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Abstract: Kidney–ureter–bladder (KUB) imaging is a radiological examination with a low cost, low
radiation, and convenience. Although emergency room clinicians can arrange KUB images easily as a
first-line examination for patients with suspicious urolithiasis, interpreting the KUB images correctly
is difficult for inexperienced clinicians. Obtaining a formal radiology report immediately after a
KUB imaging examination can also be challenging. Recently, artificial-intelligence-based computer-
aided diagnosis (CAD) systems have been developed to help clinicians who are not experts make
correct diagnoses for further treatment more effectively. Therefore, in this study, we proposed a CAD
system for KUB imaging based on a deep learning model designed to help first-line emergency room
clinicians diagnose urolithiasis accurately. A total of 355 KUB images were retrospectively collected
from 104 patients who were diagnosed with urolithiasis at Kaohsiung Chang Gung Memorial Hospital.
Then, we trained a deep learning model with a ResNet architecture to classify KUB images in terms of
the presence or absence of kidney stones with this dataset of pre-processed images. Finally, we tuned
the parameters and tested the model experimentally. The results show that the accuracy, sensitivity,
specificity, and F1-measure of the model were 0.977, 0.953, 1, and 0.976 on the validation set and
0.982, 0.964, 1, and 0.982 on the testing set, respectively. Moreover, the results demonstrate that the
proposed model performed well compared to the existing CNN-based methods and was able to
detect urolithiasis in KUB images successfully. We expect the proposed approach to help emergency
room clinicians make accurate diagnoses and reduce unnecessary radiation exposure from computed
tomography (CT) scans, along with the associated medical costs.

Keywords: computer-aided diagnosis; kidney–ureter–bladder; kidney stone; deep learning; resid-
ual network

1. Introduction

Studies based on data from seven countries (Italy, Germany, Scotland, Spain, Sweden,
Japan, and the United States) have shown that the prevalence and incidence of kidney
stones have been increasing globally [1–3]. To address this problem, various methods have
been developed to detect and treat kidney stones [4,5]. Computed tomography (CT) is a
particularly accurate diagnostic method, with sensitivity and specificity ranging from 94%
to 100% and 92% to 94.2% for kidney stones, respectively [6,7]. Therefore, CT is the gold
standard for kidney stone diagnosis. However, CT is costly and requires a higher radiation
dose than plain film X-ray imaging. For example, the radiation dose of an abdominal CT
scan ranges from 8 to 34 mGy [8,9], in contrast to the lower dose of 2.47 mGy required
to record a kidney–ureter–bladder (KUB) image [10]. Similarly, a stomach CT requires
50 times the radiation dose of a plain film stomach X-ray [11]. Although low-dose CT
reduces the radiation dose from 25 to 17 mGy for abdominal CT scans, this value is still
higher than that of plain film X-ray imaging [12]. Therefore, plain film X-ray imaging
may be considered as a cost-effective alternative to CT, which also causes less harm to the
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body. However, X-ray images also have a propensity for false positives owing to their 2D
nature, and their resolution does not suffice to identify abnormalities in dense tissues [13].
For example, KUB images have sensitivities of only 44–77% and specificities of 80–87% in
kidney stone detection [14], which are considerably inferior values compared to those of
CT. Improving the sensitivity of KUB imaging for use with kidney stones could therefore
allow X-ray scans to be used as a widely applicable option to diagnose the condition, which
would also reduce medical costs.

Medical imaging has become increasingly important in clinical diagnosis. X-rays,
magnetic resonance imaging (MRI), and CT are among the most common medical imaging
modalities. Medical image processing often depends on the experience of radiologists,
who must analyze these images and draw conclusions using a subjective approach. As
the variety and number of medical imagery techniques have significantly increased in
recent years, manual analysis has become increasingly time-consuming and labor-intensive.
To address this problem, machine learning models have been used to replicate human
visual perception mechanisms to enable computational systems to automatically classify
medical images as diagnostic aids. Computational techniques have become significantly
more powerful over the last several decades owing to rapid advances in AI and computing
hardware, and the use of computer-aided methods to analyze and process medical imagery
has become incredibly useful for diagnosticians both in classifying and in augmenting
those images. Thus, computer-aided diagnosis (CAD) has become theoretically and practi-
cally significant as an important trend in medical science. The use of computer vision to
automatically analyze and process medical images has several unique advantages [15–17].
For example, this approach leverages the immense computing power of modern hardware
to achieve rapid and accurate analysis and processing, which renders its findings immune
to fatigue or cognitive issues with information overload. Furthermore, computer technolo-
gies and networks can enable the rapid transfer of clinical data to facilitate the rapid and
accurate diagnosis of patients in remote locations. Machine learning algorithms designed
to diagnose and detect various medical conditions have become a topic of active research,
and the accuracy of artificial intelligence classifiers used to predict various related data
of patients with kidney stones has also increased [18]. Since the emergence of the first
convolutional neural network (CNN) (LeNet-5 [19]) in 1989, CNN models have continued
to improve, and deep CNNs have been shown to perform extremely well in medical image
processing [20–23]. The accuracy of CAD methods has also benefited from the progressive
improvement of such models [24,25]. In urology, several studies have considered the use of
neural networks to aid in the diagnosis of urinary diseases based on CT imaging [26–28].
The application of CAD to X-ray examinations has also yielded impressive results. For
example, a CNN model trained to diagnose urinary tract stones from plain film X-ray
imaging using pre-processed images showed a sensitivity of 89.6% and PPV of 56.9% for
kidney stones [29].

Thus far, KUB imaging is still considered as a first-line examination for urolithiasis
detection in the emergency room due to its convenience, low cost, and low radiation dose.
However, only highly experienced urologists or radiologists can diagnose urolithiasis
correctly from KUB images. Furthermore, emergency physicians who arrange KUB images
cannot immediately obtain a formal report from the experts. Hence, emergency physicians
without the necessary specialized experience are highly likely to either make incorrect
diagnoses or choose to arrange non-contrast CT scans for such patients, which may delay
further treatment or increase medical costs and the radiation dose. In this study, to address
this challenge, we constructed a CAD system based on a deep learning model trained to
help emergency physicians make correct diagnoses of urolithiasis from KUB images.
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2. Materials and Methods
2.1. Datasets

The protocol of the present study was approved by the Institutional Review Board of
Kaohsiung Chang Gung Memorial Hospital. A total of 355 KUB images were retrospectively
collected from 104 patients from Kaohsiung Chang Gung Memorial Hospital who were
diagnosed with stones in their upper urinary tract. The presence of stones in the upper
urinary tract shown in these 355 images was formally reported by radiologists and then
confirmed on a case-by-case basis by two experienced urologists specializing in urolithiasis.
The set of KUB images was first divided into groups of training images with single or
multiple urinary tract stones, and the dataset was augmented through various image
pre-processing operations to produce a total of 1130 images. Then, these 1130 images
were divided into three datasets, with 856 images used to train the network, with 80%
(684 images) allocated to the training process itself and 20% (172 images) for validation.
The remaining 274 images were used to evaluate the performance of the trained model
based on several metrics and to test its generalizability. A flowchart of the work performed
in this study is shown in Figure 1.
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2.2. Image Pre-Processing

First, a Mask R-CNN model was trained to detect the spine and pelvis bones in
the KUB images [30,31], and the trained model was applied to mask most of the high-
brightness regions. The images were then centered on the spine, and the area above the
pelvis region was segmented. Because identifying abnormalities in highly dense tissues
using plain film X-ray images is difficult, we aimed to exclude factors that tend to lead
to the misidentification of features around the kidneys [13]. Furthermore, because of the
characteristics of plain film X-ray imaging, dense tissues appear with higher brightness.
Hence, histogram equalization [32] can easily lead to overexposure of the image and thus
influence the detection of urinary tract stones. The effects of masking on an X-ray image
may be observed from a histogram. Contrast-limited adaptive histogram equalization
(CLAHE) has been used to enhance contrast in KUB imaging [33], which allows stones
to be distinguished from the background through their brightness and also prevents
overexposure from excessively high brightness. In this study, we compared the effects of
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histogram equalization and CLAHE on the KUB images. Finally, patches with a size of
100 × 100 pixels were cropped from the pre-processed X-ray plain films. Patches containing
a stone were cropped with the stone at the center, whereas patches without a stone were
randomly cropped from the pre-processed plain film X-ray images [29].

2.3. Data Augmentation

Numerous studies have shown that data augmentation is effective in preventing over-
fitting, which is more likely to occur for CNN models trained with smaller datasets [34–37].
In particular, relatively large datasets of medical images for analysis are often difficult to
obtain. Furthermore, the generalizability of learning models depends on the diversity of the
data samples [38–40]; the more generalizable a model is, the more accurate its results with
images that were not present in the training dataset. During training, 100% accuracy can
be achieved very quickly, although the prediction accuracy of a model trained in this way
is typically reduced. To prevent overfitting and improve sample diversity, we performed
data augmentation prior to the training process by rotating, vertically and horizontally
translating, magnifying/shrinking, and shear-mapping the original images. However, in
contrast to conventional data augmentation methods, the images in the training set were
randomly augmented after each iteration of the training process to produce a dynamically
augmented dataset. This approach also greatly reduces memory consumption.

2.4. Deep Learning Models

We adopted a ResNet-50 architecture as the CNN model in this study. Many studies
have shown that the fineness of detail that can be extracted by a CNN increases with the
depth of the network. However, He et al. (2016) demonstrated that performance degrades
if the depth increases beyond a certain point [41]. Residual network (ResNet) architectures
are based on residual blocks comprising convolutional, activation, and batch normalization
(BN) layers F(x), and a shortcut connection that reproduces the input x. Because the output
of a residual block is H(x) = F(x) + x, the layers in a traditional network effectively learn the
difference between the true output and x, i.e., the residual, as shown in Figure 2. Therefore,
for the simple case in which the network has not learned any features and the input is
already optimal, F(x) is approximately 0, or H(x) = x (i.e., the identity relation). This solves
the degradation problem and allows for extremely deep networks. The ResNet architecture
is shown in Figure 3. By employing deep learning models for image classification, images
can be automatically classified and labeled for various applications [42].
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2.5. Technical Details and Evaluation Metrics

The data were divided into training, validation, and testing sets. The validation set
was taken from the training set at a 20:80 ratio. The testing set consisted of 24% of the total
data and was used to evaluate the accuracy of the trained ResNet model. The inputs of the
image classification model consisted of images with a size of 224 × 224 px, and the urinary
tract stone images were diversified using data augmentation techniques (random rotation,
horizontal/vertical translation, magnification/zooming out, and shear-mapping). The
Keras API with the Tensorflow platform (version 2.9.1) was used to construct the ResNet
model. Ranger [43], which was created by combining RAdam [44] with LookAhead [45],
was used as an optimizer. As with Adam, RAdam converges quickly and achieves a level of
optimality similar to that of SGD. Furthermore, RAdam converges similarly with different
learning rates, whereas Adam and SGD are much more sensitive to the learning rate and
require optimization. Binary cross-entropy was used as a loss function. The predictions
were used to construct a confusion matrix of four possible outcomes (see Figure 4). Correct
predictions are either true positive (TP) or true negative (TN), whereas incorrect predictions
are either false positive (FP) or false negative (FN). These outcomes were used to construct
seven metrics to evaluate the performance of the model, including accuracy, sensitivity,
specificity, precision, F1-measure, the receiver operator characteristic (ROC) curve, and the
area under the ROC curve (AUC). Accuracy is defined as

accuracy =
TP + TN

TP + TN + FP + FN
(1)

Although this is a simple metric, accuracy is susceptible to bias for unbalanced training
data. Therefore, we also used the four other metrics mentioned above. Sensitivity, also
known as recall, provides the proportion of patients with kidney stones who were correctly
predicted as having the condition. Sensitivity is given by

sensitivity =
TP

TP + FN
(2)

Specificity provides the proportion of patients without kidney stones who were cor-
rectly predicted as negative for the condition, and is given by

specificity =
TN

FP + TN
(3)
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Precision is the proportion of patients who actually had kidney stones among all
persons predicted to have the condition, and is given by

precision =
TP

TP + FP
(4)

The F-measure is a comprehensive measure of performance, of which F1-measure
is a special case. If β is equal to 1, the F1-measure will equally reflect both recall and
precision. However, if β is greater than 1, the F1-measure depends more on the recall
than the precision, and vice versa. The F1-measure is given by Equation (5); higher values
indicate better performance.

Fβ − measure =
(

1 + β2
) Precision × Recall
(β2 × Precision) + Recall

(5)

The last two metrics are the ROC curve and AUC. The ROC curve is obtained by
plotting the true positive rate (TPR) (y-axis) against the false positive rate (FPR) (x-axis).
The TPR is the proportion of positive predictions that are actually positive, and the FPR is
the proportion of positive predictions that are actually negative. Therefore, the ROC curve
represents the relationship between the FPR and TPR in the model. Because the (0, 1) point
corresponds to a perfect classification, the performance of a model is proportional to the
closeness of its ROC curve to the top-left corner. Similarly, the AUC is the area under the
ROC curve, which increases as the ROC curve approaches the top-left corner. Hence, the
performance of a classification model is directly proportional to the AUC.
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3. Results
3.1. Image Pre-Processing with Histogram

When histogram equalization (HE) is performed on KUB images, overexposure often
occurs at the spine and pelvis, which tends to affect training negatively. Figure 5 shows an
HE-processed image overexposed around dense tissues (bone), especially around the pelvis
and spine, which may induce deviations during the feature extraction process. Therefore,
all high-density regions in the KUB images must be masked. As shown in Figure 6, masking
the spine and pelvis greatly reduced the high-intensity area of the images. Nonetheless,
some overexposure still occurred at the rib cage, which is a common problem in HE. To
prevent image overexposure from HE, CLAHE was performed on the KUB images. From
Figure 7, it may be clearly observed that the CLAHE-processed image exhibits relatively
little overexposure. Therefore, the CLAHE-processed KUB images were considered suitable
for the observation of kidney stones.
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Figure 5. Many areas were overexposed in the HE-processed images, especially around dense tissue
such as bone. The renal stones were labelled with red frames by the experts.
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Figure 7. Contrast-limited adaptive histogram equalization (CLAHE) of a KUB image. It can
clearly be observed that CLAHE greatly reduced overexposure around the rib cage, which makes
identifying kidney stones relatively straightforward. The renal stones were labelled with red frames
by the experts.

3.2. Effects of Data Augmentation on Training

We trained the ResNet model using both augmented and non-augmented datasets.
Data augmentation was performed by rotating, horizontally and vertically translating,
magnifying/shrinking, and shear-mapping the original images. In the augmented dataset
(which contained the same number of images as the non-augmented dataset), these data
augmentation procedures were randomly applied to every image after each iteration to
ensure that the training data differed between iterations. The results were then compared
in terms of accuracy and loss. Figure 8a,b show the results obtained with and without data
augmentation, respectively. Although the accuracy increased much more rapidly when the
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model was trained on the non-augmented dataset, it was unable to obtain a similar level of
accuracy on the validation dataset in that case.
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3.3. Experimental Results

The model was trained for 50 epochs with an initial learning rate of 10−5. Because
appropriate decreases to the learning rate are conducive for optimization, the learning rate
was multiplied by 0.5 if the validation loss was not updated for five continuous epochs.
The epoch-wise changes in accuracy and loss are shown in Figure 9a,b, respectively. It
can be observed that the process of training from 0 epochs to 20 epochs converged rapidly.
The accuracy and loss of the training set and the verification set were close, indicating
that the model learned features in the initial stage well and classified them accurately.
The subsequent loss from the 20th to the 50th epochs gradually converged to the optimal
solution as the training ended. According to the confusion matrix shown in Table 1, the final
accuracy of the model was 0.977, and its accuracy on the testing set was 0.982. Sensitivity
is the ratio of patients with kidney stones who were correctly identified as positive cases,
while precision is the ratio of correct diagnoses among positive cases. Therefore, a high
sensitivity implies that false negatives are rare. Specificity is the ratio of patients without
kidney stones who were correctly diagnosed as negative cases. Therefore, a model with
a high specificity is unlikely to misdiagnose healthy subjects as positive cases. The F1-
measure is the harmonic mean of recall (sensitivity) and precision, which summarizes the
performance of a model. In kidney stone classification, the focus is on sensitivity, as the
primary goal is to correctly identify patients who suffer from kidney stones. The sensitivity,
specificity, precision, and F1-measure scores of our model were 0.953, 1, 1, and 0.976 on
the validation set and 0.964, 1, 1, and 0.982 on the testing set, respectively (see Table 2).
The ROC curves were also plotted to test the effectiveness of the model, and their AUCs
were 0.995 and 1 on the validation and testing sets, respectively (Figure 10a,b). When
AUC > 0.5, the classification performance of a classifier is better than random guessing,
and the model has positive predictive value. The AUC value of our model was quite close
to 1, which shows that the performance of our model was close to that of a theoretically
perfect classifier, and it was effective in predicting positive samples correctly.
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3.4. Comparison of Accuracy with an Existing Method

The sensitivity, precision, and F1-measure of our method were 0.964, 1, and 0.982 on
the testing set, respectively. Another CNN-based deep learning model [29] trained to detect
kidney stones in pre-processed plain film X-ray images was also used for comparison,
and the sensitivity, precision, and F1-measure of this model were 0.985, 0.762, and 0.862,
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respectively, as shown in Table 3. Therefore, the performance of the proposed method was
superior. This improvement may be attributed to the following factors. In addition to the
differences in data collection, we utilized iterative data augmentation and various image
pre-processing techniques. Data augmentation is commonly used in studies on medical
imaging, especially to address overfitting with small datasets, and has achieved excellent
results [46–48]. The use of CLAHE instead of HE for image pre-processing also helped
reduce overexposure of the plain film X-ray images.

Table 3. Overall performance with CNN-based model [29].

Sensitivity Precision F1-Measure

Proposed Model 0.964 1.000 0.982

CNN-based model [29] 0.985 0.767 0.862

4. Discussion

In this study, we trained a CNN model to classify KUB images according to the
presence of kidney stones. Although few studies have been conducted on the use of plain
film X-ray images to detect kidney stones, the results are promising. According to a recent
systematic review of recent AI advancements in urology by Dai et al. [49], only a single
study used KUB images [29]. Other studies largely considered machine and deep learning
models based on CT images, such as a work by Parakh et al. [50]. First, the advantages of
plain film X-ray images include their low dose and cost, which enables them to be used in a
wide range of medical institutions. Second, many deep learning models cannot accurately
detect small objects or features, and kidney stones usually occupy an extremely small
number of pixels in a KUB [51]. To address this problem, the images were cropped to
enlarge the size of kidney stones and to train the model more easily. Third, the accuracy
and generalizability of the model can be further improved by increasing the size of the
training dataset. In the context of medical imaging, some plain film X-rays of kidney stones
exhibit rarely-encountered patterns and features, which can make determining whether a
kidney stone is present difficult. However, owing to their rarity, learning models cannot
be trained on such images. By contrast, in most plain film X-ray images used to train
the model, kidney stone(s) could be observed with the naked eye. If a large number of
plain film X-ray images with difficult-to-observe kidney stones could be collected, the
generalizability of the model could then be enhanced with further training to produce a
highly reliable CAD tool. Although the kidney stones that our model was able to detect
were obvious in the X-ray images, the model was nonetheless able to differentiate plain film
X-ray images according to the presence or absence of such stones, which demonstrates that
this approach can be extended to object detection and segmentation in the future. In deep
learning studies on breast X-rays, over 4000 images have commonly been used to train
deep learning models [52–55]. In this study, only 1130 images were used, and the small
size of the dataset could have resulted in a poor training outcome. We therefore used data
augmentation techniques to avoid severe overfitting and achieve adequate generalizability.
In this study, we only used conventional data augmentation techniques as noted above
rather than a generative adversarial network (GAN). Because GAN models have been
successfully used to generate medical images [38,39,56,57], this approach remains as a
potential direction for future research.

5. Conclusions

In this study, we trained a ResNet model to classify KUB images based on the pres-
ence or absence of kidney stones. The proposed model presents excellent classification
performance in terms of several metrics and can be used in the immediate diagnosis of
kidney stones from plain film X-ray images. We draw the following conclusions from the
results. (1) The retention of the spine and pelvis bones during image pre-processing exhib-
ited an outsized impact on the accuracy of the model. (2) Overexposure from histogram
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equalization reduced the accuracy and other evaluation metrics. This can be alleviated
through masking and contrast-limited adaptive histogram equalization, which increase
the training accuracy and improve the performance of the model. (3) Overfitting can be
reduced for small datasets by augmenting the data used to train the model. This process
also improves the generalizability of the model on unknown data, which explains why
our model performed similarly on the validation and test sets. The proposed approach is
expected to reduce the consumption of medical resources and limit the patients’ radiation
exposure, which is beneficial for both patients and physicians.

In the future, the proposed ResNet model could be combined with object detection or
image segmentation strategies, such as SSD, Inception, or U-Net, to effectively detect very
small kidney stones. In addition, we plan to consider topics beyond image classification.
Once the classification model is more complete, we plan to study object detection and
segmentation methods to locate and label any kidney stone appearing in KUB images,
where each image may contain one or many objects of varying types. For object detection,
we expect to adopt RetinaNet [58], which adds a single-shot multibox detector (SSD) to
the frontend of ResNet and utilizes a focal loss function to improve image classification
accuracy on unbalanced data, which is often the case for medical data. However, object
detection methods only provide a rectangular bounding box enclosing a feature rather
than the exact profile of an object, which can be crucial to diagnose a condition. Therefore,
image segmentation is a quintessential part of an AI-driven CAD. To this end, we expect
to use CaraNet as an image segmentation model [59]. In a 1000 × 1000 px KUB image, a
kidney stone may occupy a region smaller than 20 × 20 px. Because CaraNet is specifically
designed for the segmentation of small objects, we plan to study the feasibility of using
CaraNet to improve the segmentation of small kidney stones in KUB images in future work.
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