioception in the sensory system maintain the center of mass of
the body in the correct base of the support area. The central nervous system integrates
and coordinates limb movements, muscular activation, and balancing strategy. Finally, the
motor system generates the main movement pattern and dynamically modifies the limb
positions to maintain the center of gravity in a balanced and stable state [80–82]. Stabilizing
and balancing in a dynamic posture requires the integration of involuntary sensations and
impulses and precise muscle recruitment to control the level of muscular activation to
perform appropriate and coordinated movements [83].
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Table 1. Balance control system of posture stability.

System Content

Sensory system Vision, vestibular sense, proprioception, touch, vibration sense
Motor system Muscle strength, neuromuscular control
Central nervous system Integration of sensory and motor factor

In terms of information processing, balancing strategies in human body movements
usually involve the use of automatic processing to respond to external interferences; auto-
matic processing refers to the unconscious automatic execution of strategies through rapid
and direct information processing, which requires no attention and is not disturbed by
the external environment [84]. Common stabilizing strategies include the ankle strategy,
knee strategy, hip strategy, stepping strategy, and suspensory strategy. The lower extremity
musculoskeletal system generates continuous coping strategies to stabilize the limbs when
its movements are impaired. Increasing joint stability is among the most critical balancing
strategies. During jumping and landing, the lower extremity is loaded with body weight
and needs to act against the load from the height of the jump. Because static restraints such
as the articular capsule and ligament cannot withstand such external load, the dynamic
restraints come into play to maintain the dynamic stability of the limbs; this working
process of the dynamic restraints is known as dynamic joint stability [85].

5. Conclusions

Studies investigating neuromuscular control and GRF in people with ankle instability
have revealed that the main muscular control problem of patients or athletes with recurrent
ankle sprains is insufficient peroneus longus activation. For people with an inadequate
buffer against the landing force, the presence of chronic joint conditions must be determined
through relevant examinations, including an ankle mobility assessment. The timely perfor-
mance of active or passive stretching also helps increase the range of motion. With regard
to overall injury prevention strategies, muscle recruitment training of the peroneus longus
muscle should be performed to develop an appropriate landing strategy; strengthening the
peroneus longus activation can further prevent recurrent ankle sprains and the occurrence
of other lower extremity injuries.
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