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Currently, there are more than 100,000 people on the US national transplant waiting
list, and 17 people die each day waiting for an organ transplant [1]. Bioprinting offers
an alternative approach to engineering tissues/organs for clinical applications. To define
bioprinting, a working definition should be used, considering the bioprinting field is
multidisciplinary and rapidly evolving. Three-dimensional bioprinting is an additive
manufacturing technique that recapitulates the native architecture of tissues [2]. This
editorial reviewed the recent progress in bioprinting based on a series of articles published
in Bioengineering during 2020 and 2021.

A typical bioprinting process involves imaging, the design of bioprinted tissues,
materials (for scaffolding) and cell selection, bioprinting, and the maturation of bioprinted
tissues [3]. Bertolini et al. [4] reported an operative workflow from CT scans to 3D printed
heart models. However, several challenges remain, such as segmentation, which can
be time-consuming, and the accuracy and reproducibility of the whole workflow must
be verified.

An ideal bioink should exhibit the desired mechanical and rheological properties, good
biocompatibility, and high bioprintability. Natural biomaterials are of great interest due to
their biological origin, especially those that are components of a natural extracellular matrix.
Benwood et al. [5] reviewed the properties of multiple types of natural biomaterial-based
bioinks, including agarose, alginate, collagen/gelatin, chitosan, decellularized extracellular
matrix (dECM), dextran, fibrin, gellan gum, hyaluronic acid, silk, and Matrigel. In particular,
multi-component bioinks, combinations of different biomaterials designed to achieve
better biological, rheological, and mechanical properties, were discussed. Somasekharan
et al. [6] formulated and characterized a novel biomaterials-based multi-component bioink
consisting of alginate dialdehyde, gelatin, and platelet-rich plasma.

Among the above-mentioned natural biomaterials, collagen/gelatin, fibrin, and silk
are protein/peptide-based. Proteins contain various functional groups which can be used
for modification, physical gelation, and cross-linking. Stimuli-responsive and self-assembly
protein-based bioink are two emerging classes of ink. For example, silk fibroin is able to
form gel through the self-assembly of beta-sheets [7].

Cellulose, the most abundant biopolymer on earth, has also been explored for formulat-
ing bioink. For example, a novel cellulose-based bio-gel can now be used for bioprinting [8].
To produce the cellulose-based gel, cellulose was dissolved in an aqueous solution of NaOH
and urea. This solution gels upon heating. Moreover, the addition of undissolved cellulose
particles can be used a crosslinker to adjust the gel’s properties. Stenvall et al. [9] developed
composite materials made of polypropylene (PP) reinforced with microfibrillated cellu-
lose for the 3D printing of prostheses. Cellulosic nanomaterials, bacterial nanocellulose,
cellulose nanofibers, and cellulose nanocrystals, have also drawn significant attention
due to their biocompatibility, strong mechanical properties, high capacity for chemical
modification, and so on [10]. Rosendahl et al. [11] developed a nanocellulose-based bioink
using carboxylated cellulose nanofibrils. However, in vivo biodegradability remains a
major challenge since the human body lacks the enzymes which can breakdown cellulosic
materials [10].
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Modifications of natural biomaterials have been investigated with the aim of im-
proving their properties for bioprinting applications. For example, carboxylated agarose
blended with a small amount of native agarose has been shown to exhibit ideal rheological
behavior for bioprinting at physiological temperatures and notable gelling properties for
printing complex free-standing objects with high stiffness [12].

Polyhydroxyalkanoates (PHAs), a class of polyester, have shown great potential for
biomedical applications due to their biodegradability. PHAs have been used in drug de-
livery, vessel stenting, and tissue engineering. For example, a proximal femoral condyle
scaffold has been 3D printed using Calcium phosphate/PHBV (a type of PHA) nanocom-
posites via selective laser sintering (SLS) [13].

Tissue vascularization is critical for clinical applications. Two major approaches are the
induction of angiogenesis upon bioprinting and the direct printing of vascular channels [14].
Endothelial cells, such as human umbilical vein endothelial cells (HUVECs), are generally
used to promote vascularization. However, the resolution and precise placement of different
types of cells remain as challenges.

It is difficult to engineer tubular-shaped tissues and organs. Bioprinting offers unique
strategies to overcome the challenges faced by traditional approaches, such as casting
and cell sheet technology. The bioprinting of tubular-shaped tissues/organs has been
achieved through co-axial bioprinting, rod supporting bioprinting, and other bioprinting
techniques [15].

When it comes to the applications of bioprinting in various fields, Nizioł et al [16],
reported a novel bioink containing poly(N-isopropylacrylamide) (PNIPAAm) precursors,
sodium alginate, and methylcellulose. The ink can be used to generate thermally respon-
sive hydrogel scaffolds. Incorporated with an antimicrobial agent, this novel hydrogel
scaffold shows great potential towards wound-healing applications. Additionally, bio-
printing exhibits the potential for generating skin tissue-engineered products with the
replicated dermal–epidermal junction (DEJ), considering DEJ plays various roles in skin
homeostasis and function [17]. Significant progress has been made in cardiovascular [18],
cartilage [19], musculoskeletal [20], and other tissue engineering fields in recent decades.
Three-dimensional bioprinting has enabled the production of cardiovascular grafts, heart
patches, values, and more [18]. Advancements have also been reported for engineering a
full-thickness human cornea through bioprinting, as corneal transplantation is necessary
for advanced stromal and endothelial disorders [21]. Overall, challenges related to biocom-
patible and bioprintability still remain. The complex regulatory pathway also remains a
major challenge for the clinical translation of 3D-printed tissue/organ products [19,20].

It is worth mentioning that bioprinting has also been used for generating 3D tis-
sue/organ models for other biomedical applications besides tissue engineering and re-
generative medicine applications. For example, a bioprinted 3D cancer cell model has
been developed for anti-cancer drug screening [11]. Interestingly, a 3D hydrogel-based
in vitro tumor–stromal model has been produced, which recapitulates the angiogenic
switch [22]. This model is specifically useful for studying the molecular mechanism of
angiogenesis initiation.

Moving forward, significant progress in novel bioink design and bioprinting methods
are required to produce biocompatible and fully vascularized tissues/organs. In particu-
lar, the precisely controlled placement of various types of cells within the scaffold to fully
replicate a native tissue/organ needs further investigation. The application of artificial intel-
ligence (AI) and machine learning (ML) shows great potential in improving the bioprinting
process design [19]. Lastly, 4D bioprinting, with a further dimension of transformation
over time (such as functionalities changing over time under external stimuli), is expected
to be the next generation of technology [18,23].
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