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Abstract: Proprioception is essential for neuromuscular control in relation to sport injury and perfor-
mance. The effect of landing heights and loads on ankle inversion proprioceptive performance in
individuals with or without chronic ankle instability (CAI) may be important but are still unclear.
Forty-three participants (21 CAI and 22 non-CAI) volunteered for this study. The Ankle Inversion
Discrimination Apparatus for Landing (AIDAL), with one foot landing on a horizontal surface and
the test foot landing on an angled surface (10◦, 12◦, 14◦, 16◦), was utilized to assess ankle propri-
oception during landing. All participants performed the task from a landing height of 10 cm and
20 cm with 100% and 110% body weight loading. The four testing conditions were randomized. A
repeated measures ANOVA was used for data analysis. The result showed that individuals with CAI
performed significantly worse across the four testing conditions (p = 0.018). In addition, an increased
landing height (p = 0.010), not loading (p > 0.05), significantly impaired ankle inversion discrimi-
nation sensitivity. In conclusion, compared to non-CAI, individuals with CAI showed significantly
worse ankle inversion proprioceptive performance during landing. An increased landing height, not
loading, resulted in decreased ankle proprioceptive sensitivity. These findings suggest that landing
from a higher platform may increase the uncertainty of judging ankle positions in space, which may
increase the risk of ankle injury.

Keywords: proprioception; ankle sprain; chronic ankle instability; landing

1. Introduction

Ankle sprain is a common sports injury [1] that usually occurs during jump and
landing activities [2–5] in a foot-inversion position [6,7] and may lead to chronic ankle
instability (CAI) [8]. Proprioception is fundamental for neuromuscular control in ankle
injury, and can be defined as the ability of an individual to integrate sensory signals from
mechanoreceptors to perceive the location and spatial movement of body parts [9]. Studies
have shown that neuromuscular control is deficient and ankle inversion proprioception to
be significantly impaired and that the lower limb proximal muscle activity pattern is altered
in individuals with CAI [10,11], especially during a landing task [12]. In some sports, such
as cross-country running [13], participants may carry weights and land from different
heights. It is unknown to what extent these factors may affect ankle proprioception during
jump landing. Thus, exploring ankle inversion proprioception during landing is essential
to understand the sensorimotor mechanisms underlying ankle sprains, and may inform
prevention and rehabilitation of ankle sprain.

Previous biomechanical studies [14,15] suggests that significant biomechanical changes
in movement patterns, muscle activation, and muscle mechanics occur in lower extremities
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when landing at different landing heights. Wang [16] reported that as landing height
increases, angular displacement of the ankle, knee, and hip joints also increases, and lower
extremity injuries are more likely to occur during landing. In addition, higher landing
heights may lead to an increase in the velocity of the foot on landing, which is highly
susceptible to injury of the foot and ankle complex [17], especially given that individuals
with CAI have a delayed response of valgus muscle [18]. Fong [19] reported that within
0.11 s after the foot strike the ankle is in a position where it could be injured. Although
these empirical studies indicate that motor behavior alters at different landing heights, it
remains unclear whether the perceptual systems will also change. Although most current
proprioceptive testing methods lack the ecological validity to carry out proprioceptive
assessment during landing [9], Han developed the Ankle Inversion Discrimination Appa-
ratus for Landing (AIDAL) [12] to make this measurement task achievable. We speculate
whether the height of the landing affects the proprioceptive system, which further affects
ankle stability.

Load is known to affect perceptual and motor system performance by altering postural
control and proprioception. For instance, extra body weight can reduce postural-stability
control and the sensory pathways from the foot sole [20,21]. However, weight-bearing
can improve proprioceptive performance. The proprioceptive sensitivity of the knee joint
was significantly better in full weight-bearing conditions than partial weight-bearing of
the lower limb [22]. Considering the crucial significance of proprioception for postural
control [23,24], we wondered whether the excess body load would have the effect on ankle
proprioception during landing.

CAI is a condition characterized by pain, weakness, reduced ankle range of motion,
perceived ankle “giving way” sensation, and proprioception deficit, which may lead to
recurrent ankle sprains [25–28]. Although the soft tissues of the foot (e.g., fascia, muscles)
perform a crucial role in maintaining the ankle stability, recurrent ankle sprains disrupt the
original structure. Studies have shown that the thickness of the plantar fascia is reduced
after lateral ankle sprain [29]. Moreover, individuals with CAI demonstrate sensorimotor
insufficiencies and proprioception deficits [10,30], as well as biomechanical variations in
lower limb movement patterns, motor strategies, muscle activation, and leg stiffness control
during landing [24,31–34]. However, it is unclear whether a change in landing height and
loading may have different effects on individuals with and without CAI. Evidence has
suggested that the mechanoreceptors around the ankle joint are likely to be damaged
in CAI [35], and so patients had diminished in neuromuscular control, especially ankle
proprioception [5,10,12]. In addition, recent neuroimaging studies have found that this
specific population also shows central change when performing proprioceptive balance
control task [36–38]. These findings suggest that individuals with CAI may perform
differently compared to their non-CAI counterparts.

Accordingly, the aim of this study was to test the ankle inversion proprioception of
individuals with and without CAI when they landed at different heights with different
loads. We hypothesized that an increased landing height may reduce ankle proprioception,
but extra loads may reverse this, and individuals with CAI would perform significantly
worse than those without CAI.

2. Materials and Methods
2.1. Study Design

A cross-sectional study was performed between June and July 2021 according to
the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)
recommendations.

2.2. Participants

Forty-three participants were recruited (21 CAI and 22 non-CAI). To be eligible, the
CAI participants must have had the following: (i) at least one ankle sprain that caused
an inflammatory reaction (pain, swelling, etc.) in the previous 12 months; (ii) at least two
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episodes of ankle instability “giving way” or repeated sprains within 6 months before the
test; (iii) a Cumberland Ankle Instability Tool score (CAIT) [39] of <24; and (iv) not have
had an ankle injury within 3-months of being tested. These inclusion criteria align with the
recommendations of the International Ankle Consortium [39]. The non-CAI participants
had no subjective reports of ankle instability, recurrent ankle sprains, and neurological or
motor dysfunction. All participants were excluded from the study if they had a history
of lower limb surgery, fracture, or any acute injury of other joints of the lower limb in the
3-months prior to the commencement of the study. The latest ankle sprain was 15 weeks on
average before the test for the CAI group.

The study was conducted in accordance with the Declaration of Helsinki and was
approved by the Shanghai University of Sport Ethics Committee (102772021RT073). Written
informed consent was obtained from participants before data collection.

2.3. Apparatus

This study utilized the AIDAL to measure the acuity of ankle inversion proprioception
during landing [12]. This method has shown good test–retest reliability and validity in
distinguishing individuals with and without CAI [40]. The AIDAL (Figure 1) consists of
three parts: the take-off platform (A/D), the horizontal landing platform for the supporting
foot (B), and the tilted landing platform for the testing foot (C). The four different angles
of ankle inversion were generated by 4 wedged landing platforms: inversion 1 = 10◦,
inversion 2 = 12◦, inversion 3 = 14◦, and inversion 4 = 16◦. The landing heights were 10 cm
(A to B) and 20 cm (D to B) (Figures 1 and 2, a and b).

Before the AIDAL’s data collection, each participant had three rounds of familiariza-
tion of the 4 possible ankle inversions in order (12 trials in total), and they were required
to remember the four different ankle inversions during the familiarization session. Partic-
ipants then undertook 40 trials of testing, with 10 for each inversion position presented
randomly. Participants were required to make an absolute judgment about the ankle
inversion angle on each testing trial, and the numbers (either 1, 2, 3, or 4) with which
the participant responded were collected, and without feedback being given as to the
correctness of their judgements.

The weight-adjustable vest (Figure 2c,d) was used to provide 10% of extra body weight
during the AIDAL proprioception test [22].

Figure 1. The two different heights of AIDAL: (a) 10 cm heights between A and B; (b) 20 cm heights
between D and B.
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Figure 2. The different landing conditions. (a) load 100% and 10 cm heights; (b) load 100% and 20 cm
heights; (c) load 110% and 10 cm heights; (d) load 110% and 20 cm heights.

2.4. Procedures

The experiment was conducted in a university laboratory. All participants were tested
with bare feet. For the non-CAI group, the testing foot was randomly selected, and for the
CAI group, with unilateral CAI (n = 10), we tested the affected ankle, and with bilateral
CAI (n = 11), we tested the ankle with a lower CAIT score. The flow chart of this study is
shown below (Figure 3). All participants were tested from a jumping height of 10 cm and
20 cm without extra load (100% body weight), and with an extra 10% of body weight (110%
body weight) (Figure 2). The four testing conditions were randomized with a 15-min break
between testing sessions. During the test, participants were instructed to keep their head
and eyes forward to eliminate visual information about the landing platforms. A single
examiner who was blinded to participants’ ankle stability status performed all experiments.

2.5. Data Analysis

SPSS version 25 (Armonk, NY, USA) was used for data analysis and a p value of
0.05 or less was used to determine statistical significance. A total of 40 presentations of
ankle inversion and related participant responses were inputted into SPSS to generate a
receiver operating curve (ROC), and the area under the curve (AUC) was calculated as the
ankle proprioception discrimination sensitivity. The AUC value ranges between 0.5 and 1.
A higher value represents more accurate proprioception sensitivity.

Given that the data for the two groups were normally distributed, to determine the
effect of CAI, landing heights and loads on ankle proprioception, a repeated measures
ANOVA was conducted on the AUC scores.
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Figure 3. The flow chart of this study. A total of 100% meant original body weight and 110% meant
10% extra body weight; 10 cm and 20 cm indicated landing heights.

3. Results

Demographic information of the included participants is reported in Table 1. The
repeated measures ANOVA showed CAI and the landing height main effects. Specifically,
the CAI group performed significantly worse than the non-CAI group (F = 6.120, p = 0.018,
partial η2 = 0.130) and the ankle proprioception AUC scores of 20 cm landing height were
significantly lower than that of 10 cm landing height (F = 7.216, p = 0.010, partial η2 = 0.150)
(Table 2 and Figure 4). However, there was not a significant load main effect (F < 0.001,
p = 0.995, partial η2 < 0.001) or an interaction effect of height, load, and presence of CAI
(Table 2).

Table 1. Participant demographic information (Mean ± SD).

Characteristic
Group Difference between

GroupsCAI Non-CAI

N 21 22 -
Gender M10 F11 M11 F11 -
Age (y) 23.4 ± 3.2 24.1 ± 2.1 t = −0.804, p = 0.426

Height (cm) 171.3 ± 8.2 169.1 ± 6.3 t = 0.972, p = 0.337
Mass (kg) 65.6 ± 11.6 64.6 ± 9.0 t = 0.268, p = 0.790

CAIT score 15.6 ± 4.9 28.6 ± 1.8 t = −11.606, p = 0.000
SD = standard deviation, CAI = chronic ankle instability, N = Number, M/F = male/female, CAIT = Cumberland
Ankle Instability Tool.

Table 2. A repeated measures ANOVA of the average AUC scores for landing height and group.

F p Partial η2

10 cm vs. 20 cm 7.216 0.010 * 0.150
CAI vs. Non-CAI 6.120 0.018 * 0.130

100% vs. 110% <0.001 0.995 <0.001
Height × Load 1.874 0.178 0.044
Height × CAI <0.001 0.984 <0.001
Load × CAI 2.244 0.142 0.052

Height × Load × CAI 0.001 0.972 <0.001
× = interaction between loads and heights. * = p < 0.05 between groups.
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Figure 4. Differences in ankle inversion discrimination tested during landing heights and loads
between individuals with and without CAI. A total of 100% indicated original body weight and
110% indicated 10% extra body weight; 10 cm and 20 cm represented landing heights. Compared
to non-CAI, CAI showed significantly worse ankle inversion proprioceptive performance during
landing (F = 6.120, p = 0.018), and the AUC score decreased by increased landing height for all
participants (F = 7.216, p = 0.010).

4. Discussion

Consistent with our hypothesis, we found that the overall ankle inversion propriocep-
tive performance of CAI patients was significantly worse than that of non-CAI participants,
suggesting that CAI patients have impaired proprioceptive control when landing on an un-
even surface. In addition, ankle proprioceptive discrimination sensitivity was significantly
worsened by an increased landing height, but not loading (Figure 4), which was true for
both CAI and non-CAI groups.

Our results showed that the proprioceptive acuity of CAI participants was significantly
worse than those without CAI across the four different testing conditions. These findings are
consistent with prior studies [12,41] and further supports the notion that CAI patients have
impaired somatosensory control during landing on an inverted ankle [12]. Some studies
have shown that individuals with CAI exhibit altered peak proximal muscle forces, force-
generating capacities, as well as greater hip flexion and ankle inversion angles, and peak
vertical ground reaction forces during landing tasks [42–44]. Our findings complement the
substantial deviations in the lower limb motor output observed between CAI and non-CAI
individuals and have shown that ankle proprioceptive input is also different between the
two groups. According to the research of Waddington and Adams [45], even a 0.04◦ increase
in inversion uncertainty has the potential to raise the probability of injury when landing on
the inverted ankle from 1.2% to 1.22%. Although this 0.02% increase in injury seems low, it
could become a significant influence in the occurrence of injury due to the fact that landings
are numerous in sports activities. Therefore, the difference in proprioception between the
CAI and non-CAI participants in this study has significant implications for ankle stability
and may raise the risk of sprain. Given that ankle proprioception is fundamental for lower
limb motor control [23], the difference in proprioceptive performance during landing found
here may partially explain the motor output difference between CAI and non-CAI observed
in previous studies [43,44]. Future research may explore if any rehabilitation program that
targets ankle proprioception [46] could have positive effects on lower limb motor control in
people with a post-ankle sprain that may or may not develop CAI.

In terms of the effect of landing height on lower limb biomechanics, research has shown
that with increasing landing height, the ankle dorsiflexion, knee extension, and peak ankle
plantarflexion moments are significantly altered in individuals with CAI [47]. The results
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of the current study show that an increased landing height could impair ankle inversion
proprioception in both CAI and non-CAI participants. This evidence supports the notion
that the larger the movement amplitude, the worse the proprioceptive performance [48],
suggesting that landing from a higher place may be associated with increased noise in
the perceptual systems of brain [48,49], so that ankle inversion movement discrimination
sensitivity is decreased. Previous upper [48,50] and lower [51] limb proprioception studies
have found that larger movement resulted in worse proprioceptive acuity. This is consistent
with the findings of our result. A greater movement amplitude would generate more noise
and increased uncertainty when judging limb positions in space. This finding suggests
that higher jump–landing may increase the risk of ankle injury and partially explains why
landing from a jump is one of the most common mechanisms for ankle injury [2], especially
in ankle joint inversion landing conditions [52].

However, we found an extra 10% of body weight for the proprioceptive measurement
did not differ from 100% body weight conditions. This evidence is contrary to the argument
that ankle proprioception simply relied on mechanoreceptors around the foot–ankle com-
plex [53]. Han et al. [9,54] argue that proprioception assessment methods can be classified
into testing passively “imposed” and actively “obtained” proprioception. The imposed
methods [53] believed that proprioception is completely reliant on information received
from the peripheral proprioceptors mechanoreceptors (i.e., muscles, joints, and skin) [55].
In contrast, the actively obtained methods [56] were developed on the basis of an ecological
validity concept that proprioceptive performance is not fully determined by passively-
imposed proprioceptive signals from mechanoreceptors, but requires adaptive central
processing of multiple sources of information [9]. If the “imposed” proprioception view is
true, then both an increased landing height and load could further activate mechanorecep-
tors located around the foot–ankle complex, improving ankle proprioception. However,
the results here did not support this notion. The possible reason is that an additional 10%
of load may not have been large enough and that the central nervous system may have
mechanisms to adapt to the noise generated by mild changes in weight-bearing conditions.
In addition, although we required participants to land evenly, participants might not have
achieved a balanced distribution of weight between the two feet, with more weight on the
horizontal platform, thus this may have reduced the load on the inverted foot.

This study compared ankle inversion proprioception during landing in both CAI and
non-CAI populations in the face of height and loading conditions. One of the limitations of
this study was that we did not collect data about the physical activity and occupation of the
participants included in this study, which may have an impact on the results. Furthermore,
we did not quantify kinematic patterns so that precise changes in movement extent of the
participants at different heights and loading states to be observed. We did not use any
instruments to control whether participants had a balanced distribution of weight between
the two feet, a feature which should be improved for future study. In addition, previous
research has shown that female and male individuals with CAI performed differently on a
range of functional tasks [57]. However, given the relatively small sample size of the current
study, the sex differences in this proprioceptive task were not revealed. Furthermore, the
participants involved in the current study were relatively young and it is unknown if the
findings here can be generalized to other age groups.

5. Conclusions

Compared to non-CAI, individuals with CAI showed significantly worse ankle inver-
sion proprioceptive performance during landing. An increased landing height, but not
loading, resulted in decreased ankle proprioceptive sensitivity. These findings suggest
that landing from a higher place may increase the uncertainty of judging ankle positions
in space, and thus increases the risk of ankle injuries. Therefore, jump-landing exercise
from different heights may be important for ankle injury prevention and rehabilitation.
Future research may investigate the effects of a rehabilitation program targeting ankle in-
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version proprioception during landing and explore the peripheral and central mechanisms
associated with these effects.
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