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Abstract: Chronic refractory wounds are one of the complications of diabetes mellitus that require
effective therapy. The dermal-wound-healing property of IL-33 in diabetics is little understood. There-
fore, this study aimed to express recombinant humanized mature IL-33 (rhmatIL-33) in Escherichia
coli BL21 (DE3) and demonstrate its efficacy on dermal wounds in streptozotocin (STZ)-induced
diabetic and nondiabetic mice by the dorsal incisional skin wound model. Results revealed that the
rhmatIL-33 accelerated the scratch-healing of keratinocytes and fibroblasts at the cellular level. The
wounds of diabetic mice (DM) showed more severe ulceration and inflammation than wild-type mice
(WT), and the exogenous administration of rhmatIL-33 increased wound healing in both diabetic and
wild-type mice. Compared with the up-regulation of endogenous IL-33 mRNA after injury in WT
mice, the IL-33 mRNA decreased after injury in DM mice. Exogenous IL-33 administration increased
the endogenous IL-33 mRNA in the DM group but decreased the IL-33 mRNA expression level of
the WT group, indicating that IL-33 plays a balancing role in wound healing. IL-33 administration
also elevated ILC2 cells in the wounds of diabetic and non-diabetic mice and improve the transcript
levels of YM1, a marker of M2 macrophages. In conclusion, Hyperglycemia in diabetic mice inhibited
the expression of IL-33 in the dermal wound. Exogenous addition of recombinant IL-33 promoted
wound healing in diabetic mice by effectively increasing the level of IL-33 in wound tissue, increasing
ILC2 cells, and accelerating the transformation of macrophage M1 to M2 phenotype.

Keywords: IL-33; diabetic wound healing; M2 macrophages; ILC2 cells

1. Introduction

Wound healing is an orderly process that consists of three overlapping phases: in-
flammatory, proliferation, and remodeling [1]. Diabetic wound healing frequently often
defies this schedule and stalls at certain stages due to permanent hyperglycemia [2]. Hyper-
glycemia, insulin resistance, and oxidative damage in diabetes can reduce the expression of
various cytokines in wounds, such as the interleukin family, making wounds difficult to
heal [3,4]. Studies have shown that many cytokines in the interleukin family are involved
in wound healing, among which IL-33 plays an important role in inflammation, injury, and
tissue homeostasis [5–8].

Diabetes is a multifaceted metabolic disease affecting more than 340 million individu-
als, and about 20% of them develop diabetic wounds [9]. In diabetic patients, leg or foot
ulcers are the most common wounds that have a major impact on morbidity, disability, and
mortality [10]. The underlying mechanisms of wound repair defects in diabetic patients are
little understood, and the impaired expression of chemokines and other healing-related
factors during the healing process is one of the reasons for delayed wound healing [11]. For
non-healing wounds, the current standard of care includes wound debridement, avoidance
of increased pressure on the injured site, repeated dressing changes, and antibiotics for
infection [12]. Reports reveal that the standard treatments often lead to amputation, as
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more than 70% of diabetic wounds do not heal with current standard treatment strate-
gies [13]. Few drugs are available to accelerate wound healing in clinical treatment [14].
Growth factors or cytokines provide continuous drug release in combination with dressings
and exert local effects while limiting systemic side effects, promising clinical options for
non-healing wounds [12].

Interleukin (IL)-33 is a newly discovered member of the IL-1 cytokine family [15].
The human full-length IL-33 protein includes 270 amino acids, called proIL-33, whose
C-terminal is an IL-1-like cytokine domain. The N-terminal is a chromosome-binding
domain, and the middle region contains many inflammatory protease cleavage sites [16].
After enzymatic cleavage, the IL-33 protein containing only the IL-1-like cytokine domain
is produced, which is the highly active, mature form of IL-33 (matIL-33) that binds to
the IL-33 receptor ST2 to exert its cytokine activity [15]. The pro-inflammatory role of
IL-33 has been extensively studied in asthma, allergic reactions, and various inflammatory
diseases [17–19]. However, it was recently found that IL-33 is also involved in the repair of
tissue cell damage [20]. IL-33 is released from necrotic or damaged cells to function as an
alarm protein [21]. Substantial recruitment of cells with strongly expressed IL-33 was found
in skin wounds 24 h after injury in a rat model, and protein and mRNA levels of IL-33
were also elevated [22]. It was also found that the administration of exogenous IL-33 can
promote wound tissue repair by promoting re-epithelialization and ILC2 proliferation [23].
Reports reveal that the recruitment and development of alternately activated macrophages
have been observed at wound sites in IL-33-treated mice [24–27].

One of the reasons why the wounds of diabetic patients are difficult to heal is the
impaired production of healing-related factors, such as growth factors and chemokines,
during the healing process [3,4]. As an inflammatory factor, IL-33’s importance in wound
healing in diabetic patients, and whether there are differences between the healing mecha-
nisms of the normal wound and those of diabetic skin damage, remains unclear. In this
study, a full-thickness skin defect model was designed in streptozotocin (STZ)-induced
diabetic mice to assess wound healing. Comparing against wild-type mice, the therapeutic
effect of IL-33 on wound healing in diabetic mice was evaluated by topical application of
recombinant human mature IL-33(rhmatIL-33) to test the wound closure process.

2. Materials and Methods
2.1. Expression and Purification of rhmatIL-33 Protein in Escherichia coli

According to the nucleic acid sequence of human IL-33 in the Gene Bank database,
the cDNA sequence (483 bp) of recombinant human mature IL-33 (rhmatIL-33) was ob-
tained. The sequence was ligated into vector pET-28a (+) between the NdeI and XhoI sites
to generate pET28a-rhmatIL-33, which contains a 6-histidine tag at the C-terminal for facili-
tating protein purification. The vector construction was performed by Suzhou Hongxun
Biology Co. The recombinant plasmid pET28a-rhmatIL-33 was transformed into E. coli
BL21 (DE3). The transformants were grown on Luria–Bertani (LB) agar plates containing
100 µg/mL kanamycin.

A single bacterial colony was picked from the transformant plate and inoculated into
5 mL of Luria–Bertani (LB) medium containing kanamycin (50 mg/mL) and subjected to
agitation at 220 rpm, 37 ◦C for 12 h. A total of 2.5 mL of culture was transferred to 250 mL
of fresh LB medium containing kanamycin (50 mg/mL) in a 1 L shake flask. Cultures were
grown with 220 rpm shaking at 37 ◦C, then induced by adding 1 mM isopropylthio-β-D-
galactoside (IPTG) at the OD600 of 0.6–0.8 for 6 h. Cells were harvested by centrifugation
at 4000 rpm for 20 min and stored at −80 ◦C for further purification.

The cells (10 g) were resuspended in 100 mL of lysis buffer (20 mM imidazole, 1× PBS,
pH 7.4), disrupted by sonication for 30 min on ice, and centrifuged at 12,000 rpm for 60 min.
The supernatant was collected and filtered through a 0.45 µm filter. Ni–NTA column
(Bestchrom Biotech, Shanghai, China) was used for affinity chromatography. Initially, the
concentrated supernatant was poured through the column to allow protein binding. Next,
the washing buffer (50 mM imidazole, 1× PBS, pH 7.4) was applied to wash away the
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contaminating proteins. Finally, the target protein was eluted by the elution buffer (1× PBS,
pH 7.4) with different concentrations of imidazole (100 mM, 300 mM).

2.2. Cell Migration Assay

Both the human skin fibroblasts (HSF) cell line and the immortalized human ker-
atinocyte (HaCaT) cell line were chosen for the cell migration test. Both cells were inocu-
lated into 6-well plates at a density of 1 × 106 cells/well and cultured in DMEM Medium
(Gibco, Grand Island, USA) containing 10% fetal bovine serum (Excell Bio, Shanghai, China)
at 37 ◦C in a humidified atmosphere containing 5%CO2 for 12 h. When the cell confluence
reached 90%, the cells were starved for 2 h in a serum-free medium. Then, a 200 µL pipette
tip was used to scratch the monolayer cells, and the samples were rinsed with PBS three
times to remove non-adhered cells. Cells were then treated with various concentrations of
rhmatIL-33 for 20 h, and DMEM with 1%FBS was used as the control. Images were taken
at 0, 16, and 20 h after dosing. Cell migration distance was calculated by subtracting the
scratch width at 16 and 24 h from the scratch width at 0 h.

2.3. Full-Thickness Excision Wound Model in Mice

C57BL/6 mice (20–25 g; 6–7 weeks old) were purchased from Guangzhou Qingle Life
Science Co., Ltd. (Guangzhou, China) and singly housed in cages in a room at a constant
temperature range (19~26 ◦C). All protocols were approved by the Laboratory Animal
Ethics Committee of Jinan University (Ethics Code: 20210301-59).

The diabetic mice were induced as previously described [28]. Streptozotocin (STZ) nor-
mally makes mice diabetic by damaging their pancreatic islet cells. Diabetes was induced by
intraperitoneal injection of 60 mg/kg streptozotocin (STZ) once daily for four consecutive
days. Weight and blood glucose were measured five days after STZ injection to assess dia-
betes status in the animals. Routine weight and blood glucose assessments were performed
weekly for three consecutive weeks. Mice with blood glucose levels ≥16.7 mmol/L were
selected for the diabetic group.

The wild-type mice and the diabetic mice were randomly segregated into six groups
(n = 9 mice per group): the uninjured group (WT + rhmatIL-33 and DM + rhmatIL-
33), the solvent control group (WT and DM), and the rhmatIL-33 administration group
(WT + rhmatIL-33 and DM + rhmatIL-33). After anesthesia with 3% pentobarbital sodium
(45 mg/kg intraperitoneal), the dorsal hair of the mice was removed with a shaver and
depilatory cream, followed by skin disinfection with 75% alcohol. A circular wound of
6 mm in diameter was made on the back with the lesion’s depth reaching the fascia layer
by a 6 mm hole punch and ophthalmic scissors. A silicone ring with an inner diameter of
8 mm was used to limit the incised wound contraction.

2.4. Wound Assessment

The rhmatIL-33 (10 µL, 100 µg/mL) was administrated locally at the wound site once
daily for seven days while using the same volume of PBS as the control. The day of the wound
incision was recorded as day 0. From day 0 of injury, wounds were photographed every other
day, the wound area was measured, and closure was recorded. The wound-contraction per-
centage was determined by the following equation: wound contraction (%) = (day 0 wound
area − wound area on a particular day)/day 0 wound area × 100.

On days 5 and 7 post-injury, 3 mice were randomly killed in each group, and 2 mm
wide skin tissue at the wound was excised and subsequently used for further analysis.

2.5. Real-Time PCR

Tissues were well ground with an electric grinder in RTL lysis buffer. Total RNA was
extracted from wound tissues using HiPure Fibrous RNA Plus Kit (Magen, Guangzhou,
China), and complementary DNA was then synthesized using PrimeScript 1st Strand cDNA
Synthesis Kit (TaKaRa, Beijing, China) according to the manufacturer’s instructions. Next,
qRT-PCR was performed with the ChamQ Universal SYBR® qPCR Master Mix (Vazyme,
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Nanjing, China) on a Bio-Rad CFX384 qPCR cycler (Bio-Rad Laboratories, Shanghai, China)
following the manufacturer’s instructions. With GAPDH as the internal reference gene, the
relative quantification was carried out by the comparative CT method.

2.6. Flow Cytometry Assay

The tissue-digesting enzyme solution containing 100 µg/mL DNase I (Solarbio, Beijing,
China) and 1 mg/mL collagenase IV (Worthington, Lakewood, LA, USA) was prepared in
a cold serum-free DMEM medium and kept on ice for later use. The skin tissue was cut
into pieces less than 1 mm by sterile ophthalmology scissors and digested with digestive
enzyme solution (about 5 mL of enzyme solution for 1 cm2 of skin tissue) for 1.5–2 h in a
steady-temperature incubator at 37 ◦C. Mouse skin tissue was filtered through a 70 µm cell
strainer into PBS containing 2% FBS. The prepared cell suspension was directly used for
staining and was fixed with 4% paraformaldehyde and stored at 4 ◦C.

Cell surface staining was performed with anti-CD45-BB515, anti-CD127-PE-CY7, anti-
lineage-percp-cy5.5, and anti-ST2-BV421 (BD Pharmingen, California, USA), and incubated
at 4 ◦C for 30 min in the dark. After washing with PBS, the cells were fixed with 4%
paraformaldehyde and then permeabilized with 1× Perm/Wash Buffer (BD Pharmingen)
for 15 min. Intracellular staining was performed with anti-GATA3-AF647 (BD Pharmingen).
The cells were then incubated at 4 ◦C in the dark for 2 h and washed once with PBS. The
data were acquired using a BD FACSCalibur flow cytometer (BD Bioscience, San Jose, CA)
and analyzed with Flow Jo X.

2.7. Statistical Analysis

Statistical differences were determined using the one-way analysis of variance test of
Student’s t-test. Data were expressed as mean and standard deviation. A value of p < 0.05
was considered statistically significant.

3. Results
3.1. Expression and Purification of rhmatIL-33 Protein

The rhmatIL-33 protein was recombinantly expressed in E. coli BL21(DE3). It was
found that most of the rhmatIL-33 was retained in the supernatant in a soluble form after
ultrasonication of cells. By Ni-affinity chromatography, the rhmatIL-33 was obtained in
100 mM and 300 mM imidazole eluates. The expression and purification of rhmatIL-33
were confirmed by Western blot analysis with anti-human IL-33 monoclonal antibody
(Figure 1a). The purity of rhmatIL33 in 100 mM eluate was analyzed by SEC-HPLC and
found to be 90–95%, which was used for subsequent experiments (Figure 1b).

1 
 

 

 
 

 

Figure 1. Expression and purification of rhmatIL-33 protein. (a) Expression and purification of the
rhmatIL-33 protein were checked on western blotting and 15% SDS-polyacrylamide gel electrophore-
sis (SDS–PAGE). Aliquots from cell cultures of strain BL21(DE3) grown at 37 ◦C were taken before
and after induction (un and In). Cells were harvested 6 h after induction and disrupted by sonication
for 30 min on ice; the expression of rhmatIL-33 in the supernatants and pellets was detected (Sup and
Pel). The supernatants were applied to Ni–NTA affinity chromatography and eluted with 50 mM,
100 mM, and 300 mM imidazole, respectively (Lanes E50, E100, E300). Lane FT., Flowthrough; Lane
M, molecular weight standards (kDa) (b) Analysis of purified rhmatIL-33 by SEC-HPLC. The arrow
indicates the position where rhmatIL-33 is eluted.
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3.2. Effects of rhmatIL-33 on the Migration of HSF and HaCaT Cells

Fibroblasts with contractile myofibroblast phenotype are essential for developing and
remodeling connective tissue during skin-wound healing [29]. After skin injury, fibroblasts
in the dermis began to proliferate, migrate to the wound, and activate at the wound to form
an extracellular matrix that reshapes the wound bed [30]. The effect of rhmatIL-33 on the
migration of human skin fibroblasts (HSF) was investigated by cell scratch assay in this
study. The rhmatIL-33 was added at different concentrations, from 1 ng/mL to 40 ng/mL,
while the PBS was used as the control group, and photographs were taken at three time
points: 0 h, 16 h, and 20 h (Figure 2a). At 16 h, the scratch-healing rates of the groups
with concentrations of 1 ng/mL, 5 ng/mL, 10 ng/mL, and 20 ng/mL were 87.69%, 85.37%,
94.83%, and 81.36%, respectively, which were significantly higher than that of the control
group: 59.41% (p < 0.001). At 20 h, the scratch-healing rates of the groups with different
concentrations of rhmatIL-33 were 94.22%, 94.80%, 99.00%, and 90.77%, respectively, which
were also significantly higher than that of the control group: 66.76% (p < 0.001). However, a
high concentration of rhmatIL-33 (40 ng/mL) could not improve cell migration (Figure 2b).
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Figure 2. Effects of rhmatIL-33 on the migration of HSF and HaCaT cells. The wound-healing assay
showed rhmatIL-33 accelerates the migration of (a) HSF and (c) HaCaT cells. (a,c) Representative
images of scratched and recovered wounded areas on confluence monolayers of HSF and HaCat cells
at different concentration treatments. (b,d) The quantitative evaluation and statistical analysis of cell
migration rate in wound scratch assay measured by Image J software. The values are expressed as
the mean ± SEM from three independent experiments. * p, 0.05; ** p, 0.01; *** p, 0.001; **** p, 0.0001.

Keratinocytes are epidermal cells that produce keratin and play a crucial role in skin
wound healing [31]. After skin injury, keratinocytes rapidly migrate to the wound area
and proliferate to promote epithelial regeneration of the wound incision [32]. The effect
of rhmatIL-33 on the migration of immortalized human keratinocytes (HaCaT) was also
investigated. It was found that a higher concentration of rhmatIL-33 was needed to promote
HaCaT cell migration; that is to say, rhmatIL-33 could promote the migration of HaCaT
cells at concentrations of 20–160 ng/mL, while 1 ng/mL and 5 ng/mL rhmatIL-33 had no
significant effects (data not shown). At 16 h, the scratch-healing rates of the groups with
concentrations of 20 ng/mL, 40 ng/mL, 80 ng/mL, and 160 ng/mL were 59.66%, 59.79%,
59.36%, and 63.86%, respectively, and at 20 h, the scratch-healing rates were 65.78%, 74.79%,
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68.49%, 69.74%, and 73.00%, respectively. The healing rates of all rhmatIL-33 treatment
groups were significantly higher than that of the control group (53.43%) (Figure 2c,d).

3.3. Effect of rhmatIL-33 on Skin Wound Healing in Mice

A full-thickness skin defect model was used to evaluate the effect of rhmatIL-33 topical
application on wound healing. After the full-thickness skin wounds on C57BL/6 mice,
rhmatIL-33 (100 µg/mL, 10 µL) or PBS (negative control, 10 µL) was topically administered
at the wound site once daily. In the wound model, wild-type mice were randomly divided
into two groups (n = 9 mice/group): the negative control group (WT, wild-type) and the
rhmatIL-33 treatment group (WT + rhmatIL-33). Likewise, diabetic mice were divided
into the negative control group (DM, diabetes mellitus) and the rhmatIL-33 treatment
group (DM + rhmatIL-33). Uninjured mice were used as a control group and divided into
two groups: WT-Control and DM-Control.

In the WT group and WT + rhmatIL-33 group, no redness, swelling, or inflamma-
tion were found in the skin surrounding the wound. The wound-closure rate of the
WT + rhmatIL-33 mice was significantly increased compared to that of the WT mice
(p < 0.05). In the DM group, there was obvious ulceration and exudation on the third
to fifth day of injury, and redness, swelling, and thick scabbing on the seventh day of
injury; the DM + rhmatIL-33 group had no obvious redness, swelling, or inflammation.
The wound of the DM + rhmatIL-33 group healed significantly faster than that of the DM
group on the first, third, and ninth days of injury (p < 0.05) (Figure 3a,b). There was no
effect on body weight in mice by topical administration of rhmatIL-33 (Figure 3c). These
results indicated that compared with WT mice, the wounds of DM mice showed severe
ulceration, inflammation, and other chronic wound characteristics, and administration of
rhmatIL-33 can promote skin wound healing in wild-type and diabetic mice.
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Figure 3. Effect of rhmatIL-33 on skin wound healing in mice. (a) Representative images of wounds
at days 0, 3, 5, 7, and 9 post-administration. (b) The rate of wound closure in wounds receiving a
different dose of rhmatIL-33 at the indicated times; # p, 0.05, for DM vs. DM + rhmatIL-33 group;
* p, 0.05, for WT vs. WT + rhmatIL-33 group. (c) The body weight of mice receiving administration at
the indicated times. (d) The number of inflammatory cells in the skin of mice; **** p, 0.0001. (e) HE
staining of intact mouse skin. (f) H&E staining of wound sections treated with rhmatIL-33, PBS at
day 5 post-administration (100×, 200×).

To further investigate the effect of rhmatIL-33 on in vivo wound healing, mice were
sacrificed for histological analysis pre- and 5 days post-injury. The results of Hematoxylin-
Eosin (HE) staining before injury showed that the skin epidermis in the DM-Control group



Bioengineering 2022, 9, 734 7 of 12

was thinner than that of WT-Control group, indicating that the skin of the diabetic mice
was more fragile than that of the wild-type mice (Figure 3e). The results of HE staining
five days after injury showed that an intact skin stratum corneum with basal layer was
seen in all groups except the DM group. Compared with the uninjured mice, in injured WT
and DM mice, the injury resulted in enhanced inflammation (p < 0.0001). Compared with
the non-administration group, the administration of rhmatIL-33 reduced the number of
inflammatory cells in both the WT + rhmatIL-33 and DM + rhmatIL-33 groups (p < 0.0001)
(Figure 3d–f).

3.4. Expression of Endogenous IL-33 in Skin Wounds

The qPCR results in wound tissue showed that the endogenous IL-33 mRNA in
wild-type mice was gradually up-regulated over time after skin injury, indicating that the
inflammatory response was triggered after injury. Contrastingly, the mRNA expression
level of IL-33 in the WT + rhmatIL-33 group was down-regulated first and then up-regulated.
Interestingly, the mRNA expression level of IL-33 in the DM group was also down-regulated
first on the fifth day and then up-regulated on the seventh day, but with rhmatIL-33
administration, the IL-33 mRNA expression in DM + rhmatIL-33 group fluctuated according
to the same pattern as with WT group. Overall, the IL-33 mRNA expression in diabetic
mice was lower than that in wild-type mice, but the exogenous addition of recombinant
rhmatIL-33 significantly increased the IL-33 mRNA expression in diabetic mice (Figure 4a).
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administered group, the expression of IL-13 in the exogenously rhmatIL-33-administered 
group showed an up-regulated trend, but there was no significant difference (Figure 5c); 
the expression of IL-4 in the WT + rhmatIL-33 group was significantly increased compared 
with the WT group (P<0.05), but there was no significant difference between the DM + 
rhmatIL-33 group and the DM group (Figure 5d). 

Figure 4. Expression of endogenous IL-33 in skin wounds. (a) Expression of the IL-33 mRNA in
wound tissue at day 5 post-administration. (b) The number of IL-33 positive cells is presented in the
form of a graph. * p, 0.05, ** p, 0.01, *** p, 0.001 and ns, not significant. (c) IL-33 immunohistochemical
staining in the skin of mice.

An immunohistochemical study was performed to assess the expression of endoge-
nous IL-33. (It has been verified that rhmatIL-33 protein does not cross-react with mouse
IL-33 antibody.) The number of IL-33 positive cells was higher in the WT group than
in the WT-control group (p < 0.001). Compared with the DM-control group, in the DM
group, the number of IL-33 positive cells showed a downward trend, but there was no
significant difference (Figure 4b,c). This indicated that the up-regulation of IL-33 was
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blocked in diabetic mice after injury compared with wild-type mice. After administration
of rhmatIL-33, the number of IL-33 positive cells in the WT + rhmatIL-33 group was lower
than that in the WT group (p < 0.05). However, the number of IL-33 positive cells in the
DM + rhmatIL-33 group was higher than that in the DM group (p < 0.01) (Figure 4b,c).

3.5. Effects of rhmatIL-33 Administration on ILC2 Cells in Wound Tissue

Reports have shown that IL-33 promotes skin wound healing in mice by regulating
ILC2 cells in tissues [33], and our study hypothesized that this mechanism was also ap-
plicable in diabetic mouse skin wounds. ILC2 cells were defined by CD45+, Lineage−,
CD127+, ST2+, and GATA3+, and flow cytometry was performed to identify ILC2 cells in
skin-wound tissues.

The results indicated that the percentage of ILC2s in skin wounds was significantly
lower in DM mice than in WT mice no matter whether the mice were treated with rhmatIL-
33. This partly explained why the skin of diabetic mice was difficult to heal after injury.
On post-injury day seven, ILC2 cells were increased in all groups of mice, following IL-33
administration. In the wild-type mouse group, the percentage of ILC2s in skin wounds of
the WT + rhmatIL-33 mice was significantly higher than that of WT mice (p < 0.001). In the
diabetic mouse group, the percentage of ILC2 cells in the DM + rhmatIL-33 mice was also
significantly higher than that of the DM mice (p < 0.05) (Figure 5a,b). These results indicate
that ILC2 cells are involved in rhmatIL-33-promoting wound healing in both wild-type and
diabetic mice.

1 
 

 
Figure 5. Effects of rhmatIL-33 administration on ILC2 cells in wound tissue. (a) Flow cytometric
gating strategies for isolation and sorting of ILC2s. (b) Bar graphs showing the percentage of ILC2s
in the mouse skin at different time points. (c–f) Gene expressions of repair-related cytokines in mouse
wound skin tissue treated with rhmatIL-33 or PBS by real-time RT-PCR analyses. * p, 0.5; **** p, 0.0001
and ns, not significant.

The transition of macrophages from the pro-inflammatory MI type to the “alternatively
activated” M2 type has been suggested to be necessary for the transition from inflammation
to proliferation in the healing wound [34]. Activated ILC2 cells can produce IL-13 and
IL-4, which are Th2-type cytokines that promote the transformation of macrophages to
the M2-type, suppress inflammation, and participate in tissue repair [35,36]. Regardless
of whether it was wild-type mice or diabetic mice, compared with the non-administered
group, the expression of IL-13 in the exogenously rhmatIL-33-administered group showed
an up-regulated trend, but there was no significant difference (Figure 5c); the expression
of IL-4 in the WT + rhmatIL-33 group was significantly increased compared with the WT
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group (p < 0.05), but there was no significant difference between the DM + rhmatIL-33
group and the DM group (Figure 5d).

It has also been reported that ILC2s can promote macrophage polarization, leading
to increased numbers of M2 macrophages [37]. Arg1 and YM1 are markers of M2-type
macrophages. Compared with the untreated group, the mRNA expression of YM1 was
significantly increased in wound tissues of the IL-33-treated group (Figure 5e); however,
there was no significant difference in the mRNA expression level of Arg1 between them
(Figure 5f). The results also indicated that the mRNA expression levels of Arg1 and YM1 in
the wound tissue of diabetic mice were slightly lower than those of wild-type mice, while
the magnitude of the increase in Arg1 and YM1 mRNA was greater in diabetic mice than in
wild-type mice.

4. Discussion

During skin wound healing, early inflammatory responses occur, thereby enhancing
repair and preventing infections by releasing cytokine signaling between immune and other
skin cell populations [38]. Multiple findings demonstrate that IL-33 is a cytokine involved
in repair events [23–27,33]. The pro-healing function of IL-33 was revealed in studies on
keratinocyte epithelialization and alternate activation of macrophages [25,39]. However, the
mechanisms underlying the action of IL-33 in diabetic wound healing remain unclear.

Results showed that the streptozotocin (STZ)-induced diabetic mouse had a weaker
skin stratum corneum than wild-type mice, and diabetic mice exhibited severe wound
ulceration and impaired wound healing. Exogenous recombinant human IL-33 accelerated
wound healing in both wild-type and diabetic mice. The rhmatIL-33-treated mice exhibited
a lower number of inflammatory cells.

In wild-type mice, injury led to up-regulation of endogenous IL-33 expression in mouse
skin wounds, but the up-regulation of IL-33 expression was blocked after skin injury in
diabetic mice. The expression of endogenous IL-33 in the skin wound tissue of diabetic mice
was significantly up-regulated after rhmatIL-33 administration. However, endogenous
IL-33 decreased when exogenous IL-33 was added to wild-type mice, indicating that IL-33
plays a balancing role in wound healing. This study also demonstrated that the proportion
of ILC2s in the skin wounds of the DM mice was significantly lower than that of the WT
mice, and IL-33 significantly increased the proportion of ILC2s in skin wounds in wild-type
and diabetic mice.

Studies have shown that the expression of IL-33 is significantly increased in the
skin tissue of infectious lesions in mice, which may be related to the release of a large
amount of IL-33 after local tissue injury [2,40]. Our study indicated that the transcription
and expression of endogenous IL-33 in wild-type mice increased after injury, but the
endogenous IL-33 in WT mice showed a downward trend after the addition of exogenous
IL-33. In contrast, the level of endogenous IL-33 in DM mice did not increase but instead
decreased after injury, and after the administration of recombinant IL-33, the endogenous
IL-33 in the wound tissue of the diabetic mice gradually increased with the same pattern as
in the WT mice. High blood glucose is believed to inhibit the expression of IL-33 [38]; thus,
the expression and secretion of IL-33 could not be induced due to skin injury in DM mice
as it was in wild-type mice, which may be one of the reasons why the wounds of DM mice
are difficult to heal. It has been reported that hyperglycemia suppresses the expression of
IL-33 in a diabetic mouse wound excision model and decreases the expression of REG3A in
keratinocytes, thereby increasing inflammation in skin wounds [41]. It was also found that
hyperglycemia inhibits the expression of IL-33 in mouse myocardium, thereby aggravating
ischemia/reperfusion-induced myocardial injury in diabetic mice. Additionally, exogenous
IL-33 treatment attenuated hypoxia-induced injury in diabetic mice [42]. However, it has
been reported that IL-33 expression is increased in primary hepatocytes treated with high
glucose [43].

It has been reported that IL-33 can promote wound healing in an acute setting by
promoting the proliferation of ILC2s and re-epithelialization [33]. ILC2s are present in
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healthy human and murine skin, and their numbers are elevated in the presence of skin
inflammation [44]. Our study indicated that the proportion of ILC2s in WT mice was
significantly higher than in DM mice, and ILC2s in the wound tissue of both WT and DM
mice were significantly increased after topical rhmatIL-33 administration. These results
confirm that IL-33-induced ILC2 cells play an important role in wound healing.

The skin damage repair process includes two stages. In the early stage, M1 macrophages
mediate tissue damage and trigger an inflammatory response [45]; in the later stage of wound
healing, infiltrating macrophages express the M2 phenotype, limit the inflammatory response,
promote angiogenesis, and participate in the remodeling and repair of damaged tissue [46,47].
IL-33, an IL-1-like cytokine that signals through the IL-1 receptor-related protein ST2, induces
T-helper type 2-associated cytokines (IL-4, IL-5, and IL-13, etc.) and participates in various
inflammatory and immune responses [35,36]. IL-33 cooperates with IL-13 to induce M2
polarization of macrophages and promote wound repair. Markers such as YM1 and Arg1
are up-regulated during M2 polarization [23,28]. This study indicates that exogenous IL-33
contributes to the expression of IL-13 and IL-4 in wound tissue, and the expression of M2
macrophage marker YM1 is significantly increased, indicating that IL-33 plays an important
role in the transition of macrophages from M1 to M2 in wound healing. Contrastingly,
Arg1, another M2 macrophage marker, was not significantly up-regulated by the addition of
exogenous IL-33. A recent study found that an increase in YM1 expression may act to control or
limit the activation of the M2 macrophage marker Arg1 during macrophage polarization [48].

As illustrated schematically in Figure 6, IL-33 is a coordinating factor in the wound-
healing process and can promote wound healing by enhancing ILC2 cells and accelerating
the transformation of macrophages from the M1 to M2 phenotype. Hyperglycemia in the
damaged skin tissue of diabetic mice can inhibit the expression of IL-33, which is one of the
reasons why skin wounds in diabetic patients are difficult to heal. Exogenous recombinant
IL-33 effectively increased the level of IL-33 in wound tissue, thereby promoting wound
healing in diabetic mice.
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