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Abstract: Background: Non-alcoholic Fatty Liver Disease (NAFLD) is growing more prevalent
worldwide. Although non-invasive diagnostic approaches such as conventional ultrasonography
and clinical scoring systems have been proposed as alternatives to liver biopsy, their efficacy has been
called into doubt. Artificial Intelligence (AI) is now combined with traditional diagnostic processes
to improve the performance of non-invasive approaches. Objective: This study explores how well
various AI methods function and perform on ultrasound (US) images to diagnose and quantify
non-alcoholic fatty liver disease. Methodology: A systematic review was conducted to achieve this
objective. Five science bibliographic databases were searched, including PubMed, Association for
Computing Machinery ACM Digital Library, Institute of Electrical and Electronics Engineers IEEE
Xplore, Scopus, and Google Scholar. Only peer-reviewed English articles, conferences, theses, and
book chapters were included. Data from studies were synthesized using narrative methodologies per
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Results:
Forty-nine studies were included in the systematic review. According to the qualitative analysis,
AI significantly enhanced the diagnosis of NAFLD, Non-Alcoholic Steatohepatitis (NASH), and
liver fibrosis. In addition, modalities, image acquisition, feature extraction and selection, data
management, and classifiers were assessed and compared in terms of performance measures (i.e.,
accuracy, sensitivity, and specificity). Conclusion: AI-supported systems show potential performance
increases in detecting and quantifying steatosis, NASH, and liver fibrosis in NAFLD patients. Before
real-world implementation, prospective studies with direct comparisons of AI-assisted modalities
and conventional techniques are necessary.

Keywords: artificial intelligence; deep learning; machine learning; fatty liver; NAFLD; ultrasound

1. Introduction
1.1. Background

Non-alcoholic Fatty Liver Disease (NAFLD) is a group of disorders caused by a build-
up of fat in the liver. The disease is most common in overweight or obese people [1].
One of the most common chronic liver disease in the world is NAFLD, affecting between
25% and 30% of the adult population [1,2]. High liver fat levels are linked to a higher risk
of significant health issues such as diabetes, high blood pressure, cirrhosis, renal disease,
and heart disease [3]. However, if diagnosed and treated early enough, NAFLD can be
prevented from worsening, and the amount of fat in the liver can be reduced. Unfortunately,
advanced liver disease and mortality due to NAFLD/NASH are expected to rise in Saudi
Arabia (Figure 1), necessitating a strategy to slow the growth of the NAFLD population
and minimize the liver disease burden [4]. The primary line of treatment for NAFLD and
NASH is lifestyle changes, including eating habits and physical activity. A well-established
therapy for NAFLD and NASH is weight loss, which has an unmistakable dose–response
correlation between definite nutriments and fatty liver disease [5].
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Figure 1. Distribution of NAFLD population by fibrosis stage—2017 and 2030, adapted from [4]. 

The progression of NAFLD involves four stages. Steatosis (simple fatty liver) is a 
harmless build-up of fat in the liver cells. A more severe form of NAFLD called NASH 
occurs when the liver becomes inflamed. A patient is diagnosed with fibrosis when per-
sistent inflammation creates scar tissue around the liver and adjacent blood vessels, but 
the liver can still function normally. Cirrhosis, the most severe stage, develops after years 
of inflammation and causes the liver to shrink, scar, and lump; this damage is irreversible 
and can lead to liver failure (Figure 2). Typically, doctors divide the severity of a patient’s 
disease into four groups, normal, mild, intermediate, or severe, based on histological char-
acteristics [6]. 

 
Figure 2. Example of NAFLD progression model [liver fibrosis can be divided into four stages (F1–
4) as follows: F0—no fibrosis; F1—portal fibrosis without septa; F2—portal fibrosis and few septa; 
F3—numerous septa without cirrhosis; F4—cirrhosis, adapted from [4]. 

In most cases, abdominal ultrasonography is used to diagnose NAFLD [7]. Ultraso-
nography is a low-cost, safe, quick, and uncomplicated procedure in most healthcare set-
tings [8]. To determine the severity of liver disease, non-invasive testing or liver biopsies 

Figure 1. Distribution of NAFLD population by fibrosis stage—2017 and 2030, adapted from [4].

The progression of NAFLD involves four stages. Steatosis (simple fatty liver) is a
harmless build-up of fat in the liver cells. A more severe form of NAFLD called NASH
occurs when the liver becomes inflamed. A patient is diagnosed with fibrosis when
persistent inflammation creates scar tissue around the liver and adjacent blood vessels,
but the liver can still function normally. Cirrhosis, the most severe stage, develops after
years of inflammation and causes the liver to shrink, scar, and lump; this damage is
irreversible and can lead to liver failure (Figure 2). Typically, doctors divide the severity
of a patient’s disease into four groups, normal, mild, intermediate, or severe, based on
histological characteristics [6].
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Figure 2. Example of NAFLD progression model [liver fibrosis can be divided into four stages (F1–4)
as follows: F0—no fibrosis; F1—portal fibrosis without septa; F2—portal fibrosis and few septa;
F3—numerous septa without cirrhosis; F4—cirrhosis, adapted from [4].

In most cases, abdominal ultrasonography is used to diagnose NAFLD [7]. Ultra-
sonography is a low-cost, safe, quick, and uncomplicated procedure in most healthcare
settings [8]. To determine the severity of liver disease, non-invasive testing or liver biopsies
are used. Hepatic steatosis, inflammation, and fibrosis are all assessed with a liver biopsy.
However, a liver biopsy is an intrusive procedure that may result in a hemoperitoneum
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or hemothorax. Liver biopsy is also ineffective as a follow-up technique for liver disease
due to its invasive nature [9]. Alternative NAFLD diagnostic approaches, such as clini-
cal/laboratory scores, have been developed, although their efficacy has been questioned.
The accuracy of magnetic resonance imaging proton density fat fraction (MRI-PDFF) is
higher, but the cost and availability are limiting [10]. Compared to results in late-stage
NAFLD, transient elastography and several biomarkers demonstrate better performance
in the initial stages. Various diagnosis approaches are being combined with artificial
intelligence (AI) to increase diagnostic performance [11].

AI is an area of computer science that tries to replicate humans’ learning and problem-
solving abilities [12]. Expert systems made up of clearly stated rule-based algorithms [13]
and machine learning (ML), where patterns are learned from data rather than human-
designed rules [14], are the two primary forms of AI [15]. The three types of ML are
unsupervised, supervised, and reinforcement. Unsupervised learning (e.g., k-means,
clustering, and Gaussian mixtures) is used to find clusters based on shared characteristics.
To teach mapping relationships between input-output (anticipated outcome) pairings,
supervised learning (e.g., support vector machines (SVM), decision trees, and artificial
neural networks (ANN)) are typically utilized. ANN are a computer analysis tool inspired
by the neuroanatomy of the human brain. ANN have three layers: input, hidden, and
output. The training phase allows neurons to optimize outcomes by weighting the incoming
data. A convolutional neural network (CNN) is an image-based ML technology inspired
by the human brain’s visual cortex. Convolutional, nonlinear, and pooling layers make
up CNNs. A deep neural network (DNN) is made up of numerous filters that are applied
to automatically find relevant aspects in the input data. Learning how to act in order to
maximize a numerical reward signal is known as reinforcement learning. The learner must
try each action to determine which produces the greatest reward. In the most fascinating
and difficult situations, choices can influence not only the immediate reward but also the
subsequent circumstance [16].

Numerous research has demonstrated the viability of combining AI with medical
technologies to enhance outcomes, lower margins of error, and increase the standard of
care. M.B. Jamshidi et al. found, for instance, in their review that various AI techniques
can forecast the spread of COVID-19 [17]. In a distinct review, M.B. Jamshidi et al. also
demonstrated how mobile applications are quickly becoming tools that provide a variety of
services in the field of medical sciences, particularly in the COVID-19 era, and can effectively
aid medical systems [18]. In fact, a substantial role for AI in battling COVID-19 [19] and
creating vaccines in a short amount of time [20] has been demonstrated. Additionally,
V. Srivastava et al.’s study improved the categorization accuracy for dermatoscopic images
using AI approaches, increasing it to 96%. [21]. Another example was the work of D. Pal
et al., where they showed that Attention UW-Net is the best for automatically segmenting
and annotating organ x-rays due to its uniformity in prediction accuracy of segmentation
masks [22]. Diverse types of AI have been used to address multiple liver problems using
different interventions. Many studies on diagnosing, detecting, quantifying, and managing
liver disorders such as fibrosis, focal lesions, carcinoma, NAFLD, and chronic illness
have used AI to improve diverse diagnosis methodologies. For example, Piscaglia et al.
employed ANN to predict the presence or absence of fibrosis in liver samples [23]. In
addition, S-h Z et al. employed MRI scans and a ML technique to distinguish between
malignant and benign liver cancers [24]. However, more studies are using AI to diagnose
and determine the stage of NAFLD. For example, Vanderbeck et al. employed an SVM
machine learning model to categorize digital normal and NAFLD biopsy images [25]. In
addition, Naganawa et al. used a logistic regression (LR) machine learning model on
non-contrast-enhanced computed tomography to predict stages of fatty liver disease [26].

Using ultrasonography with AI to detect and quantify NAFLD is a promising approach
that has recently attracted researchers’ attention. In a review published in 2021, the domains
of liver disease in which AI can be used are briefly discussed [27]. In addition, the use of
ML for measuring liver fibrosis, forecasting hepatic decompensation, screening potential
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liver transplant recipients, and predicting post-transplant survival and complications was
reported in a recent systematic review of AI in hepatology [28–30]. A comprehensive
study also highlights basic technical knowledge about AI, such as traditional ML and
deep learning (DL) algorithms, particularly CNNs, and their clinical applications in the
medical imaging of liver diseases, such as detecting and evaluating focal liver lesions,
facilitating treatment, and predicting liver treatment response [11,31]. Another recent
systematic review detailed the use of AI in imaging modalities, digital pathology, and
electronic health records to diagnose and stage NAFLD [32]. Furthermore, the performance
of AI-assisted systems for the detection of NAFLD, NASH, and liver fibrosis is examined
in a recent meta-analysis [33].

1.2. Research Problem and Aim

To the researchers’ best knowledge, no studies rigorously analyzed AI models for
diagnosing and quantifying NAFLD using ultrasound (US) images or compared models
regarding measures. Therefore, this systematic review is the first work of its kind in the
literature. Many knowledge gaps have been identified and explored throughout this article.
This study aims to examine all prior studies to determine the best accuracy, sensitivity, and
specificity for diagnosing and quantifying NAFLD using ML, DL, or a combination of both.

2. Methods
2.1. Overview

A preliminary search and idea validation were conducted using the search terms
“Artificial Intelligence” and “Ultrasound” and “Fatty liver” in PubMed and Google Scholar.
When performing this step, systematic reviews and meta-analyses were found. These
sources contained relevant papers to read to gain a deeper understanding of the topic and
identify gaps to articulate the research question better. Because the previous reviews had
different outcomes and populations, a systematic review of AI-powered ultrasonography
were conducted to detect and quantify NAFLD. Figure 3 summarizes the method and
tackles the research purpose.
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2.2. Protocol and Registration

The protocol was designed by the author and reviewed and approved by the corre-
sponding author. The protocol is registered at PROSPERO.
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2.3. Search Sources

The bibliographic databases used in this study were PubMed, ACM Digital Library,
IEEE Xplore, Scopus, and Google Scholar. The first one hundred Google Scholar results
were sorted by relevancy to the search topic, returning many publications. The initial
search was broad, based on terms in all fields across all databases. Because the number of
keywords allowed in IEEE Xplore and Google Scholar was limited, shorter search strings
were used compared to the other databases. Backward and forward reference list checking
turned up a multitude of related studies in a variety of databases.

2.4. Search Terms

The search terms used in this review were related to the population (e.g., “fatty
liver,” “hepatic steatosis,” “non-alcoholic fatty liver,” “metabolic associated fatty liver
disease,” etc.), first intervention group (e.g., “Artificial Intelligent *”, “machine learning”,
“deep learning”, “convolutional neural network *”, “artificial neural network *”, etc.),
second intervention group (e.g., “ultrasound”, “ultrasonogr *”, “sonography”, etc.), and
outcome (e.g., “detect *”, “quantif *”, “diagnos *”, etc.). Even though the comparator is
usually essential for explaining the mode of comparison, no terminology related to it was
included because a comparison based on comparators is outside the scope of this study. All
comparators in the included studies were grouped into a single category termed “Control.”

2.5. Study Eligibility Criteria

All studies reported patients with hepatic steatosis, including NAFLD, NASH, acute
fatty liver of pregnancy (AFLP), and other disease phases. Eligible interventions were those
that fell under the umbrella of AI and were related to computer vision (CV), which was
used to assess medical images. The type of medical image discussed in this review was
a US, also known as sonography or ultrasonography. Interventions that identified and
diagnosed fatty liver disease and its stages were considered eligible outcomes. Outcome
accuracy, sensitivity, and specificity were used to assess performance. This review used no
limitations such as age, gender, race, or publication date. Table 1 defines the inclusion and
exclusion criteria.

Table 1. Inclusion and Exclusion Criteria.

Parameters Inclusion Criteria Exclusion Criteria

Population Patients with Hepatic Steatosis (NAFLD)
and developed stages.

- Alcoholic fatty liver disease (AFLD) includes simple
AFLD and alcoholic steatohepatitis (ASH).

- Patients suffering from liver illnesses other than
steatosis (e.g.,: tumors).

Intervention AI that used ultrasound images to detect
and quantify hepatic steatosis.

Non-AI-based technologies and AI technologies
used other types of imaging (MRI, X-ray, etc.)

Comparator N/A N/A

Outcome Detection and quantification of hepatic
steatosis.

Any other outcome that is not mentioned in the
inclusion criteria

Performance measures The metrics to be measured are accuracy,
sensitivity (recall), specificity, or AUC.

Any other measures that are not mentioned in the
inclusion criteria

Study Type Peer-reviewed articles, theses,
dissertations, and reports. Reviews, conference abstracts, and proposals.

Study Design Empirical studies. Any other study design that is not mentioned in
the inclusion criteria

Study language English Studies written in any language other than English.

Study time frame No limitation No limitation

Age, Gender, Ethnicity No limitation No limitation
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2.6. Study Selection

Using PRISMA, studies were selected based on three processes: deleting duplicates,
screening and assessing titles and abstracts of recovered research and index terms, and
reading the contexts of the studies selected during the previous processes. The research se-
lection was aided by a web-based systematic review tool known as Rayyan, speeding up the
screening step [34]. Finally, the primary author completed all the processes and conducted
data cross-checking among the studies’ extracted data to correct any probable errors.

2.7. Data Extraction and Synthesis

The primary author designed a data extraction form to collect specific data and param-
eters from the included studies. The form was a result of revising the parameters gathered
in similar reviews and adding extra parameters needed to accomplish this review’s aim.
The final extraction form was reviewed and approved by the corresponding author. Further-
more, data regarding the study (e.g., first author, year of publication, country of publication,
publication type, etc.), population (e.g., age, gender, health status, sample size, etc.), in-
terventions (e.g., imaging modalities, image types, image quality, AI branch, AI methods,
validation methods, etc.), datasets (e.g., public/private, training data, testing data, aug-
mented or not, etc.), and performance measures (e.g., accuracy, sensitivity, specificity, and
Area Under the Curve) were collected by the author manually. In addition, as previously
mentioned, manual data cross-checking among the studies’ extracted data was conducted
by the author to correct any probable errors.

2.8. Risk of Bias in Individual Studies

Using the modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2)
was considered to evaluate the risk of bias in the studies, but all studies were included
because of the limited number of studies available. A literature map was created to help
review the literature for gaps and points of impact. According to Figure 4, the selected
studies are mostly correlated since there are very few studies not in the citation loop. This
result encourages including all the studies even though their quality is questionable.
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2.9. Data Checking Task

Data was validated through the cross-verification of more than two sources. Using
triangulation, the consistency of findings was evaluated, increasing the chance of controlling
any threats to result validity [35]. Collected parameters of included studies were cross-
checked in front of the same parameter in different studies. A form that was designed by the
author was used to record any discrepancy that was found. The next step was to revisit each
paper and correctly extract the parameters that showed discrepancies according to the form.
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3. Results
3.1. Search Results

Figure 5 depicts the search process and results. A total of 609 articles were found
during a literature search. After eliminating 93 duplicates, 516 titles and abstracts were re-
viewed and 461 articles were rejected for the following reasons: irrelevant research (n = 398),
incorrect intervention (n = 42), incorrect population (n = 16), and incorrect publication type
(n = 5). Following that, 55 full-text articles were reviewed, with 23 being removed for the
following reasons: incorrect research design (n = 1), incorrect population (n = 4), incorrect
intervention (n = 13), irrelevant studies (n = 2), and articles written in languages other than
English (n = 2). Finally, after completing the forward and backward review process, the
total number of studies considered was forty-nine.
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Figure 5. PRISMA diagram for study selection.

3.2. Description of the Included Studies

Results of the performance measures and assessments of each included study are
summarized in Table 5. This table contains basic information about the whole study,
including the study number in the reference, the type of categorization, the number of
images, and the classifier. The AUC, sensitivity, accuracy, and specificity are then added.
Each study’s findings are also summarized.
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3.3. Study Characteristics

The highest percentage of studies were journal articles (n = 34, ≈69%), while most
of the rest of the studies were conference proceedings (n = 14, ≈28.5%). However, one
study was a dissertation. As shown in Table 2, studies were published between 1996 and
2021—however, there was a marked increase in published studies, especially DL studies,
starting in 2014. When dividing the studies by year of publication, 22.4% were published
in 2021, 8.16% in 2020, 10.2% in 2019, and approximately 24.5% between 2015 and 2018.
More than a third of the studies were about DL (n = 17, 35%), and the rest discussed
ML (n = 32, 56%). Finally, while India, the USA, China, and Portugal published the most
significant number of studies, the USA, Taiwan, and Romania published the largest number
of DL studies.

Table 2. Number of studies sorted by AI type.

Country Total Number
of Studies

Studies with Deep Learning
Classifying Approach

Studies with Machine Learning
Classifying Approach Publication Period *

India 8 (≈16%) 1 7 2007→ 2019

USA 7 (≈16%) 5 2 1996→ 2021

China 5 (≈10%) 2 3 2010→ 2020

Portugal 5 (≈10%) 1 4 2012← 2018

Romania 4 (≈8%) 2 2 2006→ 2021

Taiwan 4 (≈8%) 3 1 2019→ 2021

Greece 3 (≈6%) 0 3 1997← 2000

Iran 3 (≈6%) 0 3 2015← 2021

Malaysia 3 (≈6%) 0 3 2016

Italy 2 (≈4%) 1 1 2016–2021

Egypt 1 (≈2%) 0 1 1999

Korea 1 (≈2%) 1 0 2021

Pakistan 1 (≈2%) 0 1 2012

Poland 1 (≈2%) 1 0 2018

Venezuela 1 (≈2%) 0 1 2015

Total 49 17 (≈35%) 32 (≈56%) 1996→ 2021

*: The arrow indicates an increase or a decrease in studies over time.

3.4. Definition of Result Themes
3.4.1. Evaluation of Modalities

The included studies used different modalities, probe frequencies, and settings. Table 3
shows the modalities and frequency ranges used in all the studies.

Table 3. Modalities and frequencies used.

Modality Manufacturer Modalities Model Average Frequencies in MHz Studies Reference Number

Philips

CX 50 3.5 [36–40]

CX c50 3 [41,42]

EPIQ 40 [43]

EPIQ 7G 3 [44–46]

HD15 - [45]

IU22 - [44,45]
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Table 3. Cont.

Modality Manufacturer Modalities Model Average Frequencies in MHz Studies Reference Number

Siemens

ACUSON 128XP/10 3.5 [47–49]

ACUSON S1000 - [50]

ACUSON S2000 - [45]

ACUSON sequoia 512 4.5 [51]

ACUSON X300 - [52]

Sonoline Versa Plus 3.5 [53,54]

Toshiba

SSA-700A - [45]

SSA 550 5 [55–57]

Xario - [45]

TUS-A300 - [45]

GE

Logic E9 4 [44,45,58]

Vivid E9 2.5 [59–64]

Voluson 730 Pro 3.5 [65,66]

Logic S8 - [45]

Canon
Aplio 500 3.5 [44,67]

i800 - [44]

Hitachi
Avius - [45]

Preirus - [45]

CIRS 040GSE - [68]

Burlington Terason 3000 3.5 [69]

Sonosite M-Turbo 3 [70]

ESAOTE MyLab 50 - [71]

Mindray Resona 7 5 [72]

KRETZ SA 3200 4 [73,74]

Unknown Unknown - [75–83]

3.4.2. Evaluation of Image Pre-Processing

Image pre-processing enhances an image’s quality by cleaning and organizing it for
better feature extraction suitable for ML models. Usually, three steps are taken to prepare
an image for further operations. First, images are resized. Second, images are de-noised by
removing and smoothing noises. For example, speckle noise is removed using filters such
as the Gaussian blur. Third, images are segmented by separating the background from the
foreground. Many methods were used to process the US images in the included studies.
The processing methods used include cropping [37,42,45,50,51,53,55,56,59,62,69,77,80,84],
resizing [37,50,59–61,77,84], rotating [60,61,81], edge detection using “Active Snake Con-
tour” [80] or “α-scale space derivative quadrature filters” [62], image squaring process [51],
and contrast limited adaptive histogram equalization [36,37,51,54,81].

The included studies also used different methods to deal with the size of the im-
ages. Usually, a Region of Interest (ROI) resides around the center line and under an
image’s near, focal, or far zones. It can be rectangular [48,74,75] or circular [59,81]. Typ-
ically, ROIs are chosen manually by an expert or automatically using methods like a
self-organizing map [53]. In this research, some studies used the complete image as the ROI
with a size of 434 × 636 pixels [60,61,63,64], 800 × 600 pixels [71], 960 × 720 pixels [51], or
1024 × 1024 pixels [39]. Other studies selected larger ROIs with 500 × 500 pixels [36,37,53].
Some studies selected medium-sized ROIs of 360 × 360 pixels [77], 334 × 334 pixels [62],
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224 × 224 pixels [50], 128 × 128 pixels [38,40–42], or 100 × 100 pixels [79]. Finally, some
studies selected small ROIs such as 23 × 23 pixels [78], 30 × 30 pixels [65,66],
32 × 32 pixels [47–49,52], 50 × 50 pixels [58,72], 64 × 64 pixels [55–57], or 75 × 75 pixels [84].

3.4.3. Evaluation of Features

Features such as maximum probability [38,52,53,59,63,78,80], uniformity [38,52,53,59,60,63,70,80],
entropy [37,38,49,52,59,63,66,70,71,73,74,76,80,82], contrast [38,49,52,59,63,65,66,70,71,73,74,76,78,80],
run-length uniformity [38,52,70,80], attenuation [43,73–75,79], grey-level metrics [49,71,73,74,80,82],
inverse difference [38,49,52,59,63,70,80], anisotropy, and pair correlation function [54] are
examples of features that are repeated in studies of higher accuracy.

There are many methods used to extract features from US images. Among the
extraction methods frequently used in studies with higher performance are the grey-
level co-occurrence matrix method [38,52,54,58,63,71,76,79,80,83], grey-level difference
statistics [48,49,66], grey-level run-length matrix [38,48,49,58], spatial grey-level
dependence [47–49,53,65,66], wavelet packet transform [55–57], and first-order statistics [52,58,79].

Using only pertinent data and eliminating data noise, feature selection is a technique
for lowering the variability of inputs put into a model. Choosing suitable characteristics
for the AI model is based on the type of problem to be solved. Some feature selection
methods often used in high-performance studies are locality-sensitive discriminant analy-
sis [36,37], student’s t-test [41,53], Fisher’s discrimination ratio with Pearson’s correlation
coefficient [65,66], sequential forward floating selection [79], marginal Fisher analysis with
Wilcoxon signed-rank test [39], and Welch’s test [54].

3.4.4. Cross-Validation and Data Splitting

Even though not all studies provided information about the methods used to man-
age data, most studies used cross-validation. Twelve studies implemented 10-fold cross-
validation on the testing and training datasets [36,38,39,42,43,52,58,60,62,67,68,70], four
studies used five-fold cross-validation [59,63,66,69], one study used four-fold cross-
validation [77], two studies used three-fold cross-validation [41,54], one study used two-fold
cross-validation [40], and one study used one-fold cross-validation [74]. In addition, four stud-
ies mentioned that a leave-one-out cross-validation (LOOCV) method was used [55–57,79].

Not all the included studies reported the rate of data splitting used for training and test-
ing. Often, the percentage of data allocated for validation was also unclear. Table 4 shows
approximate data splitting calculations. For most studies, the number of samples used for
validation was assumed to be null since no numbers were explicitly declared for validation.

3.4.5. Evaluation of Classification Models

An algorithm that performs classification is known as a classifier. The features of
images that need to be classified significantly impact classifier performance. Numerous
empirical studies have been conducted to compare classifier performance and identify the
elements of images that affect classifier performance.

Thirty-two included studies used ML models, and seventeen studies used DL models.
In the ML studies, seven studies had their best performance using a SVM [52,55–58,60,67],
four studies used a probabilistic neural network [37,39,54,76], and three studies used k-
nearest neighbor [KNN] [48,49,82]. In addition, four studies used the Sugeno method [36],
neural network method [47], or other fuzzy logic methods [74,78], and two studies used
random forest [67,75]. Two studies used ensembled models. One study used three different
classifiers: SVM, multi-layered perceptron neural net, and extreme gradient boost [70].
The other study used two classifiers: LR and SVM [68]. The rest of the studies used
the following models to classify the images: binary logistic regression [BLR][71], adap-
tive boosting [67], Bayes [79], decision tree [41], single-layer perceptron network [73],
regression tree model [43], single-layer feed-forward neural network [38], ANN [80],
Levenberg–Marquardt back propagation neural network [40], and z-score [66].
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Table 4. Data splitting rates.

In AI learning Type Ref. No.
≈50%, 50%, 0% machine learning [43,48,78]
≈56%, 44%, 0% Machine learning [82]
≈60%, 20%, 20% Machine learning [45]
≈60%, 40%, 0% Deep learning [77]
≈60%, 40%, 0% machine learning [81]
≈70%, 30%, 0% Deep learning [71]
≈70%, 30%, 0% machine learning [44,51]
≈75%, 25%, 0% Deep learning [72]
≈78%, 28%, 0% Deep learning [69]
≈79%, 21%, 0% Deep learning [70]
≈80%, 10%, 10% machine learning [84]
≈80%, 20%, 0% Deep learning [60,62]
≈80%, 20%, 0% machine learning [59,63]
≈80%, 9%, 11% Deep learning [61]
≈84%, 16%, 0% Deep learning [64]
≈88%, 12%, 0% Deep learning [83]
≈92%, 18%, 0% Deep learning [54]
≈94%, 6%, 0% Deep learning [46]

DL studies used many models to classify US images. Seven studies used CNNs with
variations in architecture (e.g., layers, branches, number of batches, pooling, convolution,
etc.) [42,44,46,61,72,77,83]. The number of layers used ranged between three, as in [46],
and twenty-two, as in [79]. In all seven studies, SoftMax was used for classification. In
one study, Fourier CNNs with six layers were used as a classification model [64]. Two
studies used Inception-v3 as a classification model [51,84], and two studies used VGG-16
to classify US images [50,69]. Five studies used a residual neural network (ResNet) with
the following version variations: Inception-ResNet-v2 [63], multi-scale two-dimensional
mid-fusion ResNet [62], ResNet-18 [45,51], and ResNet-50 v2 [81]. Finally, in one study, a
SVM was used to classify images after a CNN was used to extract features [59].

3.4.6. Explanation of the Performance Measure

Every machine learning problem may be divided into two categories: regression and
classification [13]. For regression models, for example, measures such as Mean Absolute
Error, Mean Squared Error, Root Mean Squared Error, and R2 are used to evaluate the
performance. Classification models are also evaluated using measures such as Accuracy,
Precision, Recall, F1-score, and AU-ROC. It is worth noting that the Metrics are distinct
from the loss functions used to train a machine learning model, and they are typically
distinguishable in the model’s parameters [85].

We will include the three key performance indicators reported in the majority of
the included studies in this review: sensitivity, specificity, and accuracy. A few studies
also reported F1-score and AUC; however, due to the scarcity of studies utilizing these
measures, they will not be included in the review. The classification accuracy of a collection
of measures is defined as how near they are to their actual value. Accuracy is calculated
by dividing the number of correct predictions by the total number of predictions and
multiplying the result by 100. A diagnostic test’s classification sensitivity measures how
well it can identify true positives. Sensitivity is also known as Recall, Hit-Rate, and True
Positive Rate. It may be computed by dividing the number of true positives by the total
number of positives in the ground truth. Specificity, also known as Selectivity or True
Negative Rate, assesses how successfully a test can identify true negatives. [86].
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Table 5. Results of included studies.

Ref.
No.

Patients
Categories

Total no.
of
Images

AI Classifier AUC Sensitivity Accuracy Specificity Main Findings

[36] 1- normal
2- abnormal 100 Fuzzy Sugeno (FS) Unknown 100% 100% 100%

An automated diagnosis based on RT and DCT coefficients
was used to classify a normal liver and a liver affected by
fatty liver disease (FLD). Using only two features, the FS
classifier presented the highest accuracy, sensitivity, and
specificity, at 100%. Moreover, using just two elements,
FLDI discriminated between normal and FLD.

[51]

1- Normal
2- Mild
3- Moderate
4- Severe

3200 Inception v3 Unknown 99.78% 99.91% 100%

The final neural network, SteatosisNet, used clipped L-K
sections (using transfer learning and a second neural
network) to categorize the severity of FLD. The
experimental findings show that the suggested model may
predict FLD effectively, comparable to the usual
conclusions noted by medical professionals.

[69]

1- Normal
2- mild
3- moderate
4- severe

820 VGG-16

for B Modes
Images:
Mild = 0.71
Moderate = 0.75
Severe = 0.88

for Entropy
Images:
Mild = 0.68
Moderate = 0.85
Severe = 0.90

for B Modes
Images:
Mild = 73.18%
Moderate =
63.25%
Severe = 85.23%

for Entropy
Images:
Mild = 64.10%
Moderate =
70%
Severe = 78.82%

for B Modes
Images:
Mild = 70%
Moderate = 80%
Severe = 97%

for Entropy
Images:
Mild = 68%
Moderate = 80%
Severe = 83%

for B Modes
Images:
Mild = 60%
Moderate =
74.82%
Severe = 84.12%

for Entropy
Images:
Mild = 70.16%
Moderate =
86.54%
Severe = 93.30%

When identifying mild and severe hepatic steatosis, there
was no discernible difference between the VGG-16 model
and entropy imaging. However, when it came to detecting
moderate hepatic steatosis, ultrasonic entropy imaging
performed better than the VGG-16 model. Interestingly, a
physics-based analysis technique was as effective as DL
and performed better at spotting mild to
severe hepatic steatosis.

[44]
1- Fatty liver
2- Not Fatty
liver

905 CNN unknown 0.886 92.30% 95.30%

Diagnosing NAFLD by US was compared to radiologists’
performance. Cloud AutoML Vision Beta allowed the
creation of custom models trained on uploaded images
using a CNN pre-trained through transfer learning. The
model accurately detected NAFLD on US.



Bioengineering 2022, 9, 748 13 of 29

Table 5. Cont.

Ref.
No.

Patients
Categories

Total no.
of
Images

AI Classifier AUC Sensitivity Accuracy Specificity Main Findings

[47]
1- normal
2- fatty
3- cirrhotic

150 Fuzzy neural
network unknown unknown

Normal = 80%
Fatty = 88%
Cirrhosis = 80%

Total = 82,67%

unknown

Through this work, proximity-based methods for building
fuzzy neural classifiers in greater detail can be assessed,
and more effective strategies for generating soft decisions
can be learned.

[75]

1- Normal
2- Mild
3- Moderate
4- Severe

120 Random forest Unknown Unknown 90.84% Unknown

Without using any features, RF had superior or
comparable accuracy to SVM when classifying the severity
of steatosis. In addition, human intra-observer and
inter-observer agreement rates were outperformed by
RF-based steatosis rating and SVM classification.

[37]
1- normal
2- FLD
3- cirrhosis

150 probabilistic
neural network 0.98 96% 97.33% 100%

This work proposed a unique method for automatically
distinguishing between a normal, FLD, and cirrhotic liver
using US images. The technique combines CT, entropy
features, and LSDA feature reduction. The suggested
approach achieved high performance using
a PNN classifier.

[45]

1- healthy
2- mild
3- moderate
4- severe

Unknown ResNet-18

mild = 0.85,
moderate =
0.90,
severe = 0.93,

Unknown Unknown Unknown

The DL algorithm offers a trustworthy quantitative
steatosis assessment across views and scanners in two
multi-scanner cohorts. High diagnostic performance was
achieved, matching or exceeding that of FibroScan.

[59] 1- normal
2- fatty 550 support vector

machine 0.977 100% 96.30% 88.20%

This study used a steatosis level assessment utilizing
B-mode US images via a CNN-based method. The method
was effective and did not rely on an operator. Additionally,
it performed better than both HI- and
GLCM-based classifications.

[76] 1- normal
2- fatty 100 Probabilistic

Neural Network Unknown Unknown Normal = 85%
Fatty = 87.25% Unknown

To automatically classify and recognize fatty and normal
liver, five joint statistical feature parameters [mean,
variance, contrast, ASM, and entropy] retrieved from three
approaches [grey histogram statistic, GLDS, and GLCM]
achieved good results when utilized as the input of a PNN.
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Table 5. Cont.

Ref.
No.

Patients
Categories

Total no.
of
Images

AI Classifier AUC Sensitivity Accuracy Specificity Main Findings

[77]

S0: H-MRS
index < 3.12%,
S1: H-MRS
index > 3.12%
and < 8.77%
S2: H-MRS
index > 8.77%
and < 13.69%
S3: H-MRS
index > 13.69%

31,702 CNN Unknown Unknown 90% Unknown

A high number of US images were used to train 5-layer
CNNs. Results showed a good correlation with
state-of-the-art magnetic resonance
spectroscopy measurements.

[60]

1- Susceptible
to FL
[Steatosis > 5%]
2- normal
people [<5%]

550 support vector
machine 0.9999 97.20% 98.64% 100%

This method displayed and contrasted the outcomes of
various DL algorithms based on how well they performed.
The findings of this study demonstrated that the
suggested pre-trained CNN could categorize US images of
the liver as normal or fatty with excellent accuracy.

[78] 1- normal
2- diseased Unknown Fuzzy Classifier Unknown Unknown 100% Unknown

This study identified how to automatically classify and
recognize focal and diffuse liver diseases [including fatty
and normal liver]. Advanced image processing methods
such as MLPND and MI were used. Five features [contrast,
cluster prominence, auto-correlation, cluster shade, and
ASM] retrieved by the Haralick approaches achieved
excellent results when utilized as the input of
a fuzzy classifier.

[61]
1- Does not
have steatosis
2- has steatosis

550 CNN Unknown Unknown 87.49% Unknown

Using an 18-layer CNN with four convolutional layers
resulted in an accuracy of 87.49%. Better image processing
and dataset splitting techniques must be used
for better results.

[73]
1- normal
2- fatty
3- cirrhotic

120
Single-Layer
Perceptron
Network

Unknown

For Cirrhotic:
91.7%
For Fatty:
96.7%

Unknown 88.30%

Some features [mean grey level, first percentile, grey level
co-occurrence matrix, contrast, entropy, correlation, ASM,
attenuation and backscattering parameters, and scatterer
separation distance] retrieved from GLCM approaches
achieved good results for classifying fatty and cirrhotic
liver when utilized as an input of a single-layer perceptron
network with a functional link.
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Table 5. Cont.

Ref.
No.

Patients
Categories

Total no.
of
Images

AI Classifier AUC Sensitivity Accuracy Specificity Main Findings

[41] 1- normal
2- fatty liver 100 Decision Tree 0.933 88.9% 93.3% 100%

This study had excellent performance results for
classifying normal and fatty liver using three highly
discriminatory noteworthy features [texture homogeneity,
texture run percentage, and short-run emphasis] to train
and build two supervised-learning-based classifiers
[decision tree].

[79] 1- healthy
2- steatotic 75 Bayes Unknown normal = 95.83%

steatosis = 85.71% 93.54% Unknown

This study’s key finding was that the AR coefficients
obtained from a multi-scale Haar wavelet decomposition
were relevant for classifying hepatic steatosis
using US images.
The results of global and local assessments of liver tissue
defined by the Bayes factor can give doctors valuable
information about the classification’s confidence and the
classification itself.

[42] 1- normal
2- abnormal CNN 1 100% 100% 100%

To reduce dimensionality and DL network speed without
raising computational expenses, the system in this study
used the inception model. First, the background of the
original liver images was removed from the optimized
images by stripping the border. When removing 15% of
the background, the findings showed remarkable accuracy.

[84]

1- normal
patient
2- fatty liver
patient

629 Inception-v3 0.93 89.90% 93.23% 96.60%
This study used the Inception-v3 to detect steatosis and
classify normal and fatty liver images, yielding an
excellent test performance.

[48]

1- normal
2- fatty
3- cirrhosis
4- hepatoma

unknown K-nearest
neighbour Unknown Unknown 80% Unknown

Using GLDS, RUNL, SGLDM, and FDTA algorithms, this
study used a method created for computer-assisted liver
tissue characterization. It was anticipated that it would be
challenging to distinguish cirrhosis, fatty, and diffused
diseases from normal, but the preliminary outcomes
seemed incredibly good.

[53] 1- normal
2- fatty 100 Self Organising

Map Unknown Unknown Unknown Unknown

This study found representative feature vectors using a
one-dimensional self-organizing map [SOM]. The most
distinctive components were “maximum probability” and
“uniformity.” The plots for normal and fatty liver
superimposed images indicate distinct groups with
little to no overlap.
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[72]

1- normal
2- mild
3- moderate
4- severe

852 CNN 0.958 Unknown 95.45% Unknown

In the NAFLD diagnosis stages, envelope signal and
grayscale values were essential components of this study.
However CNN showed the highest sensitivity and
specificity when determining the severity of NAFLD. In
addition, the deep-learning index had the best diagnostic
performance in differentiating between mild and severe
NAFLD (AUC = 0.958).

[55]
1- normal
2- fatty
3- heterogeneous

88 SVM Unknown

Heterogeneous=
100%
Fatty= 93.3%
Normal= 86.4%

91% Unknown

In this study, a suggested algorithm distinguished
between normal, fatty, and heterogeneous liver images.
Two steps make up the proposed algorithm’s operation.
Without the aid of a medical specialist, the first stage
automatically chooses a few ROIs from a liver US image.
Then, the wavelet packet transform [WPT] was applied to
chosen ROIs as a multi-scale texture analyser to extract
some statistical features. A hierarchical binary
classification method with an SVM classifier was used
in the second stage.

[49]
1- fatty
2- cirrhosis
3- normal

90 K-Nearest
Neighbour Unknown Unknown 82.2% Unknown

The FDTA and the SGLDM were the texture analysis
methods employed in this study. On three sets of liver US
images—fatty, cirrhotic, and normal—algorithms were
used. A 32 × 32 pixel ROI was used to extract textural
features. A kNN classifier was used to categorize the
results. Together, the FDTA and SGLDM provided an
accuracy of 82.2%.

[74]
1- normal
2- fatty
3- cirrhotic

140 Fuzzy logic unknown cirrhosis = 94%
Fatty = 96% Unknown 92%

In this study, features such as the mean grey level, 10th

percentile, contrast, ASM, entropy, correlation, attenuation,
and speckle separation, produced good results when used
as the input of fuzzy logic to build an automated
categorization of cirrhosis, fatty, and normal liver.
The findings of this research demonstrated the potential
benefit of taking fuzzy reasoning into account during the
“quantitative tissue characterization” of
diffused liver diseases.
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[80]

1- Normal
liver
2- abnormal
liver [cirrhosis,
fatty liver, hep-
atomegaly]

60 ANN Unknown 95% 95% Unknown

In this study, the feature set employed, training samples
chosen, and the classifier’s ability to learn from the
training examples all impacted how accurate the ANN
classifier was. A comparison strategy indicated that the
GLRLM and the mixed-feature set demonstrated high
accuracy during both training and testing.

[62] 1- normal
2- diseased 550

multi-scale
two-dimensional
mid-fusion
residual neural
network

Unknown

abnormal:
95.37%
normal:
82.40%

91.31%

abnormal:
92.42%
normal:
88.99%

The study proposed a multi-scale two-dimensional
mid-fusion residual neural network for improving
NAFLD classification from US data and a GAN-based
network for image synthesis to enlarge the training dataset
(instead of using patch images). The study showed that
fusing B-mode US features, local phase features, and radial
symmetry features at a mid-stage outperform early and
late fusion, which indicates a strong correlation among
unique features obtained after convolution operation.

[50] 1- normal
2- abnormal 157 VGG16 0.96 95% 90.60% 85%

The study suggested DL, transfer learning, and fine-tuning
as methods for identifying fatty liver in US pictures with
comparable performance to other similar studies.

[56]

1- Normal
2- Fatty
3- Heteroge-
neous

88 ν-linear support
vector Unknown

Fatty = 93.3%
Normal =
97.4%
Heterogeneous
= 94.7%

95.40% Unknown

The diagnosis of FLD and heterogeneous liver utilizing
textural analysis of liver US images is a unique method
presented in this research. First, a WPT was used to
examine the ROI, and from each of the WPT sub-images,
several statistical features were collected (median,
standard deviation, and interquartile range). The
classification was then performed using a “v-linear
support vector” classifier. The suggested approach
provided an overall accuracy of approximately 95%,
demonstrating the system’s effectiveness.

[81]

1- Normal
2- Mild
3- Moderate
4- Severe

21,855 ResNet-50 v2

Normal =0985
Mild = 0.974
Moderate =
0.971
Severe = 0.981

0.838 0.841 0.948
In this study, ResNet-50 v2 was trained and evaluated on
many images and, as a result, performed relatively well
compared to invasive diagnostic techniques for fatty liver.
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[54] 1- normal
2- fatty 340 probabilistic

neural network Unknown 100% 99% 97%
This study revealed that it is possible to differentiate
between normal and fatty liver images using the
anisotropy feature supplied to PNN.

[82]

1- normal
2- steatosis
3- hepatitis
4- cirrhosis

Unknown k-nearest
neighbour Unknown Unknown

normal = 86%
steatosis = 90%
hepatitis = 85%
cirrhosis = 50%

Unknown

In this study, to automatically classify and recognize
diffused liver diseases, three features (for steatosis: mean
grey value, and for cirrhosis: mean grey value, texture
energy, entropy) were retrieved from the GLCM approach.
The approach achieved satisfactory results (except for
cirrhosis) when utilized as a kNN input.

[57]
1- normal
2- fatty
3- heterogeneous

88 support vector
machine Unknown 98.84% 98.86% Unknown

In this work, feature fusion techniques were used to create
a computer-aided diagnostic system for the hierarchical
classification of normal, fatty, and heterogeneous liver US
images. The prominent features of the parallel- and
serial-fused feature spaces were chosen after features were
extracted (energy, energy deviation, median, standard
deviation, and interquartile range). Using the LOOCV
technique and the SVM classifier, serial and parallel
feature fusion modes, achieved maximum classification
accuracies of 100% and 98.86%, respectively.

[71] 1- healthy
2- diseased 16,551 A Binary Logistic

Regression (BLR) 0.986 95.45% 95.74% 96.00%

According to the findings, US images are more dependable
than CT imaging for detecting hepatic steatosis. In
addition, when ten features from a co-occurrence matrix
were loaded into a BLR, it performed pretty well at
differentiating between healthy and diseased fatty liver.

[68]
1- normal
2- fatty
3- cancerous

114
logistic regression
+ support vector
machine

Normal =
0.959
fatty = 0.956
cancer = 0.985

Unknown 87.50% Unknown

The goal of this study was to examine the performance of
a hybrid classifier (SVM and LR) in the diagnosis of liver
steatosis utilizing a variety of US image features that were
retrieved, including mean, SD, arithmetic mean, geometric
mean, and skew.

[63]

1- malignant
fatty livers
2- benign fatty
livers

550 Inception-ResNet-
v2 0.992 Unknown 98.50% 92%

The study results showed that the Inception-ResNet-v2
architecture-based model is more helpful in classifying
medical images. In addition, the study showed that it
performs better than classical methods regarding
accuracy and AUC.
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[38] 1- normal
2- abnormal 63

single layer feed
forward neural
network
[SLFFNN]

0.97 97.59% 96.75% unknown

This study built an extreme learning machine (ELM) on a
single-layer feed-forward neural network. Only
hidden-to-output weights were taught, and
input-to-hidden layer weights were created randomly to
reduce computing costs. As a result, the results were more
accurate with fewer features.

[58] 1- Normal
2-Steatotic 177 Support Vector

Machine 0.88 Unknown 79.77% Unknown

The results of this study indicated that the SVM was the
most applicable for the discrimination of pathologic
tissues in clinical practice, having better performance than
the kNN and ANN.

[65]
1- Fatty liver
2- Normal
liver

30
Fisher’s linear
discriminative
analysis

Unknown 100% 92% Unknown

This paper suggested a quantitative metric for the
characterisation of the liver based on texture analysis. This
process was motivated by the visual criteria
used by radiologists.

[67]
1- fibrosis
2- activity
3- steatosis

144

adaptive boosting,
random forest,
support vector
machine

adaptive
boosting = 085
random forest
= 085
support vector
machine = 0.85

adaptive
boosting = 87.5%
random forest
= 87.5%
support vector
machine = 93.8%

adaptive
boosting = 85%
random forest
= 85%
support vector
machine = 85%

adaptive
boosting = 76.9%
random forest
= 76.9%
support vector
machine = 69.2%

In this study, three different image types were utilized to
extract features, and the analysis and classification results
were satisfactory.

[66]
1- Fatty liver
2- Normal
liver

180 Z-score Unknown 100% 95% 90%

In this study, the best textural characteristics for
classifying livers were found. A novel classification
approach employing information fusion was suggested. It
consisted of a linear combination of features weighted
according to how well they could separate classes.

[43]

1- Normal
2- Mild
3- Moderate
4- Severe

unknown regression tree
model 0.93 87.50% 90% 92.86%

This study suggested that an existing learning-based
model may perform well by combining US and shear
wave features (shear wave attenuation, shear wave
absorption, elasticity, dispersion slope, and echo
attenuation). Furthermore, it supports that the target
tissue may be identified and distinguished from other
targets in the high-dimensional space established by the
suggested ultrasonic parameter set.
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AI Classifier AUC Sensitivity Accuracy Specificity Main Findings

[39] 1- Normal
2- Fatty 100 probabilistic

neural network 0.9674 96% 98% 100%

GIST descriptors were used in this study to extract
features. A marginal fisher analysis (MFA) data reduction
method reduced many elements to the top seventeen. The
Wilcoxon signed-rank test was used to create effective and
reliable classifiers to rank a set of characteristics. Using
eighteen features, the proposed approach identified all
normal classes as normal (specificity was 100%). To train
the classifiers, 10-fold stratified cross-validation was
employed. The PNN classifier produced results with the
highest classification accuracy of 98%, sensitivity of 96%,
specificity, and PPV of 100%.

[40]

1- normal
2-abnormal
[fatty liver,
hepatomegaly,
cirrhosis]

62

Levenberg–
Marquardt back
propagation
neural network

Unknown 0.9808 0.9758 0.9722 The proposed system was successfully able to detect and
classify the FLD.

[46]

1- S0 (none),
2- S1 (mild),
3- S2
(moderate),
4- S3 (severed)

300
Deep
Convolutional
Neural Network

Unknown Unknown 87.50% Unknown

The outcomes demonstrate the power of deep
convolutional neural networks (DCNN) and the higher
information richness of RF data over B-mode for
NAFLD staging.

[52]

1- Normal
2- Mild
3- Moderate
4- Severe

53 support vector
machine Unknown Unknown 85.4% Unknown

In this study, classifying normal, mild, moderate, and
severe liver images was objectified using medical domain
knowledge to diagnose the severity of fatty liver images.
Findings demonstrated that the classification accuracy for
a given feature category, such as run-length matrix (RLM),
may be improved by appending feature sets.

[83]

1- normal liver
2- low-grade
fatty liver
3- moderate
grade fatty
liver
4- severe fatty
liver

500 convolution
neural network Unknown 83% 90% 95%

The study covered the impact of network width on a
model. The study found that correctly expanding the
network model’s width increased the model’s accuracy.
“Skip connection” expedites network convergence while
preserving the image’s original features.



Bioengineering 2022, 9, 748 21 of 29

Table 5. Cont.

Ref.
No.

Patients
Categories

Total no.
of
Images

AI Classifier AUC Sensitivity Accuracy Specificity Main Findings

[70] 1- normal
2- positive 744

Support Vector
Machine +
Multi-Layered
Perceptron Neural
Net + Extreme
Gradient Boost

Training set =
0.978
Testing set =
0.951
Validation set
= 0.937

Unknown Unknown Unknown

In this study, twenty-eight features were retrieved from US
images using Mazda software after wavelet transforms
were applied to process images. Features were used to
distinguish between a healthy liver and NAFLD in
paediatric individuals using an ML-based predictive
analytic model [ensemble model]. The model
did well in classification.

[64] 1- Fatty
2- Normal 550

Fourier
Convolutional
Neural Networks

Unknown Unknown 84.40% Unknown This study suggested that to increase the classification
speed of medical images, Fourier layers are more feasible.
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4. Discussion

Even though the first empirical research on this review topic was published in 1996,
it must be acknowledged that few in-depth studies on this topic have had conclusive
findings. For instance, Figure 6 shows the differentiation of the studies based on three
factors. Regarding AI methods, some studies used ML, while others used DL. Regarding
outputs, some studies detected disease while others quantified it. This quantification
focused on fatty liver disease or incorporated morbidity stages. If the protocol of this
review defined studies that used DL to quantify fatty liver disease and its later morbidity
phases, the number of studies would be relatively small.
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Figure 6. Separation of studies based on three factors.

Figure 7 depicts the process steps followed in all the studies. Most studies used
the same method to design prediction models using US images of the liver. The process
consisted of collecting images, processing images to extract features, processing features in
the classifier, and making a prediction. However, other studies used varied approaches,
potentially resulting in disparities in performance.
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A turning point in the computerized automated detection of fatty liver disease was
reached when Michal Byra conducted a study in 2018 [59]. In Byra’s work, hepatic feature
extraction was done using Inception-ResNet-v2 architecture. On US scans obtained from
fifty-five patients, quantitative validation was conducted (38 fatty livers, 17 healthy livers).
An SVM classifier was used to classify the retrieved features, and the reported mean
accuracy was 96.3 percent. Since 2018, most studies have used Byra’s work as a benchmark
against which to compare their findings. Five studies reviewed in this work used Byra’s
dataset [60–64]. Furthermore, it is crucial to emphasize the significance of two recent
studies conducted in Taiwan, where a considerable number of images from various imaging
modalities were used in each study [45,81].

The studies included in this review show that combining AI with US image analysis
can reduce human-related mistakes and enhance overall performance. The studies also
demonstrate the capacity of AI-integrated approaches to detect early-stage steatosis. The
studies shows impressive AI-assisted US performance with great sensitivity, specificity,
Positive Predictive Value (PPV), Negative Predictive Value (NPV), and accuracy.

Although most studies collected liver US images using Philips, Siemens, or GE modal-
ities, it does not appear that the type of modality is related to the performance of the
classification model. The modality settings and the frequency of the probe used in each
study may also be observed similarly. Although some studies contend that utilizing a
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high frequency, such as 40 MHz, will result in greater classification performance (accuracy
of 95%) [43], a comparative study using a low frequency, 5 MHz, scored the same perfor-
mance [56]. It is worth mentioning that most studies used a frequency probe of 3.5 MHz.

Even though studies in this review processed images and chose ROIs in numerous
ways, most of the studies unequivocally agreed on the importance of conducting these
two processes. Regarding image pre-processing and ROI selection, no discernible patterns
can be reported. Studies consistently standardized image size, removed irrelevant details,
attempted to choose ROIs near images’ central lines, and avoided anomalies such as vessels
and bile stores. Two studies successfully selected ROIs automatically. Ribeiro et al. based
their approach on the decomposition of liver parenchyma US images in two fields—the
speckled image holding textural information and the de-speckled image comprised of liver
intensity and anatomical data [79]. Owjimehr et al.’s ROI selection process included three
steps. First, images were divided into blocks and overlapped repeatedly. Second, sections
of a specific size were chosen from the middle of each block. Finally, a linear support vector
classifier was used to select the best ROIs from all those formed [55].

Most studies that used supervised ML reported selecting features for classification.
While it is well known that the number of elements positively effects accuracy, feature types
seem to have the most impact on accuracy. For example, a study that used 325 features to
detect whether a liver was normal or steatotic scored an overall accuracy of 79.77% [51].
In comparison, another study that used only five features for the same purpose scored
100% accuracy [36]. The same can be seen with 636 features used and 85.4% accuracy
in [69] and five features used and 87.5% accuracy in [44]. Likewise, one study selected
156 features and scored 85% accuracy [47], while another used only nine features and
achieved 90.84% accuracy [75].

Regarding data splitting, different studies used different methodologies. However,
using 80 to 90% of the data as a training dataset and 10% to 20% as a testing dataset
were the most common splitting percentages. Furthermore, many studies used the 10-fold
cross-validation method to validate data.

Studies have proved the efficiency of using DL classifiers to classify images, and
medical images are no exception. DL algorithms use data to learn high-level features.
This is a distinguishing feature of DL and a significant advancement over classical ML.
As a result, DL minimizes the need to create a new feature extractor for each challenge.
However, when it comes to US images for NAFLD, studies show that a neural network AI
outperforms a non-neural network AI. More research and quantitative analyses are needed
to accurately identify a superior algorithm among the ones described in this review.

Finally, the included studies reported many challenges and opportunities for improve-
ment. The following is a list of the most important obstacles to overcome in future research:

1. to overcome problems that currently exist in some classifiers, such as speckle noise,
semantic gap, computational time, dimensionality reduction, and accuracy of images
retrieved from a large dataset;

2. to examine the effect of every parameter to improve the performance of the model;
3. to use a more extensive dataset acquired by different operators from different patients;
4. to consider a multipolar hospital;
5. to consider more diseases stages;
6. to use more advanced techniques to improve images before analysis;
7. to automate all steps as much as possible;
8. to examine more sophisticated features; and
9. to implement classification models in the hardware and transfer the technology to

a clinical setting.

4.1. Clinical Implications

Although the studies did not elaborate on the clinical implications of suggested
solutions and models, several studies attempted to discover the most appropriate models
for healthcare settings, even if it meant sacrificing the quality of results. For example, one



Bioengineering 2022, 9, 748 24 of 29

study attempted to reduce computation time and enhance speed by employing Fourier
layers to standardize the modern technology in clinical settings [64]. Furthermore, the
results in [58] suggested that SVM was best suited for differentiating diseased tissue in
clinical practice, outperforming KNN and ANN.

Despite the above, several studies suggested that having a reliable technology that
can be adapted to healthcare settings has clinical implications. The clinical implications
were stated as secondary results, a conclusion, or recommended future works. The clinical
implications are as follows:

1. US powered by AI can be used to integrate an index in place of the H-MRS index of
the biopsy method, which is invasive, expensive, scarcely available, and unsettling
for patients [36,44,77]. US powered by AI also lessens the workload and the need
for biopsy since it is considered a preliminary test for selecting patients eligible
for biopsy [39,81].

2. In the future, DL might be used to quantify NAFLD with the combined use of patho-
logic and laboratory tests [72].

3. Non-invasive techniques with excellent accuracy would be superior evaluation tools
to biopsy [45,55].

4. Using AI on a 2D US liver scan will decrease subjectivity in diagnosing and increase
reliability [37,45,57,72].

5. Given the rising incidence of NAFLD and the potential for permanent hepatic damage,
early recognition of NAFLD and cirrhosis is essential for doctors to be able to advise on
appropriate therapies to stop the onset of HCC and its associated consequences [37,44].

6. The accuracy of NAFLD detection with ultrasonography can be enhanced with the de-
velopment of computer-aided diagnostic technology, especially for those less trained
or operating in distant locations [50,51].

7. Various image processing techniques will improve image quality, enhancing clinical
interpretations and grading performance [41,53,68,69,78].

8. Some methods provide a fully automated solution that will assist in determining the
advantages of telehealth [40,56].

9. Future US devices will include functionalities for tissue analysis that are easier to
implement in hardware [73].

Potential readers of this work might include healthcare practitioners and computer
scientists to promote awareness of the importance of collaboration between the two fields.
Healthcare professionals, for example, can supply the necessary dataset for fatty liver
to computer scientists, who can then run additional tests and act on clinical valida-
tion and feedback.

4.2. Strengths

To the best of the researchers’ knowledge, this is the first review to investigate all AI
strategies used to automate NAFLD detection and quantification. The search was sensitive
and accurate since the most prominent health and information technology databases were
searched using a well-developed search query and backward and forward reference list
checking. Because this research does not focus on individual AI branches or stages, it
may be considered comprehensive. As a result, the study presents a comprehensive view
of AI’s function in monitoring fatty liver using US images. On the one hand, the review
may be deemed high-quality since well-recommended criteria were followed during the
creating, implementing, and reporting processes. On the other hand, it is possible to expand
on this work.

4.3. Limitations

Despite data cross-checking between studies being used to fill any gaps in the gathered
data, it could be a limitation that only one person carried out the review was. Another
drawback is that the search conducted for this study only covered English studies. As a
result, studies written in other languages were omitted. Finally, the analysis presented in
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this research is qualitative. Therefore, it would be preferable to contribute additional value
to the topic by conducting a metadata analysis on some of the included papers.

5. Conclusions and Future Work

Over time, efforts to detect and classify fatty liver disease and its accompanying
clinical stages more accurately than humans have increased. Most of the effort has been
devoted to extracting features from processed images and employing these features to
complete the task. Using ANNs, whether for extracting features or classifying, represents a
significant step in the right direction.

For potential future work, more effort needs to be placed into creating models that
tackle challenges and performing randomized clinical trials on more significant numbers of
patients. The findings will help in the future development of explainable AI. Furthermore,
more efforts must be devoted to processing images and extracting features to determine the
most accurate stages of the images, taking into account the structural differences between
the images. In addition, comparing computational complexity/power and classification ac-
curacy should be considered a strategy for comparing DL methods with ML methods. This
will lead to a more advantageous selection to detect and quantify NAFLD using US images.

As AI has received a lot of attention regarding its utilization in the healthcare sector,
this study emphasizes the application of AI in fatty liver diagnosis and future problems.
Our findings pave the way for computer scientists to focus on the use of AI in the diagnosis
of fatty liver, particularly in the early stages of the illness, which is difficult to identify,
especially for junior non-expert doctors. As a result, AI applications are critical in this
domain to overcome challenges and avoid human mistake.
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