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Abstract: Cardiovascular diseases (CVD) are the leading cause of mortality, morbidity, and “sudden
death” globally. Environmental and lifestyle factors play important roles in CVD susceptibility, but
the link between environmental factors and genetics is not fully established. Epigenetic influence
during CVDs is becoming more evident as its direct involvement has been reported. The discovery of
epigenetic mechanisms, such as DNA methylation and histone modification, suggested that external
factors could alter gene expression to modulate human health. These external factors also influence
our gut microbiota (GM), which participates in multiple metabolic processes in our body. Evidence
suggests a high association of GM with CVDs. Although the exact mechanism remains unclear, the
influence of GM over the epigenetic mechanisms could be one potential pathway in CVD etiology.
Both epigenetics and GM are dynamic processes and vary with age and environment. Changes
in the composition of GM have been found to underlie the pathogenesis of metabolic diseases
via modulating epigenetic changes in the form of DNA methylation, histone modifications, and
regulation of non-coding RNAs. Several metabolites produced by the GM, including short-chain
fatty acids, folates, biotin, and trimethylamine-N-oxide, have the potential to regulate epigenetics,
apart from playing a vital role in normal physiological processes. The role of GM and epigenetics
in CVDs are promising areas of research, and important insights in the field of early diagnosis and
therapeutic approaches might appear soon.

Keywords: epigenetics; gut microbiota; cardiovascular disorders; DNA methylation; histone modification;
miRNA

1. Introduction

Cardiovascular diseases (CVDs) are the leading causes of mortality globally. CVDs
are a diverse array of disorders associated with the heart and blood vessels. Some of the
common ones are coronary heart disease, hypertension, cerebrovascular disease, atheroscle-
rosis, myocardial infarction, ischemia/reperfusion injury, stroke, and heart failure, among
others. Myocardial infarction and stroke accounted for 85% of death in CVDs [1]. CVDs
are not just an enormous health concern but a significant financial threat, with trillions of
dollars’ worth of economic strain.

The mechanisms underlying the pathophysiology of CVDs are complex and far from
complete understanding. Epigenetics has recently been identified as a potential area
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of research in CVDs and has helped decipher the role of environmental influence over
genetics in pathological conditions [2]. “Epigenetics” (“epi”, meaning “upon”, “on”, or
“around” and the word “genetics”) can be defined as the mechanisms that affect gene
expression and function without altering the genome. It is a crucial process regulating
chromatin architecture, gene expression, and defining the cell’s phenotype, and thus, it
is directly involved in normal development and diseased state. Epigenetic markers are
hallmarks of various disorders and diseased states, such as diabetes mellitus, autoimmune
diseases, infectious diseases, cancer, CVDs, and several other disorders, which makes
them potential targets for new drug therapies. There are three main epigenetic processes
viz DNA methylation, chromatin remodelling (posttranslational histone modifications),
and RNA-based mechanisms such as microRNAs (miRNAs) and long non-coding RNAs
(LncRNAs) [3]. All these mechanisms work harmoniously to regulate the body’s normal
physiological functions. Epigenetic causality of CVDs is a relatively new and promising
field that has provided diverse yet critical insights. Occasionally, environmental factors
have a key role in CVD pathogenesis. Epigenetics addresses, to a certain extent, the
underlying processes for the effect of the environment on genetics and, consequently, how
these effects may be handed down down the generations [4]. Epigenetics also answers
the variability in susceptibility to CVDs among different individuals, forming the basis of
biomarkers and new therapeutic strategy development.

With new technologies such as methylation arrays, studying epigenome-wide varia-
tion has become cheaper and less tedious. Although a relatively nascent field, epigenetics
has already unravelled new mechanisms underlying the development of CVDs, such
as atherosclerosis, thrombosis, and inflammation. Further, the success of epigenetics in
oncology has provided us with promising proof of concept [5,6].

Besides influencing epigenetics, environmental factors such as diet are also known
to significantly alter the physiology of the microbiota present in the human gut. Human
gut microbiota (GM) is another crucial factor significantly associated with CVDs. Our
gut harbors more than 100 trillion microbes, ten times the number of human cells. Past
decades have unfolded the immense role of GM in human health and several diseased
states. Although most of the data regarding GM dysbiosis in CVDs is associative, we
believe it could very well be the underlying cause. GM dysbiosis has been associated
with several CVD pathologies, such as atherosclerosis, heart failure, etc., and predisposing
factors such as obesity and hypertension. GM-derived metabolites such as trimethylamine
(TMA)/trimethylamine-N-oxide (TMAO), short-chain fatty acids (SCFAs), and primary
and secondary bile acids are suggested to potentially contribute to the pathogenesis of
CVDs [7].

Considering the close association of GM and epigenetics with environmental factors [8],
the interplay of GM and epigenetic factors in disease progression cannot be neglected. GM-
induced epigenetic modifications could be a potential mechanism affecting human health
and diseases. GM modulates several non-genetic factors, such as body weight, metabolism,
physical activity, dietary factors, environmental toxins, etc., which directly affect epigenetic
modulation of gene expression [9]. GM-produced metabolites such as SCFAs, folates,
biotin, and TMAO act as critical co-factors and allosteric regulators of enzymes such as
methylases and acetylases, which ultimately modulate epigenetic processes [7]. Further,
the symbiotic association of microbes and humans has co-evolved for over a million years,
and considering the complexity of the human genome and gut microbiome (genome of gut
microbiota), it is plausible that epigenetics could connect these two genomes via complex
mechanisms [9]. Accumulated evidence from the recent past suggests that both GM and
epigenetics hold enormous potential to modulate human health, and their interplay has
started to emerge [10–12]. This connection between GM and epigenetics could help in a
better understanding of the pathogenesis of CVD. Therefore, this narrative review aims at
assessing gut microbiota’s possible role in CVD aetiology via epigenetic mechanisms.
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2. Epigenetic Mechanisms in CVDs
2.1. DNA Methylation

DNA methylation is the most explored epigenetic mechanism in the mammalian
genome. DNA methylation refers to the addition of a methyl group to the fifth carbon of
cytosine. The major site of DNA methylation lies in the CpG (cytosine-phosphate-guanine)
islands found in the 5′ regulatory regions of genes. The enzymes involved in DNA methy-
lation are called DNA methyltransferases (DNMTs) [13]. A nonprotein-forming amino acid,
homocysteine, is critical in the methylation cycle and likely an underlying factor in CVD
pathogenesis [14]. High levels of S-adenosyl homocysteine, which inhibit transmethylation
reactions and reduce methylation throughout the epigenome, are associated with increased
intake of homocysteine [15]. Hypomethylation has been associated with conditions such
as autoimmune dysregulation and poor prognosis in cancer patients [16–18], while the
association with CVDs is unclear. Long interspersed nuclear element (LINE-1) methylation
studies have found inverse associations with the risk of CVDs [19–22], which might possess
biomarker potential for early diagnosis [21]. In contrast, Alu methylation or HpaII/MSPI re-
striction enzyme ratio, often used to quantify global methylation, was found to be positively
associated with adverse cardiovascular outcomes [23–26].

The global methylation studies have a drawback of low resolution, which is why they
give a vague idea about epigenetic impact on CVDs. Individual gene-specific methylation
studies are more precise and provide solid evidence supporting DNA methylation in the
development of cardiovascular disease [9]. Reduced methylation of inflammatory pathway
genes has been reported to be associated with enhanced gene expression and decreased
circulating levels of pro-inflammatory cytokines, a potential biomarker of cardiovascular
dysfunction [9]. In leukocytes from acute coronary syndrome patients compared to healthy
controls, a methylation study of a pro-inflammatory protein-encoding gene ANGPTL2
revealed a decreased promoter methylation associated with higher ANGPTL2 [27]. Another
study reported that reduced IL-6 gene methylation was associated with higher IL-6 plasma
levels in ischemic heart disease patients [28]. Hypermethylation-induced decreased expres-
sion of the inflammatory pathway-associated ASC gene was associated with improved
outcomes in patients with heart failure [29]. Other than the inflammatory pathways, DNA
methylation is associated with CVD pathologies such as hypertension, dyslipidemia, and
obesity. Changes in methylation of troponin encoding gene TNNT1 are associated with
increased high-density lipoprotein cholesterol (HDL-C) and a significant risk of coronary
artery disease [30]. Similarly, the methylation of the IGF2 (Insulin-Like Growth Factor 2)
gene is associated with a higher ratio of Triglycerides to HDL-C and obesity [31,32]. In
umbilical cord blood, hypermethylation of POMC, a gene encoding proopiomelanocortin,
was associated with higher blood triglycerides and insulin during childhood [33]. The
methylation of genes encoding pro-inflammatory proteins such as TLR2, iNOS, and IFN-γ
was associated with fluctuations in blood pressure in the elderly [34]. Hypermethylation of
the HSD11B2 gene promoter led to increased activity of the 11-betaHSD2 enzyme and the
risk of hypertension [34]. The epigenetic effects of the FTO gene, a key genetic predictor of
obesity and CVD risk factor, stand out among other potential genes [35]. The FTO protein
functions as an N6-methyladenosine demethylase, accelerating RNA changes required
for preadipocyte development [36,37] and hence increasing obesity, a significant CVD risk
factor. FTO also exerts long-term effects on the promoter of the homeobox gene IRX3,
reducing thermogenesis, and promoting lipid storage [38].

Interestingly, while the deleterious effect of FTO sequence variation on obesity was
buffered by physical activity [39], a six-month exercise intervention failed to change FTO
methylation levels in adipocytes [40], suggesting alternative mechanisms.

The methylation of another gene, F2RL3, a tobacco-related methylation site, was
perhaps connected with inflammation and obesity [41]. Hypermethylation in INS and
GNASAS, thought to be programmed by the intrauterine environment, predicted myocar-
dial infarction (MI) risk in women but not in males [42]. In addition, higher methylation of
PLA2G7 was related to coronary heart disease in women in relation to age and lipoprotein
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characteristics [43]. Higher methylation of a locus in the CVD-linked 9p21 region was seen
in coronary artery disease [44], suggesting an epigenetic basis for DNA sequence variation.

With the help of advanced methylation array technology, studies have found epigenome-
wide markers of CVDs, including coronary artery disease [45,46], ischemic stroke [47], car-
diomyopathy [48,49], and cardiovascular mortality [50]. Four out of more than 16,000 CpG
sites, namely STRADA (STE20-related kinase adaptor alpha), C1QL4 (Complement C1q Like
4), HSP90B3P (heat shock protein 90 kDa beta), and KCNQ1 (Potassium Voltage-Gated Chan-
nel Subfamily Q Member 1) have shown associations with CVD phenotypes. Subsequent
studies have highlighted the role of KCNQ1 in coronary endothelial dysfunction [51] and
atrial fibrillation [52]. In Zebra fish model, it was observed that methylation of ADORA2A
(adenosine A2a receptor) and LY75 (lymphocyte antigens) were associated with human
dilated cardiomyopathy [49].

Epigenetic studies have been fruitful in identifying numerous biologically relevant tar-
gets, and to some extent, addressed the effect of environmental factors, such as metabolism,
smoking, air pollution, diet, etc., on CVDs. Multiple studies have found robust relation-
ships between methylation and expression of CPT1A, a gene encoding a key enzyme in
the fatty acid metabolism pathway, and body mass index (BMI), lipoprotein profiles, and
metabolic syndrome [53–57]. A similar in-utero study revealed that differential methylation
at that locus correlated with birth weight and plasma lipids, suggesting prenatal nutrition
lays the path for epigenetic programming of metabolic pathways [58]. Methylation of
ABCG1, a gene encoding a protein essential to TG metabolism, showed association with
critical cardiometabolic parameters, including hypertriglyceridemic waist [55], obesity [56],
glucose and insulin profiles [59,60], type 2 diabetes [61], and plasma lipid profiles [62].

In smokers, epigenome-wide studies have found methylation locus in the AHRR
gene (aryl hydrocarbon receptor repressor) of monocytes to be significantly associated
with subclinical atherosclerosis [63]. Methylation of THBS1 (thrombospondin 1), another
smoking-related locus, was found to correlate with plasma thrombospondin-1 levels [64],
although the impact of thrombospondins on CVD risk remains contentious [65]. Air
pollution is also strongly associated with CVDs [66]. An epigenome-wide methylation
study observed the involvement of several genes in oxidative stress and inflammatory
pathways, on exposure to fine particulate matter [67].

Dietary effect on cardiovascular effects also sees DNA methylation as a critical mech-
anism. According to an in-vitro investigation, oleic and arachidonic acid had unique
effects on monocyte epigenomes, with the latter being enriched for atherosclerosis-related
variations [68]. The dietary presence of methyl-rich nutrients such as methionine, one-
carbon units, and choline might leave an epigenetic impact on CVD outcomes, since DNA
methylation depends on it [69]. An animal study showed that a methionine-rich diet had
pro-atherogenic effect via the fatty acid binding protein demethylation pathway [70]. How
different dietary methyl donors shape the epigenetic response is still unclear and requires
future research. Therefore, the impact of environmental factors on the pathogenesis of
CVDs via epigenetics pathways and GM cannot be overlooked.

Although cost-effective and robust in deciphering the methylome, epigenetic studies
require cautious interpretation and validation to eliminate false positive results. The
epigenome-wide methylation studies have given incriminating evidence that the well-
known metabolic, lifestyle, and environmental factors underlie the pathology of CVDs via
epigenetic modulation.

2.2. Chromatin Remodelling and Histone Modifications

Chromatin remodeling refers to a change in chromatin to a transcriptionally accessible
state from a condensed form, allowing transcription factors and DNA-binding proteins to
access and control gene expression. Epigenetic modifications of histone proteins via three
sets of enzymes viz histone methyltransferases (HMTs), histone deacetylases (HDACs),
and histone acetyltransferase (HATs) and, can alter chromatin-dependent processes such as
gene expression, DNA replication, and repair [71]. HATs, HDACs, and HMTs contribute
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to a variety of cardiovascular abnormalities by activating or repressing gene transcription.
According to the severity of the plaque in carotid arteries, histone methylation (transcrip-
tional repressor) and acetylation (transcriptional activator) exhibit unique patterns [72].
Cell culture and animal models have demonstrated that blocking HDACs promotes hy-
peracetylation of histones, resulting in decreased inflammation and atherogenesis [73],
mediated through the expression of ABCA1 and ABCG1 genes, the latter of which is a sig-
nificant epigenetic predictor of plasma cholesterol [62]. Further, histone modifications also
affect gene expression of pathways involved in inflammation [74,75], hypertension [76,77],
diabetic cardiomyopathy [78], cardiac hypertrophy [79], ischemic myocardial repair [80],
stroke [81], heart failure [82], and abdominal aortic aneurysm [83]. Further, cellular fate in
cardiac morphogenesis is affected by interactions between transcription factors and his-
tone modifiers [84]. Their relative ease of inhibition and diverse effects on cardiovascular
physiology make histone modifiers prospective diagnostic/prognostic/therapeutic targets
for CVDs.

2.3. RNA-Based Mechanisms

With 98% of our genome being non-coding, previously considered to be non-functional,
it is now realized that it is actively transcribed to produce thousands of non-coding tran-
scripts, including microRNAs (miRNAs) and long non-coding RNAs (LncRNAs). miRNAs
are a class of small non-coding RNAs (~22 nucleotides) that were first discovered in
Caenorhabditis elegans [85,86]. More than 2000 miRNAs have been found in humans, many
of which are evolutionarily conserved; miRNAs profoundly affect gene expression as they
pair with a specific complementary sequence of mRNAs, resulting in degradation and
inhibition of translation. In fact, miRNAs have demonstrated a wide range of biological
activities and are now implied in almost every diseased state [87,88]. LncRNAs are clas-
sified as all ncRNAs longer than 200 nucleotides. LncRNAs are very heterogeneous and
exhibit diverse biological functions via interacting with various other RNAs or proteins.
LncRNAs can interfere with transcriptional and post-transcriptional gene regulation, as
well as mRNA translation, depending on their subcellular localization in the nucleus or cy-
toplasm, respectively. Recent years have shown that miRNAs and LncRNAs have immense
biomarker and therapeutic potential in diseased states, including CVD etiology [87,88];
miRNAs are highly stable in plasma [89] and can be exploited for biomarker and therapeu-
tic targeting. Although the precise miRNA fingerprint of CVDs is still unclear, studies have
found that miR-1 and 133 levels are higher in angina pectoris, MI, and acute coronary syn-
dromes [90]. Both miR-1 and miR-133 are cardiac myocyte-specific miRNAs involved in the
development of the heart and are observed to be dysregulated in heart failure [91]. Indeed,
miR-1 is involved in regulating the expression of heat shock protein 90 aa1 (HSP90AA1),
which attenuates oxygen-glucose deprivation-induced apoptosis of ventricular cells in
ischemia/reperfusion injury [92], and modulates arrhythmias via several ion channels and
conduction-related proteins [93]. Similarly, miR-133 is implicated in cardiac arrhythmias,
hypertrophy, and apoptosis [94]. Another miRNA, miR-499, was more sensitive than
cardiac troponin T as a biomarker for acute non-ST segment elevation MI [95]; miR-499
exerted cardioprotective effects by regulating calcineurin and, thus, cardiac remodeling in
the setting of ischemia [96]. Some other highly pleiotropic miRNAs involved in acute heart
disease include miR-208 [97], miR-23 [98], miR-214 [99], miR-21 [100], miR-126, miR-197,
miR-223 [101], and possibly many more. The miRNA-based mechanisms are also criti-
cally involved in intermediate-risk phenotypes; for example, miR-148 is involved in lipid
metabolism by varying HDL, LDL, and cholesterol levels [102,103]; miRNAs also regulate
endothelial function, plaque development and rupture, and blood vessel formation, thus
governing the progression of atherosclerosis [104]. Indeed, miRNAs are also associated
with hypertension; for example, binding of miR-425 decreased atrial natriuretic factor
(encoded by Nppa gene) expression and lowered the circulating levels of the corresponding
protein; interestingly, such binding does not occur in the presence of the G allele at the
rs5068 locus of Nppa gene, previously linked to blood pressure [105]. In fact, miRNAs
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are now the most promising biomarkers for CVDs because of their high specificity and
sensitivity. They also seem to have strong prognostic values, enhancing risk stratification,
and accurate prediction of the cardiovascular risk patients.

3. Gut Microbiota and CVD: A Role of Heart-Gut Axis

The human gut microbiota, with more than 100 trillion microbial cells, is the commu-
nity of microorganisms living in the small and, mainly, the large intestine of humans. Often
referred to as our forgotten organ, this microbial ecosystem has co-evolved with humans for
millions of years and plays an integral role in modulating human physiology. GM benefits
the host via its diverse array of functions, including the synthesis of essential vitamins
(vitamins K, B12, folate, and thiamine), energy harvesting from undigested fiber via fer-
mentation, production of the host-absorbable SCFAs, propionate, acetate, and butyrate, and
metabolic processing (mainly hydrolysis and reduction) of various non-dietary xenobiotic
compounds entering the gut [106,107]. Ongoing research suggests that intestinal bacteria
have a crucial role in both the maintenance of health and the onset of disease. Heart-gut
axis is a new promising filed unraveling the role of gut microbiota in CVD etiology. Mount-
ing evidence over the past decade has established a significant association of inter- and
intra-individual variation and versatility of the GM composition with health and various
disease states, including CVDs. Although GM dysbiosis is clearly observed in patients
with CVDs, and thus most of the data is mainly associative, few studies have supported a
causal link between GM and CVDs. GM transplantation studies have shown that specific
pathways and metabolites influence host metabolism and CVDs, sometimes via specific
host receptors [108]. Significant advancements in sequencing and bioinformatics have led
to the association of dysbiosis with several diseased states. Initially, GM-related studies
observed that fecal microbial community composition was associated with the develop-
ment of obesity and insulin resistance [109–111]. Subsequently, it was discovered that GM
dysbiosis at an early age increased the risk of adiposity [112]. GM compositional changes
have been reported in several CVD phenotypes, including hypertension, dyslipidemia,
insulin resistance, and other metabolic phenotypes [113,114]. Further, it was observed that
human atherosclerotic plaques contained bacterial DNA, although the origin of bacteria in
the walls of the artery was not confirmed to be of the gut but was suspected [115]. The most
intriguing causal link between GM and CVD came from a study where it was observed that
the production of trimethylamine N-oxide (TMAO), a GM-produced metabolite, following
ingestion of western dietary nutrients (e.g., lecithin, choline, carnitine) [116–118]. TMAO
is found to be a biomarker for CVD risk and accelerated in multiple clinical cohorts and
animal models [118]. Using germ-free (GF) mice, a recent fecal microbial transplantation
study found a direct association of elevated circulating TMA and TMAO levels with an
enhanced rate of thrombus formation and reduced time to cessation of blood flow following
arterial injury in vivo [119].

3.1. RNA-Based Mechanisms

It was Ott SJ et al. in 2006 who identified the presence of microbial DNA in atheroscle-
rotic plaques and concluded that bacterial colonization could accelerate disease progres-
sion [120]. Korean et al. found that the microbial flora of atherosclerotic plaque had
specific microbial species which were highly diverse and variable between individuals.
They also found that Chryseomonas levels in the gut correlated with plasma cholesterol
levels, which might contribute to atherosclerosis development and/or progression [121].
Jie et al. observed that Enterobacteriaceae and Streptococcus spp. were higher in atheroscle-
rotic CVD [122]. Karlsson et al. observed an increase in microbes of the genus Collinsella
and a decrease in Eubacterium and Roseburia in patients with symptomatic atherosclero-
sis [123]. Ziganshin et al. found that members of the Burkholderiales were at high levels in
all atherosclerotic plaques [124]. Similarly, Davies et al. observed that Pseudomonas spp.
biofilm was present in atherosclerotic plaques [125]. Animal studies have too confirmed
the involvement of microbes in atherosclerosis. Lactobacillus rhamnosus GG (LGG) was
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found to have protective effects on atherosclerotic plaque size [126]. They also observed
that five bacteria genera namely Eubacerium, Anaeroplasma, Oscillospira, Roseburia, and De-
halobacterium showed a protective against atherosclerosis [126]. Another study showed
that even when fed with a low-cholesterol diet, GF mice showed accelerated development
of atherosclerosis [127], indicating the protective effect of GM. Similarly, a study showed
that the absence of microbiota increased plasma cholesterol levels and atherosclerotic le-
sions [128]. Several other studies have also linked some bacteria, such as Porphyromonas
gingivalis and Aggregatibacter actinomycetemcomitans, to the accelerated development of
atherosclerosis in dietary intervention-based animal models [129–131].

These findings suggest that GM somehow contributes to the progression of atheroscle-
rosis, with some microbes being causative while some are preventive. The underlying
mechanism by which microbes initiate or impede the development of atherosclerosis is
unclear and requires detailed investigation. One possible mechanism could be the ability
of GM to produce bile acids and hence modulate lipid metabolism.

3.2. Intestinal Barrier Dysfunction in CVDs

Gut leakiness is another potential gateway for the translocation of GM-derived prod-
ucts into host circulation, causing inflammation. In its healthy state, intestinal barrier
function is maintained by physical factors, including tight junctions between epithelial
cells, mucus production, and mucosal immunity. Bowel wall edema and impaired barrier
function are often observed in heart failure (HF) patients [132,133]. This leaky gut concept
has been validated in multiple studies of HF patients, wherein they are observed to have
altered intestinal integrity and subsequent elevated systemic levels of proinflammatory
cytokines, which correlates with clinical severity and poor prognosis [134,135]. Further,
when the gut barrier is impaired, lipopolysaccharide (LPS) from gram-negative bacteria can
enter the host circulation and orchestrate a proinflammatory state in the host [136]. Elevated
LPS and other bacterial products have been mechanistically linked to the modulation of
inflammation, immunity, and vascular function [108]. Decompensated HF patients were
observed to have higher blood endotoxin levels compared with stable counterparts [137].
Furthermore, a study observed a biomarker role of LPS for major adverse cardiac events
in a cohort of patients with atrial fibrillation, suggesting GM-associated endotoxins im-
pact CVD complications [138]. It is important to understand that various factors beyond
gut leakiness contribute to CVD. There is a complex relationship between GM dysbiosis,
intestinal integrity, host systemic inflammation, and CVD susceptibility. It is noteworthy
that although CVDs have been linked to endotoxemia, gut barrier defects caused by colitis
and inflammatory bowel diseases are not generally associated with CVD risks. Further
research is required to understand the role of gut bacterial proinflammatory factors in
triggering systemic inflammatory cascades that can be exploited as therapeutic tools for
risk prediction and better management of CVDs.

3.3. GM-Produced Metabolites in CVDs
3.3.1. Bile Acids

Another influencer over human physiology are bile acids (BAs) which are predomi-
nantly GM-derived and modulate host metabolism. BAs, mostly known for emulsification
and adsorption of lipids, are composed of a diverse array of structurally specific species with
varying inter-individual concentrations. Recent studies show that besides lipid metabolism,
BAs play a role in glucose/insulin metabolism and inflammation. A small fraction of the
total BA pool is the one synthesized in the liver, which, once secreted in the duodenum,
is modified by GM into a remarkably large array of BA species. BAs have the potential
to modulate GM composition via their potent antimicrobial and immune response prop-
erties [139]. Similarly, bile obstruction can lead to bacterial overgrowth syndromes [140].
Interactions among diet, GM, and specific BAs are complex and dynamic, and any dis-
turbances could contribute to CVD phenotypes and disease susceptibly. Studies have
revealed that plasma BA levels were associated with insulin resistance in type 2 diabetes
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mellitus [141,142], and modulation of BA levels could be exploited as an adjuvant strategy
for diabetic treatments [143]. Although this strategy seems less appealing, a mechanistic
association between BA levels and CVD pathogenesis could still be of some use.

3.3.2. Short-Chain Fatty Acids (SCFAs)

SCFAs are the most studied GM-derived metabolites that have profound physiological
effects. SCFAs are fatty acids with five or fewer carbon atoms and are produced in large
quantities by GM through anaerobic fermentation of dietary fiber [144,145]. The most
common SCFAs include acetate, propionate, and butyrate, which have been involved in
the homeostasis of critical cardiovascular parameters such as blood pressure, myocardial
repair, and inflammation. These SCFAs are produced mainly by some bacteria of genera’s,
including anaerobic Bacteroides, Bifidobacterium, Eubacterium, Streptococcus, and Lactobacil-
lus [146,147]. SCFAs are also produced by host cell metabolism (e.g., acetate) [148], but
the fact that the SCFA levels in GF-mice are undetectable speaks for itself [149]. SCFAs
exert a direct and indirect role in a diverse array of functions such as energy source (for the
colonocytes of the intestine), lipid metabolism [112], glucose homeostasis, gut inflamma-
tion, and neurogenesis [150]. An influx of SCFAs to the liver resulted in significant changes
in the regulation of hepatic lipids in the obese phenotype. A study by Cho et al. showed
that SCFAs are associated with adiposity in early life [112]. Another study reported that
antibiotics exposure during weaning led to dysbiosis with the increasing metabolic capacity
to produce acetate, propionate, and butyrate [151]. Antibiotics-induced dysbiosis in early
life [152] is also linked with reduced host immunity [153] and cardiometabolic diseases,
such as diabetes mellitus [154,155]. Preliminary clinical studies have observed that fiber
intake is associated with a decrease in blood pressure [156], which could be because GM
ferments it to produce SCFAs. Studies observed a differential action of propionate on blood
pressure via different mechanisms of administration [157]. By depleting GM composition
post-antibiotic exposure, the resultant SCFA levels dropped and a subsequent increase
in blood pressure was observed, corroborating the homeostatic role of SCFA in blood
pressure regulation [157–159]. However, the overall hypotensive effects of SCFAs could be
due to their ability to reduce cardiac output and vascular resistance [160]. Another study
observed that fecal transplantation from human hypertensive patients caused hypertension
in GF-mice [161]. In a contradicting study, fecal transplantation from normotensive rats
aggravated hypertension in hypertensive rats, suggesting that additional host variables
may interact with microbial factors to modulate blood pressure [162]. SCFAs have also
been implicated in hypertensive end-organ damage in angiotensin II–infused mice [163].
These and numerous other studies indicate that SCFAs are critical in modulating vasomotor
tone and blood pressure. Further, studies have indicated that SCFAs are involved in other
CVD processes, such as ischemia-reperfusion injury, cardiac repair following myocardial
infraction, and impaired arterial compliance [164,165].

3.3.3. Trimethylamine N-Oxide (TMAO)

It was one of the first studies by Wang et al. that casually linked GM-derived TMAO
production post-ingestion of specific dietary nutrients (e.g., lecithin, choline, carnitine) to
CVD risk [116–118]. TMAO was found to have both predictive capability and a positive
correlation to atherosclerosis development [116–118], which casually linked GM-derived
TMAO production post-ingestion of specific dietary nutrients (e.g., lecithin, choline, car-
nitine) to CVD risk. Dietary precursors for TMAO production include choline [116–118],
phosphatidylcholine [117], and carnitine [116]. These nutrients are a common part of
the western diet, including meat products. Various TMA and TMAO precursors such as
betaine, γ-butyrobetaine [166], and trimethyl lysine [167], have shown good prognostic
association with CVD risk [118]. TMAO has been observed to augment atherosclerosis
in various preclinical studies [168–172]. It has also been linked to increased thrombosis
by promoting platelet reactivity [173–175], vascular inflammation and inflammasome ac-
tivation [176–178], increased risk of HF [179–181], and chronic kidney disease [182–184].
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Systemic TMAO levels have been exploited as a biomarker for predicting outcomes in sev-
eral CVD phenotypes, such as peripheral artery disease [185], coronary artery disease [186],
acute coronary syndrome [186,187], and heart failure [188–190]. These data suggest the
prognostic potential of TMAO and a high degree of association with several forms of CVDs.

3.3.4. Phenylacetylglutamine (PAG)

PAG, a phenylalanine-derived metabolite, is a recently identified GM-produced
metabolite associated with CVD risk. Since type II diabetes mellitus (T2DM) is a well-
known but poorly stratified risk factor for CVDs, Nemet et al. performed a study to identify
novel metabolites showing a correlation with CVDs in T2DM subjects and found PAG
as one of the potential candidates. The study observed that PAG was associated with
major adverse cardiac events such as heart attack, stroke, and death in both diabetics
and non-diabetics [191]. Transplanting genetically engineered microbes in the intestines
of GF mice has further confirmed the role of PAG in host platelet reactivity and in vivo
thrombosis potential [192,193]. It is fascinating how GM directly or indirectly modulates
several CVD phenotypes. The fact that the absence of GM amends homeostasis of critical
cardiovascular events, such as blood pressure [194], post-infarction myocardial repair [164],
and thrombosis growth [195], etc., speaks for itself. Although further investigations are
required to solidify the PAG-mediated CVD pathologies, this could potentially be another
GM-based pharmacological target [196].

4. Gut Microbiota and Epigenetics: Potential Interaction during CVDs

The human gut microbiome has evolved along with humans for millions of years and
has established a very diverse and complex symbiotic association, most of which is not un-
derstood. The interaction between human GIT and infective agents alters the physiological
and pathogenetic processes via different molecular mechanisms. One such mechanism is
the epigenetic regulation of host physiological processes by modulated metabolic activities
of the GM. Interestingly, both GM and epigenetics are dynamic processes and are regulated
to a great extent by the environment and diet, which suggests that both of them could have
common triggers and could work in association to regulate host physiology [197–199]. The
interaction of the GM-epigenetics during the CVDs is depicted in Figure 1. Moreover, the
primary enzymes involved in the epigenetic regulations are acetylases and methylases,
and the activity of these enzymes is dependent on the various metabolites generated from
the gut of the host that act as co-factors and substrates for these enzymes [197–199]. GM
can affect the epigenetic processes of the body at different stages of life, and thus could
critically regulate health and disease [200]. Diverse anatomical sites have been explored to
evaluate the relationship between microbiome and epigenetics, and their role in conditions
such as autoimmune disease, cardiovascular disorders, and cancer, etc. [200]. The pattern
and development of different types of diseases can be well understood by investigating the
epigenetic relationship of microbiota [201]. Lifestyle, microflora exposure, etc. have been
considered to be significant causes for the occurrence of health disorders, such as obesity,
allergies, asthma, cancer, etc., as per various epidemiological studies [200]. Furthermore,
aging, obesity, dietary changes, and administration of food products with high amounts of
calories, can significantly affect the epigenetic makeup, and enhance the risk to develop
various diseases [9,202]. Interestingly, exposure to microbiome in the fetal stage can in-
fluence the developmental processes, and also, exposure to the maternal microbiome can
develop disease risks in later stages of life [203,204].
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Age, dietary, and environmental factors not only play a crucial role in the pathogen-
esis of CVDs, but are know to significantly modulate epigenetics and GM profile of an
individual. Epigenetics is known to be associated with CVDs via mechanisms such as
DNA methylation, histone modification, miRNA, LncRNAs, etc. On the other hand, GM
modulates the pathogenesis of CVDs via metabolites such as SCFAs, TMAO, bile acids,
inflammatory mediators, etc. Interestingly, both epigenetics and GM are dynamic processes,
but their interaction and bidirectional relationship to modulate the pathogenesis of CVDs
has now started to emerge.

Diagrammatic representation of the interaction between gut microbiota (GM) and
epigenetics during CVDs. DNA, deoxyribonucleic acid; lncRNA, long non-coding RNAs;
miRNA, microRNA; CVDs, cardiovascular diseases; SCFAs, short-chain fatty acids; TMAO,
trimethylamine-N-oxide.

Studies investigating the interplay of GM and epigenetics regulating CVDs are lacking.
However, the mechanistic insights into these phenomena clearly suggest that the interplay
could play a crucial role in the development and progression of CVDs. The growing body
of evidence further suggests the direct association of the metabolites generated from the
human gut with the various epigenetic processes [205]. Epigenetic mechanisms are under
the influence of environmental factors and diet, and thus any changes in these factors
could lead to the alteration in the normal body’s physiological gene expression and disease
state [206]. These epigenetic factors are most dynamic during early childhood when the
GM of the baby is being developed, and therefore epigenetics could be related to the
development and colonization of the human gut during early childhood through a variety
of processes that include diet, breastfeeding, antibiotic treatments, infections, etc.

Further, metabolites from the gut, such as SCFAs are known to inhibit the activity of
the HDAC and therefore modulate the associated gene expression [207]. Likewise, several
microbiota-dependent changes in the chromatin that were observed after polysaccharide-
rich diet consumption were prevented by the consumption of the Western-style diet [208].
Further, administration of the SCFAs to the GF-mice restored the alterations in the chro-
matin, along with the alterations in the DNA methylation and global histone acetylation,
thereby suggesting the impact of the GM on the epigenetics-mediated transcriptional re-
sponses in the host. Additionally, adipose differentiation was enhanced upon propionate
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and butyrate administration to the stromal vascular fraction of porcine adipose tissue that
suggest their potential inhibitory effect on the activity of the HDAC [209]. In another
study, exposing the mice to SCFAs and other metabolites obtained from the Akkermansia
muciniphila modulated the expression levels of the transcription factors, histone deacety-
lases, and other genes that were involved in satiety and lipid metabolism [210]. This
association is further justified by the findings where obese subjects were reported to have
reduced microbial diversity in their gut with the abundance of Faecalibacterium prausnitzii
along with significantly low FFAR3 gene (FFAR3) methylation [211]. Further, low methyla-
tion in the TLR2 and TLR4 genes was associated with an increased weight and BMI along
with a significant variation in the proportion of the lactic acid bacteria and Firmicutes: Bac-
teroidetes [211]. Further, deep sequencing analysis of DNA methylomes suggests a decisive
association of bacterial predominance and epigenetic profiles [197]. Interestingly, the genes
having variation in the methylation of the promotor region in the pregnant women with
abundant microbes belonging to phyla Bacillota were demonstrated to be associated with
the disorders such as inflammatory reactions, impaired lipid metabolism, obesity, etc., all
of which are the risk factors for the development and progression of the CVDs [212]. An
emerging set of evidence suggests that the fecal miRNAs has the potential to modulate
the composition and organization of the GM, thereby suggesting the bidirectional associ-
ation of the GM and epigenetics [212,213]. As discussed earlier, miRNA also find a very
crucial place in pathogenesis of major CVDs, such as miR-133 in arrhythmias, and cardiac
hypertrophy [94], miR-499 in cardioprotective effects and ischemia [96], miR-21, miR-23,
miR-214, miR-126, miR-197, miR-208, and miR-223 in acute heart disease [97–101], miR-148
in lipid metabolism [102,103], and miR-425 in hypertension [105]. Although the studies are
lacking to provide concrete evidence of how the interplay of the GM and epigenetics could
modulate the CVDs, the accumulated evidence suggests that the composition of GM and
epigenetics functioning are interrelated and have shown a direct association with obesity,
body weight, BMI, and regulation of metabolism, which are the prime contributors to the
development and progression of the CVDs.

5. Conclusions

CVDs are one of the leading causes of “sudden death” globally. Although compli-
cated lifestyle, environmental exposure, and genetic factors are well-recognized etiological
factors for the development of CVDs, the underlying pathological progression of these
complications remains poorly understood. It is very difficult to predict the onset and
development of CVDs well in time, which makes these disorders one of the leading causes
of mortality and morbidity throughout the world. The overall conclusion of the review has
been summarized in Figure 2.
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Consistent high-end research work in recent years has unravelled the role of intestinal
microbiota (the ecological hamlet of commensal, symbiotic, and pathogenic microbes) in
several disorders, which led to the development of a ‘microbiome hypotheses’. Currently,
it is well recognized that the vast communities of microorganisms that colonize the in-
testine play an important role in maintaining host homeostasis and influence complex
pathologies in the state of dysbiosis. The host-microbiome association is a complex and
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challenging phenomenon and alternation in the composition of our gut microbiome and
its metabolites contribute directly to the pathogenesis of CVDs. The GM generates sev-
eral bioactive molecules including trimethylamine, trimethylamine-N-oxide, bile acids,
fatty acids, etc., and influence cholesterol, coprostanol, peptidoglycan, immunity, and
inflammatory pathways. The bioactive molecules and the pathways influenced by GM are
predisposed by nutritional and lifestyle factors and may alter the cardiovascular dynamics
and pathogenesis of CVDs. However, a complete understanding of GM, microbial genome,
host genotype, diet, and CVDs interaction is a highly complicated process and is still a
subject of research.

Epigenetics and factors regulating epigenetic markers have also gained considerable
attention in the recent past in explaining the pathogenesis of CVDs. Epigenetics was
initially considered important for the pathogenesis of CVDs due to its direct influence
on inflammatory reactions and vascular impairments. However, evidence accumulated
in the recent past suggests that a significant number of modifications are involved in
the development and progression of CVDs, which include histone modifications, DNA
methylation, chromatin remodeling, microRNA, etc. Epigenetics and regulating factors
play a vital role in the pathogenesis of complications such as diabetes, hypertension, cardiac
hypertrophy, heart failure, myocardial infarction, and congestive heart failure, etc., besides
being associated with the risk factors of CVDs such as smoking, aging, etc.

Both epigenetics and GM are governed by environmental, dietary, and genetic factors,
suggesting a potential interaction between them. The existence of a bidirectional relation be-
tween the gut microbiota and epigenetics suggests that both of them can work in synchrony
to modulate the disease representation and its pathogenesis. This is further established
by the fact that the metabolites generated from the GM (such as SCFA etc.) are crucial not
only for the normal physiological functioning of the body but also for the efficient working
of the enzymes such as acetyltransferase, deacetylases, and methyltransferases that are
involved in the epigenetic regulation of gene expression. Moreover, both of these are
capable of providing us with numerous targets that can be exploited for the early diagnosis,
prevention, and therapeutics of CVDs. Currently, there is no literature that implicates
GM and epigenetics connection in CVD pathology. In-depth analysis of this connection is
required and could result in the identification of novel therapeutic targets and help predict
the onset of these disorders.

Another important thing to mention here is the need to discuss critical issues and the
necessity to develop well-defined experiments before claiming that some microbes are or
are not beneficial or even deleterious. As stated in the manuscript majority gut microbiota-
based studies are correlative, meaning the researchers find a correlation/association of a
specific microbe (i.e., bacteria) with a disease as potentially beneficial or deleterious. And
the majority of the time, we jump to the conclusion and infer positive or negative effects
without thorough investigations. The challenge lies in precisely pinning the role of the said
microbe on the onset of the disease or conversely its beneficial impact.

These shortcomings partly come from the fact that it is difficult to culture some
bacteria. Moving from identifying the presence of a microbe by sequencing to isolating it
and then developing complex models for investing its effects is a herculean task. Although
advancements in culturomics have made a significant leap, the identification of anaerobic
bacteria remains time-consuming and troublesome. Another obstacle is mimicking the
quantitative mixture of microbes for in vivo testing. On top of that, our knowledge of the
role of any microbe in a complex community such as the gut microbiota is minimal.
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