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Abstract: Organoids as three-dimension (3D) cellular organizations partially mimic the physiological
functions and micro-architecture of native tissues and organs, holding great potential for clinical
applications. Advances in the identification of essential factors including physical cues and biochemi-
cal signals for controlling organoid development have contributed to the success of growing liver
organoids from liver tissue and stem/progenitor cells. However, to recapitulate the physiological
properties and the architecture of a native liver, one has to generate liver organoids that contain all the
major liver cell types in correct proportions and relative 3D locations as found in a native liver. Recent
advances in stem-cell-, biomaterial- and engineering-based approaches have been incorporated into
conventional organoid culture methods to facilitate the development of a more sophisticated liver
organoid culture resembling a near to native mini-liver in a dish. However, a comprehensive review
on the recent advancement in the bioengineering liver organoid is still lacking. Here, we review
the current liver organoid systems, focusing on the construction of the liver organoid system with
various cell sources, the roles of growth factors for engineering liver organoids, as well as the recent
advances in the bioengineering liver organoid disease models and their biomedical applications.

Keywords: bioengineering; liver organoids; liver disease models; transplantation

1. Introduction

An organoid is an in vitro three-dimensional (3D) miniaturized and simplified ver-
sion of an organ that shows realistic micro-anatomy to partially mimic the structure and
function of a native organ. Organoids hold great promise for disease modelling, drug
screening, cancer mechanism investigation, and regenerative medicine [1–7]. Organoids
have been employed as a novel tool to study the development of various organs and
tissues including brain [5], lung [8], liver [9], stomach [10], intestine [11], pancreas, and
kidney [12]. The organoid culturing system contains different components including essen-
tial nutrients for supporting cell growth/proliferation, growth factors for inducing specific
cell differentiation, and biomaterials for providing mechanical support and biochemical
environment [13,14]. Versatile organoid culturing techniques have been developed to
generate organoids with destined phenotype and controlled morphology to uncover the
development of human-specific organs [15,16].

Liver organoids have emerged as versatile and helpful tools to elucidate the normal
and abnormal development of liver in healthy and disease conditions. Research groups
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have successfully generated liver organoids in biomatrix gel from human fetal liver pro-
genitor cells [17], induced pluripotent stem cells (hiPSC) [18] and pluripotent stem cells
(PSC) [19], endothelial and mesenchymal cells [20]. Liver organoids derived from normal
livers [21] and diseased livers [22] have also been reported. In addition to biological cues
such as growth factors [23], secreted proteins [24], and molecular signals [10,25] that govern
the self-organizing and differentiating processes of cells for organoid formation, biochem-
ical and biophysical properties of the biomatrix gel are also crucial for regulating cell
proliferation/differentiation and their ultimate morphology [26]. Furthermore, burgeoning
fabrication techniques (involving 3D printing, bioprinting, microfluidic chip, light pattern-
ing, etc.) have provided organoids with more sophisticated shapes and functions to meet
different challenges in biomedical fields. In this review, we will discuss the evolution of
liver organoid bioengineering and its applications in biomedicine and liver transplantation.

2. Bioengineering Liver Organoids

The significant events of bioengineering liver organoids are illustrated in the timeline
of Figure 1. The 3D spheroidal aggregate derived from rat liver cells could be the beginning
of the journey of liver organoid development [27]. Long-term cultures of rat hepatocytes
were achieved by using liver biomatrix [28] and a coculture system consisting of fibroblasts
and hepatic parenchymal cells could be applied in forming 3D liver tissue [29]. The 1980s
witnessed the start of culturing 3D liver structures and laying the groundwork for the
emergence of liver organoids in the 1990s. Biodegradable scaffolds [30], hydrogels [31],
and polymeric microcarriers [32–34] had been employed to engineer liver organoids, which
could be the starting of bioengineering liver organoids, meanwhile, coculture systems
were developed to reconstruct liver organoids in the period of 1990s [31,35]. In the 2000s,
more and more techniques such as bioreactor [36], light patterning [37,38], and bioprint-
ing [39] were induced for engineering a liver organoid. Extracellular matrix combined
with polymeric scaffolds were used to improve the survival and morphological integrity
of hepatocytes [40]. When it came to the 2010s, advanced liver organoids with a vascular
network [41] and gene-modified liver organoids [42] were presented in the laboratories.
The long-term culture and expansion of liver organoids play a key role in constructing
reliable and replicable liver development and disease models, which was achieved by Hans
Clevers’ group [23,24]. Liver cancer organoid models that can be used to understand liver
cancer biology and develop therapeutics have also been established in the 2010s [4]. Cur-
rently, in the 2020s liver organoids were extended to biliary atresia [43] and virus-infected
models [44]. The functional hydrogels [45] and the advanced printing technique [46] have
attracted more and more attention to their application in engineering liver organoids.

What are the compositions of a liver organoid and how do we engineer a liver
organoid? A bioengineering liver organoid platform is a complex system involving various
basic biological research and bioengineering disciplines (Figure 1, bottom). This part re-
views the cell sources, biological agents, biomaterials, and fabrication techniques that have
been employed in the generation of liver organoids.
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Figure 1. Timeline of the important events of bioengineering liver organoids (top): the 1980s wit-
nessed the evolution of the 3D liver-like spheroidal aggregate [27–29]; the 1990s witnessed the
development of liver organoids [30–35]; various techniques and biomaterials had been employed
in bioengineering liver organoids in the 2000s [36–40]; the 2010s witnessed the development of
functional liver organoids and their long-time culture and cancer models [23,24,41,42]; functional
hydrogels and advanced printing technique have emerged in bioengineering liver organoids [45,46]
and the liver organoids were exposed to biliary atresia and virus-infected models [43,44]; and the
diagrammatic sketch of bioengineering liver organoids with different cell sources, biological factors,
biomaterials, and fabrication techniques (bottom). iPSCs: Induced pluripotent stem cells; HUVECs:
human umbilical vein endothelial cells; EGF: epidermal growth factor; TGF-b: transforming growth
factor beta; HGF: hepatocyte growth factor; HGF: fibroblast growth factor.
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2.1. Liver Organoids Derived from Different Cell Sources

Liver primary cells which express a surface receptor Leucine-rich repeat-containing
G protein-coupled receptor 5 (LGR5) were identified to be self-renewable and a single
LGR5-expressing cell was able to produce liver organoids of functional cholangiocytes
and hepatocytes [47]. Transplantable liver organoids have been generated from long-term
clonally expanded LGR5+ cells using an R-Spondin1 (Rspo1)-based culture medium [48].
Large-scale expansion of LGR5+ human liver cells was achievable using spinner flasks to
improve oxygenation of the culture resulting in a 40-fold cell expansion after 2 weeks of
culture [47]. Long-term culture of feline bile duct tissue-derived liver organoids retained
the characteristics of adult liver stem cells [49]. Primary bile duct cells have been expanded
in vitro to form 3D liver organoids and these cells also can differentiate into functional
hepatocyte cells [23]. All these findings indicated that the liver LGR5+ primary cells can
maintain their “stemless” properties after long-term culture and expansion and can be
induced to form liver organoids.

Induced pluripotent stem cells (iPSC) are capable of differentiating into many differ-
ent cell types, and iPSC-derived liver organoids can well replace the conventional liver
tissue-derived organoid systems [50]. Protocols have been established to induce iPSC to
differentiate into liver organoids of cholangiocytes and hepatocytes [51–55]. Typically,
iPSCs were cultured in a medium containing bone morphogenetic protein 4 (BMP4), fibrob-
last growth factor-4 (FGF4), and B-27 supplements to induce differentiation of iPSC into
hepatoblast-like cells, and subsequently cultured with epidermal growth factor (EGF) in
matrigel to encourage cholangiocyte differentiation [56]. Careful selection of extracellular
matrix (ECM) is a key step toward cholangiocyte differentiation from human iPSC: laminin
411 and laminin 511 have been shown to promote cholangiocyte differentiation [56]. The
construction of iPSC-derived cholangiocytes for disease modelling (Alagille syndrome)
and drug validation (cystic fibrosis drug VX809) have been reported [57]. There are two
steps to generate a liver organoid from iPSCs. Initially, iPSCs are differentiated into hepatic
endoderm and progenitor cells using specific protocols under a 2-dimension (2D) culture
environment. Thereafter, the cells will be seeded in a 3D culture to construct a complex 3D
organoid. However, to engineer a transplantable and functional in vitro organoid, the vas-
culature plays a significant role in producing suitable engraftment with biological functions.
Takebe et al. reported a protocol for generating liver buds from human iPSCs and inves-
tigated the vascularization and maturation of implanted liver buds in immuno-deficient
mice [58].

Multiple cell-type liver organoid systems allow more sophisticated structures to be
engineered with the vasculature and biliary system to mimic a native liver. Vasculariza-
tion is a crucial step toward organogenesis, which is essential for oxygen and nutrition
transportation and distribution. A liver organoid platform involving iPSCs, mesenchymal
stem cells (MSCs), and human umbilical vein endothelial cells (HUVECs) was employed
to investigate the paracrine effects of stem cell therapies for regenerative medicine [25,59].
Liver organoid models containing hepatocytes and cholangiocytes derived from iPSCs
were employed to study human genetic disorders [60].

2.2. Biological Factors for Directing Liver and Biliary Organoid Formation

Biological factors play a pivotal role in the regulation of cell expansion, differentiation
and self-organization in in vitro organoid cultures. As liver is developed from embryonic
endoderm, which also give rise to the endoderm tissues in pancreas and gut tube [61]. The
biological factors implicated in some of the important molecular signaling pathways under-
lying the proliferation/migration/differentiation of endoderm such as Noggin, epidermal
growth factor (EGF), transforming growth factor beta (TGF-β), hepatocyte growth factor
(HGF), fibroblast growth factor (FGF), R-spondin 1 (a Wnt pathway potentiator), TGF-β
inhibitor (A83-01), a cAMP pathway agonist forskolin (FSK), and retinoic acid (RA) have
been used in the generation of organoids of endoderm origin including liver organoid [62].
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A medium containing these factors supported the long-term culturing of liver organoids
for genetic manipulation [42].

2.3. Biomaterials for Engineering Liver Organoids

The ultimate goal of liver tissue engineering is to create a transplantable artificial liver
for transplantation to patients with end-stage liver failure. The liver ECM can act as a
scaffold supporting cell survival, proliferation, and differentiation [63]. A 3D environment
influences cellular behaviors via the interactions between cells and the ECM, and an absence
of cell-ECM interaction could lead to a specific type of cell apoptosis called anoikis [64].
Cell migration and differentiation are also influenced by the physical properties such as
the rigidity, adhesion, confinement, topology, and biochemical signals of the ECM [65,66].
A variety of biomaterials have been investigated and employed to reconstruct an appro-
priate microarchitecture with suitable stiffness and liver-specific ECM protein signals, for
supporting liver organoid in vitro expansion.

Traditional polymers such as polyhydroxyalkanoate and poly(lactic-co-glycolic acid)
(PLGA) polylactic acid (PLA), polycaprolactone (PCL), and poly(ethylene glycol) diacrylate
(PEGDA) have been employed for liver tissue scaffold fabrication [67,68]. These poly-
meric materials have good long-term biocompatibility, quality mechanical properties, and
biodegradable feature for liver organoid expansion. However, most of these polymers have
a high mechanical stiffness that is not applicable for 3D liver organoid culture. In contrast,
hydrogels, with their soft mechanical properties, become the best candidate materials to
mimic the mechanical environment of soft tissue like liver [69].

Alginate is a natural polysaccharide, which is widely used as biomedical hydrogel
scaffolds due to its good biocompatibility and affordable price [70]. It can be crosslinked
by divalent cations to provide a stable architecture supporting liver organoid growth and
proliferation [71]. Alginate is a flexible material for a number of fabrication and modi-
fication techniques, which enables organoid encapsulation for biomedical applications.
For example, microporous alginate scaffolds were fabricated to promote the development
of infant hepatic cells into hepatic tissue for drug screening [72]. Gelatin methacryloyl
(GelMA), a hydrogel that can be photo crosslinked, is typically prepared by a direct reaction
of gelatin and methacrylic anhydride (MA). Many preparation methods were developed
for its widespread applications in the biomedicine [73]. Organoid-laden complex scaf-
folds which are composed of GelMA, polyisocyanopeptides (PIC), and laminin-111 enable
long-term expansion of human liver organoids up to 14 passages with a proliferation rate
comparable to commercial Matrigels [46]. Hyaluronic acid (HA) and collagen are the
main components of native organ ECM, which have been widely used in regenerative
medicine and tissue engineering scaffolds. A host-liver colorectal-tumor organoid model
was established using HA-based microcarriers loaded with ECM elements and liver-specific
growth factors, which demonstrated a possible application of the HA-based hydrogel for
liver tumor model [74,75]. Condensed collagen fibril scaffolds have been employed to
encapsulate liver organoids into a transplantable hepatic tissue, which provides a microen-
vironment enhancing the cell-cell and cell-ECM interactions, and maintaining liver-specific
functions of the organoids [76]. The native organ decellularization matrix could be an
implantable scaffold for transplantable organoid tissue in vitro reconstruction. The whole
organ decellularization matrix was used to produce vascularized liver organoids [41], and
various decellularized ECM (dECM) liver organoid systems were reported [77–79].

Compared with the above-mentioned hydrogels, hybrid hydrogels can address some
of the limitations of using a single component matrix for liver organoid culture. To date, the
most prevalent commercial matrix is Matrigel, a basement membrane extracellular matrix,
that mainly consists of collagen IV, nidogen, perlecan, and a high content of glycosylated
molecules [80]. Matrigel has been widely used for liver organoid expansion (for review
see [50,81]). The reasons for the widespread use of commercial Matrigel for liver organoid
generation are due to its (i) good biocompatible properties; (ii) stable thermal-sensitive
gelation properties; and (iii) optically transparent properties for real-time monitoring of
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organoid growth. The clinical applicability of Matrigel is, however, severely limited by
the variability in its composition and the presence of xenogenic contaminants. Other
hybrid-hydrogel scaffolds have also been used to fabricate organoid-laden scaffolds, which
diversify the materials for the organoid generation [45,82].

2.4. Current Fabrication Techniques for Engineering Liver Organoid

With the development of material processing technology, large-scale fabrication of
liver organoids for transplantation is not unachievable. An engineering technique for
building implantable liver organoids should fulfill the criteria not only in the material
processing aspect but also in the biological aspect. Three-D printing technology allows
the creation of physical objects from a geometrical representation by successive addition
of materials. Meanwhile, 3D bioprinting, a combination of 3D printing with biological
content, has emerged as a powerful tool for the fabrication of biomimetic and implantable
scaffolds [83,84], which is also used for the production of organoid-laden structures [85].
Manon et al. reported an extrusion-based bioprinting approach using GelMA hydrogel as
a printing ink to construct liver tissue-derived epithelial organoids [86]. The viability of
printed organoids in GelMA hydrogel could be maintained at not less than 88% up to 10
days, which enabled the hepatotoxin exposure experiment to be conducted. A nozzle-free
volumetric bioprinting technique has been developed to fabricate gelatin-based scaffolds
encapsulating hepatic organoids [46]. This report illustrated that ammonia detoxification
was modulated in the printed liver-specific organoid using a perfusion system feeding
with NH4Cl.

Suspension culture is a well-developed technique for 3D organoid expansion for the
scalable production of organoids. Researchers have developed a two-step protocol for the
large-scale production of liver organoids from human iPSCs, in that homogeneous and
uniform-sized human embryoid bodies (hEBs) were first generated and the hEBs were
then cultured in a suspension culture platform to form liver organoids [87]. Saskia and
his colleagues have developed a protocol for the scalable production of hepatocytes and
hepatic organoids; furthermore, their protocol also included a cryopreservation method
to store intermediate hepatic organoids for the efficient production of a large number of
organoids [88].

Organ on a chip is an effective in vitro platform to reflect human liver-specific func-
tions, as well as the complex process of detoxication and bile production. Organ on a chip
platform can provide a dynamic microenvironment by manipulating the compositions of
the perfusion fluids. To mimic liver functions and the native liver microenvironment, a chip
with a specific design can be fabricated for a variety of in vitro studies. In a microfluidic 3D
human liver sinusoid, faster albumin and urea responses were observed under continuous
perfusion, allowing drug screening on a liver-on-a-chip platform [89]. Microfluidic organ-
on-a-chip devices were designed and produced to study the in vitro liver metabolism and
assess cardiac safety of drugs (e.g., clomipramine) through a co-culture model of liver
and cardiac organoids on the chip [90]. Using this multi-organoid platform, the urea syn-
thesis was measured for evaluating the liver-specific function of liver organoids and the
expression of liver-specific CYP450 enzyme genes.

3. Biomedical Applications of Bioengineering Liver Organoids

Liver disease leading to liver failure is a worldwide issue. The ultimate goal of liver
bioengineering is (i) to develop appropriate hepatic models to reveal the pathological
mechanism of liver disorders, and (ii) to create transplantable liver tissue to replace the
damaged one. In this section, bioengineering liver organoid disease models, cancer models,
and virus-infected models, as well as transplantable liver tissue derived from organoids
will be reviewed (Figure 2).
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histological study, drug screening, clinical pathology, gene expression analysis, and regeneration.

3.1. Liver Organoid Disease Models

Neonatal cholestatic disorders like biliary atresia (BA), a leading cause of paedi-
atric liver failure, impact the cholangiocytes of the intrahepatic and extrahepatic biliary
tree [91,92]. Bile flow is obstructed leading to severe liver fibrosis and impaired bile duct
system. BA has caused suffering in thousands of families with disease incidences of 0.05 to
0.14% in live births. Although Kasai portoenterostomy can effectively improve early clinical
outcomes, over 70% of BA patients have to ultimately undergo liver transplantation to
survive [93]. Its etiology remains to be fully revealed, but it is known that genetic mutations,
exposure to hepatotoxin, and infection by viruses could contribute to the cause of BA [92].
Our group generated liver organoids from the liver of BA patients and BA mice (Rhesus
rotavirus A-infected mice) and showed that BA patient- and BA mouse- liver organoids
displayed BA-specific aberrant morphology, indicating that human liver organoids can be
a good human proxy for patho-mechanistic study for BA [43]. Specifically, liver organoids
from BA patients and BA mice exhibited aberrant morphology and disturbed apical-basal
organization; a defective cholangiocyte development and altered beta-amyloid-related
gene expression in BA organoids; β-amyloid peptide (Aβ) accumulation in BA livers and
exposure to Aβ induced the BA-specific aberrant morphology in control organoids. The
delayed epithelial development and barrier function in BA organoid model was revealed
by Bezerra’s research group [94].

3.2. Liver Organoid Cancer Models

The incidence of human primary liver cancer (PLC), which includes hepatocellular
carcinoma (HCC), cholangiocarcinoma (CC), and combined HCC/CC (CHC) tumors, is
rising likely due to increased/high incidences of hepatitis, diabetes, obesity, etc., and PLC
has become one of the most common lethal malignancies worldwide [95,96]. The organoid
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model derived from PLC liver is a novel platform for liver cancer biology study, drug
screening and personalized medicine [4]. PLC liver-derived organoids were expanded
using human PLC tissue according to an optimized protocol which was developed by Laura
and coworkers [23,42]. PLC liver-derived organoids recapitulate the expression profile and
the histological architecture of human PLC tissues, and are now termed PLC-specific tumor-
oids [4]. The patient-specific sensitivity of anticancer compounds was evaluated using this
PLC-derived organoid system. PLC-derived organoids with the HCC feature demonstrated
a high sensitivity to anticancer drugs like Gemcitabine, AZD8931, SCH772984, Taselisib,
and Dasatanib. CC and HCC-derived organoids were transplanted into NSG mice (NOD
SCID gamma mouse) to establish an in vivo model for investigating the effect of ERK
inhibitors such as SCH772984 on PLC. Modeling cancer initiation can provide an effective
tool to monitor the histological changes during the early stage of cancer development. It is
known that the overexpression of c-Myc may cause HCC [97–99]. Lulu and coworkers have
reported an approach to mimic liver cancer initiation by overexpressing c-Myc in genetically
reprogrammed human hepatocyte (hiHeps) organoids [100]. The whole-transcriptome
analysis confirmed that activation of the c-Myc pathway in the reprogrammed hiHeps
organoids. Furthermore, it was found that mitochondrion-associated endoplasmic reticu-
lum (ER) membranes (MAMs) presented a disorganized morphology and a high level of
ER apposition to mitochondria, and a higher degree of mitochondrial Ca2+ uptake in the
c-Myc organoids. RASG12V-transformed hiHep organoids (RAS organoids), which faith-
fully recapitulated the characterizations of RAS-mutated liver cancer, were employed to
study the driving effect of RAS on human intrahepatic cholangiocarcinoma (ICC) formation
from human hepatocytes. Organoids derived from PLC tissues and genetically engineered
liver organoids derived from reprogrammed human hepatocytes represent two available
strategies for modelling human liver cancer initiation and development, which will yield
insights in cancer prevention and treatment targets.

3.3. Virus-Infected Liver Organoid Models

The current pandemic of coronavirus disease 2019 (COVID-19), caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a single-strand positive-sense
RNA virus, has become a worldwide threat that leads to over 600 million persons infected
and at least 6 million deaths according to the World Health Organization (WHO) until
now [101]. Meanwhile, increasing COVID-19-related liver dysfunction cases have been re-
ported [102]. Organoids as promising in vitro models offer an affordable 3D self-organized
cellular platform to researchers for the investigation of human infectious diseases and
host-microbe interactions [103].

Lui and coworkers have reported a human liver organoid-derived intrahepatic bile
duct cell platform for conducting the comparative study of SARS-CoV-2 and SAR-CoV
infectivity and replication rate [104]. It was shown that cholangiocytes were susceptible to
SARS-CoV-2 infection, and also supported efficient viral replication. Furthermore, SARS-
CoV-2 replication was shown to be much higher than SARS-CoV. Taken together, these
suggested direct cytopathic viral damage to be a mechanism for SARS-CoV-2 liver injury.

Virus-infected organoids emerged as a platform for testing antiviral drugs. Hepatitis
E virus (HEV), a positive-stranded RNA virus, often causes the epidemic of acute hepatitis
(hepatitis E) in subtropical countries [105]. As hepatitis viruses usually infect a narrow
range of hosts, human liver-derived organoids have been employed to study the virus-host
interactions between the HEV and the liver cells [81]. This report showed that human liver
tissue-derived organoids supported HEV infection, offering a novel tool for conducting
a genome-wide transcriptomic analysis of HEV infection and antiviral drug screening in
the HEV-infected organoid system. It was found that the organoids have a vigorous host
response to HEV along with an upregulation of the ISGs gene. Nie et al. have reported
human iPSCs-derived functional liver organoids recapitulated the hepatitis B virus (HBV)-
host interactions in vitro [106]. Hepatic dysfunction has been observed in HBV-infected
organoids along with down-regulation of hepatic genes including ALB, HNF1A, RBP4,
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G6PC, CYP3A4, CYP3A7, and CYP2C9. Recently, scientists have reported a coculture system
composed of the liver organoid and CD8+ T cells using a microfluidic technique to model
T-cell immunity against the hepatitis C virus [107].

3.4. Limitations of the Liver Organoid Models

There are limitations to using liver organoids as disease and cancer models. Compared
to traditional 2D culture systems, organoid culturing required costed biological agents and
a more complicated environment. The liver organoid model is still in the infant state. Only
limited functionality and characteristics can be replicated in the models, even though some
culture coculture liver organoid platforms exist. The architecture of the bioengineered liver
organoids highly relies on the stiffness of supporting biomaterials. However, there are a
very limited number of commercial products that can be used for liver organoid culture
and manipulating the morphology of liver organoids, making liver organoids a single
spherical shape. From the point of view of cell mechanics, the single morphology of liver
organoids can hardly mimic the cell-cell mechanical interactions.

3.5. Transplantable Liver Organoid Tissue

The ultimate goal of liver tissue engineering is to create transplantable liver tissue
to replace the damaged part and restore hepatic functions. Vascularization is a critical
step toward a transplantable liver organoid-derived tissue (for a review see [108]). A
transplantable liver organoid tissue with a sandwich structure composed of two layers
of collagen fibrils and inner clusters of hepatocytes was designed and fabricated [76]. In
the fabricated organoid-laden scaffolds, microvascular networks were formed after trans-
plantation, which suggested that the interaction between the host and graft may facilitate
blood vessel formation. Limitations of using organoid-derived tissues or cells in clinical
applications include poor control of morphology and composition and insufficient amounts
of tissues/cells. To address these problems, a high-throughput technique was developed
to generate transplantable liver organoids in a scalable and reproducible way [109]. The
bile ducts may be removed during an operation for a tumor, post-traumatic/inflammatory,
or congenital problem such as biliary or choledochal cyst biliary reconstruction to repair
the damaged or missing biliary tissue may be achieved with intestinal or preferably biliary
conduits. However, the shortage of healthy donors poses an obstacle to like-for-like biliary
reconstruction. Recently, scientists have advanced the field by successfully reconstructing
the gallbladder wall and bile duct using extrahepatic cholangiocyte organoids in mice [21].

Transplantation of liver organoids into a liver can be regarded as an organoid delivery
process. Apart from direct transplantation of liver organoids to the recipient’s liver, other
routes of liver organoid delivery to liver have also been tested. Tomonori and coworkers
have conducted an animal study in transplantation of porcine fetal liver-derived allogeneic
organoids to the 10-day-old piglet liver via the portal vein [110]. Their results indicated that
it is a safe procedure to deliver iPSC-derived and liver fetal tissue-derived liver organoids
through the portal vein with a ligation of the venous catheter, which can minimize the risk
of extrahepatic translocation of the liver organoids.

4. Prospect and Summary

Bioengineering liver organoid technology provides a useful platform for studying
liver development, virus infection of liver, liver disease and cancer, and for producing
transplantable liver tissues. The liver serves as a chemical factory of the human body.
However, the liver organoid system can only recapitulate part of physiological functions
and structure of a liver. A more sophisticated liver organoid system containing multiple
liver cell types that could mimic the full physiological functions of a liver is an ultimate
goal of tissue bioengineering. To generate and maintain such a complex multiple cell types
organoid system, a deeper understanding of the compositions of the biomolecules in the
liver ECM that provides the biological cues and optimal mechanical/physical properties
is essential for the future development of biomaterials for the generation of the next
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generation complex organoid system. Therefore, the synthesis/discovery of advanced
biomaterials that could provide optimal mechanical and physical support and biological
cues for regulating the 3D liver organoid growth and expansion will be critical for the
future development of liver organoids.

This review summarizes the advantages and obstacles of bioengineering liver organoid
techniques and their applications in biomedical and clinical research. The field has wit-
nessed a rapid growth of interest in engineering liver organoids with specific features
and functions for various applications. Recent advancements in organoid culturing and
fabrication technologies have promoted the complexity of the liver organoid systems for ap-
plications in liver disease patho-mechanistic study, liver cancer modelling, virus-infection
modelling, and the production of transplantable liver tissues.
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