
Citation: Abdullah; Faye, I.; Islam,

M.R. EEG Channel Selection

Techniques in Motor Imagery

Applications: A Review and New

Perspectives. Bioengineering 2022, 9,

726. https://doi.org/10.3390/

bioengineering9120726

Academic Editor: Mark Ming-Cheng

Cheng

Received: 10 October 2022

Accepted: 30 October 2022

Published: 24 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Review

EEG Channel Selection Techniques in Motor Imagery
Applications: A Review and New Perspectives
Abdullah 1,2* , Ibrahima Faye 1,2* and Md Rafiqul Islam 3

1 Centre for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS,
Bandar Seri Iskandar 32610, Malaysia

2 Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS,
Seri Iskandar 32610, Malaysia

3 Data Science Institute (DSI), University of Technology Sydney (UTS), Sydney, NSW 2007, Australia
* Correspondence: abdullah_20001034@utp.edu.my (A.); ibrahima_faye@utp.edu.my (I.F.)

Abstract: Communication, neuro-prosthetics, and environmental control are just a few applications
for disabled persons who use robots and manipulators that use brain-computer interface (BCI)
systems. The brain’s motor imagery (MI) signal is an essential input for a brain-related task in BCI
applications. Due to their noninvasive, portability, and cost-effectiveness, electroencephalography
(EEG) signals are the most widely used input in BCI systems. The EEG data are often collected from
more than 100 different locations in the brain; channel selection techniques are critical for selecting
the optimum channels for a given application. However, when analyzing EEG data, the principal
purpose of channel selection is to reduce computational complexity, improve classification accuracy
by avoiding overfitting, and reduce setup time. Several channel selection assessment algorithms, both
with and without classification-based methods, extracted appropriate channel subsets using defined
criteria. Therefore, based on the exhaustive analysis of the EEG channel selection, this manuscript
analyses several existing studies to reduce the number of noisy channels and improve system
performance. We review several existing works to find the most promising MI-based EEG channel
selection algorithms and associated classification methodologies on various datasets. Moreover, we
focus on channel selection methods that choose fewer channels with great precision. Finally, our
main finding is that a smaller channel set, typically 10–30% of total channels, provided excellent
performance compared to other existing studies.

Keywords: channel selection algorithm; motor imagery; BCI; electroencephalogram (EEG); biomedical
engineering

1. Introduction

Electroencephalography (EEG) in BCI applications is often used compared to other
modes such as functional magnetic resonance imaging (fMRI), functional near-infrared
spectroscopy (fNIRS), and its low cost and quick response time [1]. Most BCI signals work
well from certain places on the scalp. On the contrary, noisy and redundant signals can
degrade the BCI efficiency [2–6]. Furthermore, using high channels requires a lengthy
preparation time, impacting BCI’s usability. Consequently, picking the fewest channel
numbers while maintaining maximum or required accuracy will help to achieve both
efficiency and ease. However, identifying the appropriate channel selection is not easy,
as manually selecting channels based on neuroscientific data does not always give optimal
results compared to using all EEG channels [2].

A brain-computer interface (BCI) aims to convert basic cerebral information into mo-
tor commands that a neuroprosthetic device can replicate. Kinesthetic and visual motor
imagery (KMI and VMI) are the two basic categories of motor imagery [7]. KMI is charac-
terized by the ability to simulate a movement by creating an impression of how muscles
contract and feel during a actual movement. On the other hand, the capacity to see oneself
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doing the movement is known as VMI. KMI could be more efficient than VMI since most
decoders for motor prediction are created based on actual movement. Therefore, employing
a KMI to enhance the BCI performance would be preferable. However, individuals could
become confused about the visual techniques without explicit instructions. Furthermore,
people with motor disabilities had more difficulty using kinesthetic imagery than healthy
people [8]. We could categorize the various visual kinds and provide the subject with
feedback. With the motor imagery (MI) EEG data, many EEG channel selection algorithms
have been developed since 2010 [9,10]. The study of movement and imagery-related ac-
tivity revealed broadly dispersed frontoparietal cortical regions, the medical aspect of
the superior frontal gyrus, the the anterior cingulate cortex, frontal and temporal opercu-
lar areas, occipital areas, and the posterolateral cerebellum. In our earlier trial with the
sequential movement and imagery (SMI) task, this activity pattern was identical to the
usual movement and image activity [11]. As a result, frequency-specific variations in a
continuous EEG are event-related phenomena [12].

1.1. Context of the Study

The EEG oscillations are classified into bands based on their frequency range. In the
context of MI-based BCI, the µ (9–13 Hz), α (8–12 Hz), β (13–30 Hz), and γ (>30 Hz) fre-
quency ranges are the most important. The µ rhythm is a type of α rhythm that exists in the
central brain regions, and its morphology is arch-like. Mental imagination of movements,
referred to as motor imagery (MI), manifests itself as a result of the rehearsal of a given
motor act in the working memory without any overt movement of the corresponding
muscle. It is classified into two categories: visual imagery (VI) and kinesthetic imagery
(KI). While VI consists of visualization of the subject moving a limb that does not require
special training or sense of muscles, KI is the feeling of muscle movement that athletes or
specially trained people can generally achieve [13]. When comparing different MI tasks,
such as right-hand vs. foot, the µ and β event-related desynchronization (ERD) in cortical
areas are identified as the attended body part, and µ and β event-related synchronization
(ERS) in cortical areas are identified the non-attended body part. The β, ERS over cortical
regions of the treated part of the body is frequently documented [9].

However, its structure and activity are the most specific issues in neuroscience [14].
The BCI faces many challenges, such as computational costs, equipment costs, and classi-
fication accuracy [15,16]. Researchers have proposed various techniques to handle these
difficulties successfully. Signal preprocessing, feature extraction, and selecting an ap-
propriate classifier, for example, can increase a BCI’s classification accuracy even though
multi-channel EEG has a wide range of applications [17], specific low computation complex-
ity, and wearable applications. When building a real-time system, researchers frequently
overlook the channel selection phase. The lack of use of a channel selection method means
noisy data and redundant channels raise computational and equipment costs for a BCI
system. The classification results are also improved or stabilized by channel selection [18].
A similar issue arises when performing feature extraction. As a result, rather than process-
ing and classifying data through all channels, it is critical to choose a practical solution to
select the optimal number of channels. After implementing channel selection algorithms,
several researchers employed feature selection methods to boost system performance even
more [19]. Subset channels are chosen based on criteria that usually include all channel
features, such as location, dependencies, and redundancy [20].

1.2. Related Works

Researchers have proposed various ways to overcome the problem of reliably selecting
EEG channels from EEG data [10]. The employment of the cross correlation-based dis-
criminant criteria (XCDC) algorithm in conjunction with the convolutional neural network
(CNN) classifier is one of the most modern ways of selecting EEG channels [21]. The EEG
channel selection algorithm (e.g., XCDC, Neuroevolutionary approach, automatic channel
selection, and squeeze and excitation blocks (ACS-SE)) is a solid baseline when combined
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with deep neural networks (e.g., CNN, multi-layer perceptron neural network (MLP-NN),
etc.) classifier [21–23]. When comparing many EEG channel selection algorithms with vari-
ous classifiers, it was discovered that DNN and support vector machine (SVM) classifiers
produce the best results. As a result, recent contributions have focused on developing
ensemble approaches that outperform various EEG channel selection algorithms combined
with DNNs and SVM [21,22,24,25]. These methods employ a combination of spatial filters,
correlation-based, sequential-based, and binary harmony search-based EEG channel selec-
tion, and various classifiers (e.g., CNN [24], MLP-NN [22], SVM [19], linear discriminant
analysis (LDA) [26] on one or more BCI competition datasets. A CNN classifier is employed
to predict the new hierarchical structure accurately [24,27]. DNN is now widely regarded
as the most advanced algorithm for the BCI competition dataset, particularly CNN [21].
The achievement of deep learning is described in numerous classification problems, which
encouraged the recent use of deep learning models for EEG channel selection after estab-
lishing the present state-of-the-art deep and non-deep learning classifiers for EEG channel
selection [24,28].

The experimental paradigm can include both stimulus-dependent and stimulus-
independent approaches. MI goes through an internal stimulus-dependent process that
creates action representations from information previously stored in long-term memory [29].
In particular, action observation and motor imagery are comparable in forming action repre-
sentations required to accomplish a skill. However, action observation requires an external
stimulus, such as a visual picture, whereas motor imagery does not. Stimulus-independent
thoughts (SITs) are streams of ideas and pictures detached from current sensory input.
The suggested stimulus-independent hybrid BCI, which combines generated brain sig-
nals from the motor and somatosensory cortex, has demonstrated increased performance
in individual modalities. The stimulus-independent approach involves more complex
probabilistic metrics that detect target EEG patterns [30]. It is worth emphasizing that
EEG signals for clinical application rely on practical algorithms for predicting disease or
abnormal physiological conditions [31]. As a result, the channel selection section is critical
to developing efficient algorithms. Using a small range of channels decreases computa-
tional complexity and cost, resulting in low-power devices. We investigated the recently
established channel selection algorithms approach for MI-based EEG signals, given the
relevance of the channel selection process in BCI systems. Flowcharts and tables support
the explanation and conversation, giving the reader a clear comprehension. The classifi-
cation algorithm, channel selection strategy, and dataset provide a clear and meaningful
comparison of several channel selection strategies. Furthermore, the developed method’s
performance is described in the classification performance and the number of channels
used for aid judgement.

1.3. Motivation and Contribution

In this context, the following open questions are addressed in this paper: Which EEG
channel selection classifier has the best performance? Is there any strategy for selecting
EEG channels that produce state-of-the-art MI data? Which EEG channel selection methods
are most effective for the MI task? What effect does the channel selection have on the
accuracy? Given that the EEG channel selection community no later addresses questions,
it is surprising how a few new papers have overlooked the possibility of resolving EEG
channel selection problems with pure learning algorithms [21,24,27,32]. A recent empirical
study tested various EEG channel selection techniques on several MI datasets, none of
which were deep learning models [10]. This shows how much information on the current
performance of deep learning models for tackling EEG channel selection challenges is
lacking in the community [24]. In this study, we examine the impact of the EEG channel’s
selection algorithm and deep and non-deep learning classifiers on several MI datasets.
This study used a 39 EEG channel selection strategy with 19 classifiers in 24 different MI
datasets. The following are the main contributions of this paper:
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• We explain that channel selection approaches are specifically designed for detailed
EEG channel selection in MI datasets.

• We propose a unified taxonomy to combine the most recent MI dataset classification
applications for multiple EEG channel selection techniques with maximum accuracy.

• We provide the channel selection direction for the BCI-based paradigm for future
research.

2. Basic Concepts

We will start with some definitions in this section to make things easier to comprehend.
Then, we review the substantial theoretical basis of EEG channel selection for the MI prob-
lem. Finally, we show how we used our proposed taxonomy to classify the various channel
selection algorithms in various MI datasets. In Figure 1, we provide some guidelines for
review methodology for sample collection and analysis.

Figure 1. Proposed systematic review for sample collection and analysis.

2.1. Basics of EEG Signal

According to studies, the user’s MI stimulates the sensory-motor cortex in the brain,
increasing metabolism and blood flow while decreasing or blocking the amplitude of µ
(8–13 Hz) and β (14–30 Hz) rhythm EEG signals and oscillation frequency. This is referred
to as ERD. On another side of the phenomenon called “event-related synchronization”
(ERS), the amplitude of µ rhythm and the β rhythm of EEG signal increases.

Subjective consciousness elicits MI-based EEG, an endogenous evoked activity [33]. It
depicts the dynamic process of emotional thought from conception to completion. Similarly,
related research in sports rehabilitation suggests that MI training can aid in nerve healing
and regeneration of motor nerve routes. As a result, investigating MI-based EEG signals’
processing and use are critical. The difficulty is that EEG and physiological phenomena are
more complex than absolute motion, making them harder to detect and treat.
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2.2. EEG Pre-Processing and Artifact Removal Techniques

Two crucial phases in EEG signal analysis are EEG pre-processing and feature ex-
traction. Pre-processing techniques aid in the removal of undesirable artifacts from the
EEG signal, improving the signal-to-noise ratio. By isolating the noise from the actual
signal, a pre-processing block aids in increasing the system’s performance. Following that,
a feature extraction block aids in retrieving the signal’s most essential features. These
characteristics will help the decision-making mechanism get the intended result.

The electroencephalogram (EEG) helps detect brain activity and behavior. However,
artifacts in the recorded electrical activity will always impact the processing of the EEG data.
As a result, developing ways to recognize and extract clean EEG data during encephalogram
recordings is critical. Several approaches for removing artifacts have been proposed.
However, artifact removal research remains a work in progress [34].

The paper is organized as follows: Section 2 gives the background of EEG channel
techniques. Section 3 defines the different channel selection methods for motor imagery
datasets. Section 4 gives a brief introduction to datasets. In Section 5, we discussed the EEG
channel selection techniques in detail. We discuss which techniques are good for different
MI datasets Section 6. Finally, the conclusion is presented in Section 7.

The present literature review is drawn from well-known databases such as Web of
Science (Clarivate) and Scopus (Elsevier). Keywords and queries from credible search
engines and databases were assigned to the downloaded articles. The following keywords,
for example, were used: EEG channel selection in motor imaging is followed by particular
factors to highlight, such as datasets from BCI contests.

Each analysis collected was carefully chosen for this study’s benefit and analyzed to
contribute to the literature in this field. The majority of the articles published between 2010
and 2022 were copied. However, specific previously published papers that appear to be
worth discussing are included. Articles that did not fall within the scope of the current
study were not considered.

3. Motor Imagery EEG Signal Channel Selection Techniques

Because EEG signal-gathering equipment is now widely available, BCI based on EEG
has become a popular subject for study in recent decades. Since we can capture brain
activity data with many channels, EEG equipment is cost-effective compared to other
approaches. Researchers can create ways to identify the best channels because there are
so many of them. These algorithms are intended to reduce the calculation time, increase
classification accuracy, and select the best channels for a specific application or activity.
The MI data categorization channel selection task is the subject of this review.

The EEG channel selection methods were taken from feature selection algorithms
published in the literature. Feature selection chooses the best subset of features, whereas
channel selection employs these methods to choose a channel. After selecting the best
channel set, the features are extracted for categorization. On the other hand, the best
feature set is fed straight to the classification algorithm in feature selection. The collected
features of an optimum channel subset cannot produce good results when selecting a
filter channel. To evaluate the credibility of a feature subset, a criterion is used. Since the
number of functions is similar to the size of the signal, larger signals have more features.
The discovery of an optimal subset is a complicated problem called the non-deterministic
polynomial-time (NP) [35].

Our primary purpose is to gain insight related to the use of design methodologies in
the development of EEG channel solutions for BCI-based services. Our bottom-up approach
for collecting sample articles took a multi-disciplinary perspective. Rather than identifying
particular journals, major online databases were selected to source the articles. Figure 1
illustrates the entire sample collection and analysis process.

As illustrated in Figure 2, most feature selection methods have two steps. A heuristic
search strategy such as full search, random search, or sequential search is employed to
select assessment features during the sub-set production stage correctly. Each new subset
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of applicant features is reviewed, and its results are compared to the first-best, depending
on the classification accuracy.

Figure 2. Feature Selection.

If the newly selected features outperform the prior one, the new contender will be
promoted to the position of the previously selected feature. The process of producing and
assessing features is continued until a stop criterion is fulfilled.

3.1. Common Spatial Pattern (CSP) Based Algorithm

In this section, we give a brief introduction to CSP methods.

3.1.1. Common Spatial Pattern (CSP)

The classical CSP diagonalizes the two covariance matrices concurrently [36]. Let
X ∈ RM×N denote a matrix of EEG signals that have been observed, where the channel
number is M and the samples are denoted by N. The classic CSP problem is stated as follows:

max
w∈RM

=
wTc1w
wTc2w

, (1)

where w is a spatial filter coefficient, Ci(i = 1, 2) indicates a single-class covariance matrix.
Generally, the generalised eigenvalue decomposition (EVD) can handle this problem.

C1w = λ(C1 + C2)w, (2)

where λ is an eigenvalue of C1 and C2. Moreover, M eigenvectors are generalizations
obtained by solving Equation (2). In practice, we use the first r eigenvectors {wi}r

i=1
and the last eigenvectors r and {wi}r

i=M−r+1 as spatial filters, if the eigenvalues {λi}M
i=1.

They are organized according to their size in a non-ascending way. We ultimately define
W = [w1, . . . , wr, wM−r+1, . . . , wM]. These issues led to the choice to spread the spatial
filters of the CSP, focusing on a few channels with significant class variations and avoiding
channels with low or irregular noise or artifact variations. The rows of the CSP projection
matrix assigns uniform channel weights to maximize discrepancies between two EEG
signal types. Therefore, the vectors of the source distribution can be considered the CSP
space filters.

3.1.2. Sparse CSP

Due to classic CSP inadequacies, several researchers aim to integrate sparsing behavior
with conventional CSP to discover and eliminate highly noisy or interfering channels. Given
w’s sparsity k, i.e., the number of nonzero items in w. The sparse CSP problem is stated
as follows:

max
w∈RM

wTc1w
wTc2w

s.t ‖w‖0 = k. (3)

The ‖.‖0 is the Euclidean distance and the problem can be converted into Equation (2)
typical problems if k channels are specified. Where C1,k and C2,k are the k × k sub-matrices
of C1 and C2. However, this is generally impractical. To tackle such a problem, further
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develop forward selection (F.S.), reverse elimination (R.E.), and recursive weight removal
(RWE) [37].

3.1.3. Regularized CSP

A regularized CSP (RCSP) approach is recommended to regularize the covariance
matrix estimate in CSP extraction. Regularized covariance-matrix estimation is employed
in the Regularized CSP algorithm in RCSP by applying the regularization technique pre-
sented in the general learning concept [38,39]. The CSP algorithm is regulated in a small
sample environment (SSS). There are two regularization parameters used in [38]. The first
regularization parameter orients the reduction of a specific subject covariance matrix to a
more general covariance matrix to lower the estimated variance. This is based on the [39].
The second parameter of regularization limits the reduction of the sample-based covariance
estimate in the direction of a scaled identification matrix to the bias due to the restricted
number of samples. In addition, the challenge of determining regularization parameters
for RCSP must be solved. On the other hand, the number of samples in SSS may not be
enough for regularization parameters to be determined by the approach, which is used
commonly [38]. Consequently, the tensor object recognition aggregation technology is em-
ployed to identify the regularization parameters in the EEG signal classification using RCSP
that aggregates various regularized CSPs to generate a solution based on an ensemble [40].

3.2. Correlation Based Algorithm

The study helps to choose highly corresponding EEG channels for each patient against
one reference channel without affecting classification accuracy. An individual channel
sub-set provides a more efficient classification while lowering the computing complexity
and time.

3.2.1. Correlation Coefficient

Spectral entropy is a theoretically describable measure of signal disorder: the corre-
lation coefficient of spectral entropy of motor imaging was employed to identify series
channel groups. The Filter Bank Common Spatial Pattern (FBCSP) algorithm assessed the
performance of the channel groups.

H(E) = −
N

∑
i

log10 p(Ei). (4)

The probability is Ei, where E = E1, E2, . . . , EN is the signal in the P(Ei) time domain.
The algorithm calculates the signal of each layer based on the autoregression model. This
investigation uses the correlation coefficient approach to picking channels using the “in-
terested class vs. the rest” strategy. EEG is divided into two groups, s1 and s2, which
includes the s1 interest group. H1 and H2 are spectral entropy identified to match s1 and s2.
“Spectropic entropy correlation” is the relationship between the two groups s1 and s2. This
is a measure of how tightly these two groups, represented as

ρ(H1,j, H2,j) =
cov(H1,j, H2,j)

σH1,j σH2,j

, (5)

where σH1 is the standard deviation of the spectral entropy, and j is the index of the channel.
We calculate the spectral entropy for each channel in all frequency ranges for selection by
employing a total square correlation coefficient.

P(H1,j, H2,j) =
N

∑
i=1

ρ2(H1,j, H2,j), (6)
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where a spectral entropy estimate of i = 1, 2, . . . , N is the number of frequency bins.
The channels are chosen based on the channels’ ρ(H1,j, H2,j) correlation coefficient rating.
The channels picked for Ci. It will be added to the FBCSP algorithm.

3.2.2. Pearson’s Correlation Coefficient (PCC)

The Pearson correlation coefficient is a statistical association or linear dependence
between two or more random variables [41]. It is defined as follows:

ρ(X, Y) =
1

n− 1

n

∑
i=1

(
Xi − X̄

σX
)(

Yi − Ȳ
σY

). (7)

when the two variables are X and Y, n is the number of observations, X, and Y is the means
of both σX and σY. These are the default deviations between the two. In this example,
the value of ρ(X, Y) is 0 to 1, which shows that the relationship to the value is low to high.
The correlation coefficient is measured for each pair of EEG channels.

3.2.3. Cross-Correlation Based Discriminant Criterion (XCDC)

Signals from the same MI task class should have similar functionalities in the MI EEG
classification procedure and vice versa. As a result, we may evaluate a channel’s discrimi-
nating performance by comparing signals from different classes. They suggested a signal
cross-correlation-based channel selection approach based on this premise. Yu et al. [21]
described the details about XCDC.

3.2.4. Canonical Correlation Analysis-Channel Selection (CCA-CS)

The association of multivariate functional groups with target classes can be evalu-
ated by CCA [42]. The CCA focuses on the different MI-based tasks and distinguishes
between different movements. The maximum linear correlation, i.e., CCA (SP, Y), is used
to determine the connection between the SP channel group and the Y goal class vector.

3.3. Sequential Based Algorithm

These algorithms examine the functional area in its entirety to identify the top features.
The most common strategy was sequential function selection (SFS), and adding the function
with the highest value for the target function was initially empty [43]. The additional
features and evaluation of the new subset are in the next step. The SBS sequence was
the reverse. The SBS reversed SFS, started with all the features, and deleted those that had
the most negligible effect on the performance of the target function [44].

3.3.1. Sequential Floating Forward Selection (SFFS)

The sequential forward floating selection (SFFS) was a more flexible approach, adding
an update step next to SFS [45]. After deleting one characteristic from the subset, the back-
tracking phase analyzed the new subset. If the deleted feature maximized the objective
function, the algorithm returned to the first stage using the new reduced features. If not,
proceedings would continue until the number of features or performances it wishes to
achieve. The nesting effect was significant in the SFS and SFFS algorithms. There could
be two significantly correlated features because they offer the best precision in the sub-
set. The EEG electrode channels were chosen using sequential floating forward selection
(SFFS) [46]. The selection criteria were a combination of optimizing accuracy and mini-
mizing costs. To distinguish between channel combinations, CCA accuracy was utilized.
It was a process that was repeated. SFFS could add or delete electrodes from the existing
set at each cycle and iterate until the desired number of channels was chosen. When the
number of characteristics is excellent, the SFFS is time-consuming. A selection function
can be observed in adjacent channels based on the distribution of channels in the cerebral
cortex. The whole set cannot select or delete multiple channels from the SFFS improvement
at once [46]. The critical distinction between SFFS and improved SFFS approaches is that



Bioengineering 2022, 9, 726 9 of 32

improved SFFS methods have fewer features. The amount of time it takes to find anything
might be drastically decreased.

3.3.2. Generalized Sequential Forward Selection (GSFS)

The GSFS approach is used to identify the optimal channels in this work [47]. For starters,
all channels are given their frequency band characteristics and their CSP. Then, in the first
phase, two channels with the best performance combined are chosen, using the classifier
accuracy as a criterion for channel selection. The channels chosen for the previous step are
added to the following channels, and the system’s classification performance is calculated.
This is repeated for each channel until the optimal channel combination is found.

3.3.3. Bhattacharyya Bound and Sequential Forward Search (B.B. and SFS)

The Bhattacharyya standard spatial model (CSP) bond is employed to create the
ideal index, and a rapid sequential forward search obtains the optimum channel combina-
tion [47].

3.4. Binary Particle Swarm Optimization Based Algorithm

In 1995, the PSO algorithm was devised by Kennedy and Eberhart [48]. It is based on
a bird social comportment simulation. Particles are defined as a possible solution for the
search space and are flown throughout a hyperdimensional search room. The particles go
across the search space at a certain velocity. The discoveries and prior experience of the
other school members may assist individual swarm members. The current and preceding
solutions are considered perfect when each portion looks for an optimal solution in the
search space. Therefore, the speed of every particle depends on its own best location and
its neighbors’ best solution. Each particle searches for the optimum solution and updates
using the fitness value. Gbest is the best solution for swarming, and pbest is the most
excellent particle option. Finally, the swarm converges to inappropriate places. The position
and speed of the particles are updated as follows:

vi
k+1 = wvi

k + c1r1(pi
k + xi

k) + c2r2(gbest− xi
k) (8)

xi(t + 1) = xit + vi(t + 1), (9)

where i refers to every particle. c1 is cognitive and c2 is a social element. c1, c2, which
checks how far a single test particle is going, is the constant value. W is an inertial weight
that limits the previous speed. r1, r2 Random values between 0 and 1 are arbitrary. When
c1 > c2 updates speed weights on the forces from a tendency to return to its best possible
solution so far, which is much greater than the force of attraction of the best solution in
the neighborhood.

PSO has a discrete version called BPSO [49]. The velocity is updated similarly to PSO.
The only difference between PSO and BPSO is that in BPSO, the particles are either 0 or 1,
and the update rule for each position is different. The following are the updated equations:

S(v) = (1 + e−v)−1 (10)

xi
k+1 = 1 i f τ < S(vi

k+1) (11)

xi
k+1 = 0 i f τ > S(vi

k+1), (12)

where τ is between 0 and 1, a random value, the channel space is considered the solution
space, and the value of each portion can be 0 or 1. PSO must be altered (which will be
generically called MOPSO). MOPSO is an unobtrusive binary version, while BMOPSO is
an unobtrusive binary MOPSO version. Figure 3 describes the summary of the channel
selection algorithm used in this paper.
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Figure 3. Different EEG channel selection techniques.

4. Motor Imagery EEG Datasets

Electrodes represent the EEG signal acquisition unit, whether invasive or non-invasive.
The datasets and channels used in this empirical investigation are described first in this
section. We then go over our open-source MI classification channel selection architecture in
depth. There were 23 separate MI-based EEG datasets used in the examined studies, most
of which are publicly available, and some are private.

The first to introduce the BCI Competition III Datasets IVa was Fraunhofer FIRST,
the Intelligent Data Analysis Group (Klaus-Robert Müller, Benjamin Blankertz, and the
Charite-University Medicine Campus Franklin, the Neurology Department of the Neuro-
Gabriel Curio Group (Gabriel Curio). BCI Competition III dataset IVa contains EEG signals
from five right-hand and right-foot MI subjects. 280 EEG tests were recorded from 118
electrodes placed in comprehensive international 10–20 systems for every subject at a
sampling rate of 1 kHz. The experiment was carried out according to a classical paradigm.
A visual index of three tasks begins each trial (left hand, right hand, and right foot).
Subsections were invited before a random length between 1.75 and 2.25 s to relax for 3.5 s
to perform the corresponding MI task.

Dataset 1 of BCI competition IV of seven healthy topics was recorded. Two MI classes,
including left hand, right hand, and foot, have been selected for each subject. A set of EEG
signals from 59 channels is available for each subject. Each subject’s dataset consists of
two parts: data for calibration and analysis. We select calibration data from subjects a, b, d,
and e for our experiments to check algorithms containing 200 experiments.

Dataset IIIa BCI Competition III was provided by the Graz University of Technology’s
Laboratory of Brain-Computer Interfaces (BCI-Lab) [50]. Over 60 channels with a sampling
rate of 250 Hz of three participants, k3, K6, and L1, were recorded in dataset IIIa of BCI
Competition III. The first 2 s were used as a pre-stimulation baseline in each trial, which
instructed participants to rest. An acoustic stimulus is presented in t = 2 s, with a fixing
cross. From t = 3 s, there has been an arrow pointing left, right, up, or down for 1 s, and a
left, right hand, tongue, or foot motion was asked to imagine until the cross has disappeared
at t = 7 s.

The CLA dataset includes a left/right paradigm for the Classical (CLA) MI tests. EEG
signals in the standard international 10–20 system with two ground electrodes (A1 and A2)
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and a syncing channel that does not contain actual EEG data are recorded at a sampling
frequency of 200 Hz from 19 electrodes. A visual signal with the left, right, or passive
response is displayed on a screen at the beginning of each test, with a response from MI
required by the subject.

Commercial dry and wet electrodes have been utilized to collect EEG data in various
BCI applications and investigations [39,40]. Commercial dry electrodes, on the other hand,
due to their high contact impedance, cannot be used in several applications that demand
a high-quality signal. These datasets differ in terms of the number of electrodes, subjects,
and total trials, among other things; Table 1 summarizes the datasets. Figure 4 details the
percentage of different datasets used in this article.

Figure 4. Percentage of different datasets.

Table 1. Motor Imagery EEG Datasets.

Motor Imagery Datasets Number of Channels URL

Dataset IVa BCI Competition III 118 https://www.bbci.de/competition/iii/ (accessed on 27 October 2022)
Dataset 1 BCI Competition IV 59 https://www.bbci.de/competition/iv/ (accessed on 27 October 2022)
Dataset IIIa BCI Competition III 60 https://www.bbci.de/competition/iii/ (accessed on 27 October 2022)
Dataset IIa BCI Competition IV 22 https://www.bbci.de/competition/iv/ (accessed on 27 October 2022)
MI experiments 32
BCI-FES training platform 64
Lower limb MI dataset 19
Dataset Ia BCI Competition II 6 https://www.bbci.de/competition/ii/ (accessed on 27 October 2022)
Amyotrophic Lateral Sclerosis patient 40
Chinese Academy of Science Data 64

High Gamma Dataset 44 https://github.com/robintibor/high-gamma-dataset (accessed on 27
October 2022)

Dataset III BCI Competition IV 10 https://www.bbci.de/competition/iv/ (accessed on 27 October 2022)

Data Acquisition was conducted at NTU 31 https://dr.ntu.edu.sg/handle/10356/141527 (accessed on 27 October
2022)

MI recognition 60
MI Mental Task 39
MI experiment by Tsinghua University 32
Stroke patients EEG dataset 27
Amyotrophic lateral sclerosis (ALS) 33

(CLA) left/right hand MI dataset 19 https://openbci.com/community/publicly-available-eeg-datasets/
(accessed on 27 October 2022)

G.Tech Gugar Technologies with BCI2000 20 https://www.gtec.at/ (accessed on 27 October 2022)
EEG Dataset 64
MI Movement 22
Dataset Ib BCI Competition II 7 https://www.bbci.de/competition/ii/ (accessed on 27 October 2022)

5. Motor Imagery EEG Classification for Channel Selection

The MI test is crucial for motor injuries in patients. The EEG signals may be used
for this kind of analysis. The channel selection may entail determining which channels
are most relevant to a specific cognitive activity while decreasing the overall computing
complexity of the system.

https://www.bbci.de/competition/iii/
https://www.bbci.de/competition/iv/
https://www.bbci.de/competition/iii/
https://www.bbci.de/competition/iv/
https://www.bbci.de/competition/ii/
https://github.com/robintibor/high-gamma-dataset
https://www.bbci.de/competition/iv/
https://dr.ntu.edu.sg/handle/10356/141527
https://openbci.com/community/publicly-available-eeg-datasets/
https://www.gtec.at/
https://www.bbci.de/competition/ii/
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5.1. Methods Based on CSP Variants

Common Spatial Pattern (CSP) filters are frequently employed to examine MI-EEG in
the literature. The CSP can maximize the variance of two classes (Koles, Lazar, and Zhou
1990). Chen et al. [51] adjusted the CSP approach to extract the correct number of channels.
The approach determined which channels in the 43 frequency bands had the greatest
impact on the classification for each subject. Each frequency band’s CSP characteristics
were computed, and all frequency bands’ CSPs were connected in series. The channel
selection technique is independent of the classification results based on the similarity
measurement due to the shorter calculation time and sensitive feedback. The threshold-
based channel selection approach revealed that a subset of channels could produce the best
results for the CSP and SVM graders. In the experiment, the Dataset IIa BCI Competition
IV, Dataset IIIa BCI Competition III, and Dataset IVa BCI Competition III were used, and an
SVM classifier was used for classification, with an average accuracy of classification 77.82%,
86.02%, and 86.86% simultaneously [51]. CSP weights to assess whether they could be used
for EEG sensor selection compared to regularized procedures. Six electrodes out of 60 are
chosen for filter-based function extraction and have attained an average accuracy of 83.70%
over LDA [52].

Tam et al. [53] select channels by classifying the CSP or CSP coefficients. For two
classes, the CSP generates two filters. The CSP employed these coefficients to produce
weights for new filtered signals on other channels. When the weight of a particular electrode
was significant, it was supposed that the filtered signal contributed further and that the
electrode was, therefore, considered essential. The first electrode was the most outstanding
value from the sorted coefficient of the class 1 filter. The second channel was supplied by
the sorted coefficients of filter class 2. The process is used if the channel has been selected
until a new channel is chosen to reach the next most crucial coefficient in the same class.
The data were gathered from five chronic stroke patients during 20 MI work sessions
using a 64-channel EEG headset of 250 Hz, each on a particular day [54]. The proposed
approach showed an average classification of 90% of Fisher Linear Discriminant (FLD)
classification with electrodes ranging from 8 to 36, compared to 64. The best categorization
for 22 electrodes was 91.70%. The recommended CSP-R-MF method focused on different
changes in MI brain zones in different frequency bands [55]. It used the CSP-rank approach
to pick channels for each frequency band automatically. Dataset 1 BCI Competition IV
and Dataset IVa BCI Competition III attained an average accuracy of 82.48% and 77.75%,
respectively, with the LDA classifier. The regularization of the CSP approach proposed the
selection of 24 channels out of 118 with a 93% average accuracy [56].

On Dataset IVa BCI Competition III, a comparison was made with five existing channel
selection algorithms to determine the creditability of the proposed methods. The RCSP
algorithm could shortlist the 24 channels and achieve a 93% accuracy. RCSP outperformed
SCSP by 12.22%, CSP-R-MF by 15.25%, CSP with l1 norm by 3.32%, and CSP by 6.14%,
according to the previous discussion. Table 2 shows the summary of the methodologies of
CSP channel selection for EEG applications.

The regularization parameter regulates the number of selected channels in the sug-
gested SCSP optimization problem [1]. As a result, changing the regularization value
results in a different number of selected channels. The results showed that the suggested
SCSP method that used the first criterion achieved the best 80.78% grading accuracy by
removing most of the channels and 22 out of 118 channels. The Robust Sparse CSP (RSCSP)
solution to resolve BCI channel session selection difficulty was suggested by [56]. Based
on previous experience, the pre-selected channel subset was picked. A robust minimal
covariance determinant (MCD) estimate that contained an outlier’s resistant parameter
was replaced in the SCSP covariance matrix.
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Table 2. Common spatial pattern (CSP)-based techniques for EEG channel selection of motor imagery
EEG channel selection.

Techniques Channel Selection
Strategy Classifier Accuracy (%)

No. of Selected
Channels/Total No.

of Channels
Dataset

Meng et al.,
(2009) [54] CSP with l1 norm SVM 89.68 20/118 Dataset IVa BCI

Competition III

Tam et al., (2011) [53] CSP Rank Fisher Linear
Discriminant (FLD) 91.7 22/64 BCI-FES

training platform

Arvaneh et al.,
(2011) [1]

Recursive Fearture
Elimination using
Sparse CSP (SCSP)

SVM

81.63 (SCSP1), 79.09
(SCSP2)

82.28 (SCSP1), 79.28
(SCSP2)

13/22
9/22

23/118
8/118

Dataset IIa BCI
competition IV
Dataset IVa BCI
Competition III

Arvaneh et al.,
(2012) [56]

Recursive Fearture
Elimination using

Robust Saparse CSP
(RSCSP)

SVM 70.47 8/27 Stroke patients
EEG dataset

Saha et al., (2016) [57] RCSP WC Classifier 93 24/118 Dataset IVa BCI
Competition III

Masood et al.,
(2017) [52] CSP Weights LDA 83.70 6/60 Dataset IIIa BCI

Competition III

Feng et al., (2019) [55] CSP-R-MF LDA 82.48
77.75

24/59
30/118

Dataset 1 BCI
Competition IV
Dataset IVa BCI
Competition III

Chen et al.,
(2020) [51] CSP SVM

77.82
86.02
86.86

15/22
24/60

30/118

Dataset IIa BCI
Competition IV
Dataset IIIa BCI
Competition III
Dataset IVa BCI
Competition III

5.2. Correlation-Based Techniques

The Pearson Correlation Coefficient (PCC) approach was introduced, which calculates
the relationship of EEG signals to highly correlated EEG channels for a specific patient with
no sacrificing accuracy in classification [58]. A total of 280 studies were conducted on each
of these five participants, with an EEG of 118. A reference for extracting characteristics
for one of the three channels, C3, C4, or Cz, is utilized, and its correlation with the other
channels is calculated. It is worth noting that the correlation of 0.7 was discovered following
a preliminary analysis that used C3, C4, or Cz as a reference channel result. The average ac-
curacy for Dataset IVa BCI Competition III was 74.52% using the LDA classifier with 30 out
of 118 channels and 84.01% using 39 out of 60 channels for Dataset IIIa BCI Competition III.

Jin et al. [59] describes a correlation-based (CCS) approach for selecting channels
with more associated information. The objective is to improve the performance of the
BCI classification based on MI. In addition to extracting valuable characteristics, a unique
regularized common spatial pattern (RCSP) technique is applied. The contribution of this
study is to propose a filter based on an analysis of correlations to reduce irrelevant channels
and extract information via RCSP from selected channels. Conduct testing to test the
successful use of the given methodologies through training the Radial Basis Function (RBF)
kernel support vector machine (SVM) classifier. This approach (Jin et al., 2019) achieved an
average accuracy of 81.60% for Dataset 1 BCI Competition IV with 30 out of 59 channels,
87.40% for Dataset IVa BCI Competition III with 42 out of 118 channels, and 91.90% for
Dataset IIIa BCI Competition III with 19 out of 60 channels.

The new channel selection approach, XCDC for MI EEG classification [21]. The tech-
nique suggested selecting the most discriminating channels based on the cross-relation of
signals from repeated EEG tests. XCDC is quadratic in complexity. To obtain a discriminat-
ing score of the channel, the correlation between every pair of studies must be calculated to
result in quadratic complexity. Only the specified channels, decreased number of channels,
configuration complexity, and computational costs will be necessary for future sessions
or applications. Wang et al. [42] submitted an SVM-CCA-CS algorithm and examined the
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optimum CS on the motor screen for multi-channel EEG signals. The initial extraction
of the Wavelet Packet Coefficients and features, the weights of each feature group were
determined, and CCA-CS predicted the starting weight of each channel. The original
channel weights were subsequently changed based on the current accuracy of the SVM
classification. The results show that our proposed method can select the most ways to
achieve classification accuracy, indicating that EEG signals from some ideal ways can
also ensure classification accuracy. The initial 30 channels achieve an average accuracy
of 80.03%, accounting for only 21.20% of the 118 acquisition channels. Yang et al. [43]
applied a correlation coefficient channel selection approach ranking to determine the ideal
channel combination and enhance classification performance by 1.25% to 8.22%. Using BCI
technology, both healthy and ALS individuals increase their skills. The analysis shows that
positioning the selected channels ensures that the participants coincide with the location of
one or both motor cortices. These people may perform MI tasks by engaging their motor
cortices consistently throughout tests. The summary of correlation-based channel selection
techniques for MI-based EEG applications is shown in Table 3.

Table 3. Correlation-based techniques for motor imagery EEG channel selection.

Techniques Channel Selection
Strategy Classifier Accuracy (%)

No. of Selected
Channels/Total No.

of Channels
Dataset

Yang et al., (2018) [43] Correlation
Coefficient

Filter Bank Common
Spatial Pattern

(FBCSP)
78.71 13/40

Amyotrophic Lateral
Sclerosis (ALS)

patient

Jin et al., (2019) [59] Correlation Based
Channel Selection SVM

81.6
87.4
91.9

30/59
42/118
19/60

Dataset 1 BCI
Competition IV
Dataset IVa BCI
Competition III
Dataset IIIa BCI
Competition III

Park et al., (2020) [60]
Correlation

coefficient and fisher
score (CCFS)

SVM 88.62
84.4

9/118
8/59

Dataset IVa BCI
Competition III
Dataset 1 BCI

Competition IV

Gaur et al.,
(2021) [58]

Pearson correlation
coefficient (PCC 0.7) LDA 84.01

74.52
39/60

35/118

Dataset IIIa BCI
Competition III
Dataset IVa BCI
Competition III

Wang et al.,
(2021) [42]

Canonical correlation
Analysis-Channel

Selection (CCA-CS)
SVM 80.03 30/118 Dataset IVa BCI

Competition III

Yu et al., (2021) [21]
Cross-Correlation

based discriminant
criterion (XCDS)

Convolutional
Neural Network

(CNN)

99.64
99.28

71/118
15/19

Dataset IVa BCI
Competition III
(CLA) left/right
hand MI dataset

5.3. Sequential Based Techniques

Pudil et al. [44] used sequential floating forward selection (SFFS) to choose the EEG
electrode channels. The selection criteria were a combination of optimizing accuracy and
minimizing costs. Distinguishing between channel combinations does not modify the
subject’s accuracy and repeats the process. SFFS could add or delete electrodes from
the existing set at each cycle. SFFS also iterated until the desired number of channels
was chosen.

SFFS deletes the most useless characteristic dynamically from the chosen function
subset and inserts the most significant characteristic from other functionality into the
chosen feature subset. The SFFS can therefore be selected for the channel. However, this is
a complex strategy, though, especially with many features.

Reunanen et al. [45] offers the modified SFFS to pick the ideal channels to overcome
this issue. The most senseless functionality is dynamically eliminated from the specified
sub-set of features, and the most significant feature is inserted from the rest into the selected
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feature subset. The SFFS is hence suited for selecting the channel. This method is quite
demanding, though, mainly if there are many features.

Radman et al. [61] chose the optimum channels using generalized sequential forward
selection (GSFS). To begin, all channels’ frequency bands, and CSP characteristics are
determined. Then, in the first phase, two channels with the best performance combined are
chosen, using the classifier accuracy as a criterion for channel selection. The channels chosen
for the previous step are added to the following channels, and the system’s classification
performance is calculated. For each channel, this is performed until the best channel
combination is identified. The GSFS technique improves its mean accuracy compared to
the case in which all channels are employed.

He et al. [47] introduced a Bhattacharyya bound-based sequential forward-searching
technique. The Bhattacharyya border of a common spatial pattern is the optimal index,
and a quick, sequential forward look is used to identify the ideal channel combination. This
approach requires the preliminary treatment of EEG using a standard average common
average reference (CAR) to remove artifacts and noise, followed by portability filtering
at 7 to 30 Hz frequencies (containing mu and beta rhythms) and employing 3-fold cross-
validation for comparison with Bhattacharyya. A naive Bayes (N.B.) classifier labels the
CSP features retrieved from the channels chosen using this technique in each fold. The CSP
feature vector has a dimension of 6. The accuracy of the classification curves is three
times based on Bayes 3-fold cross-validation, each of which consists of randomly selected
specimens. Repeat the cross-validation approach ten times for each participant. Table 4
summarizes sequential channel selection approaches for EEG engine imaging applications.

Table 4. Sequential-based techniques for the selection of motor imagery EEG channel selection.

Techniques Channel Selection
Strategy Classifier Accuracy (%)

No. of Selected
Channels/Total No.

of Channels
Dataset

He et al., (2009) [47]

Bhattacharyya bound
and Sequential

forward search (BB
and SFS)

Naive Bayes (NB)
Classifier 96.25 30/59 Dataset 1 BCI

Competition IV

Meng et al.,
(2011) [62]

Sequential floating
forward selection

(SFFS)
SVM 78.3

84.2
20/59

28/118

Dataset 1 BCI
Competition IV
Dataset IVa BCI
Competition III

Qiu et al., (2016) [46] Improved SFFS SVM 78
83.3

18/59
30/118

Dataset 1 BCI
Competition IV
Dataset IVa BCI
Competition III

Radman et al.,
(2019) [61]

Generalized
Sequential forward

selection (GSFS)

Probabilistic classifier
vector machine

(PCVM)
89 11/59 Dataset 1 BCI

Competition IV

5.4. Particle Swarm Optimization Based Techniques

An MI-based brain/computer interface is a device that classifies EEG signals gained
out of the imagination of limb movement to transform a person’s intention into a control
signal. We do not know which positions are engaged or not in the new paradigm. Using
as many channels as possible is a straightforward solution. Other issues arise because of
the use of many channels. Many channels pose an over-fitting problem when utilizing a
common spatial pattern (CSP)—an EEG extraction approach. This technique for medical
analysis is very challenging to use. We used particle swarm optimization on CSP [63] to
solve these issues. 7 healthy people participated in the experiment, with 59 electrodes,
and dataset 1 BCI dataset IV was utilized. Two were chosen from the three MI classes
for each subject (left hand, right hand, foot). The accuracy of each subject was measured
five times for each channel selected by BPSO, and 52% improved with the recommended
strategy for optimal channel selection overall channels. The accuracy was 20% more
excellent with 30 selected channels than all channels.
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Multi-channel EEG signals require a complex and unpleasant recording process as the
number of channels increases and affects classification accuracy. To solve this issue, we
introduced a unique approach to channel reduction called binary multi-objective particle
swarm optimization (BMOPSO), which optimizes the number of selected channels and
mutual information [64]. Cross-validation of 10 × 5 has been used to obtain the classification
precision rate for classification performance assessment. The k-NN method has an accuracy
rate of 83.40%, slightly higher than the SVM algorithm, and selects eight channels from
22. Table 5 shows the summary of strategies for PSO-based channel selection for MI-based
EEG applications.

Table 5. Particle swarm optimization-based techniques for motor imagery EEG channel selection.

Techniques Channel Selection
Strategy Classifier Accuracy (%)

No. of Selected
Channels/Total No.

of Channels
Dataset

Kim et al., (2013) [63]
Binary particle

swarm optimization
(BPSO)

SVM 72.94 25/59 Dataset 1 BCI
Competition IV

Wei et al., (2015) [64]

Binary
Multi-Objective
Particle Swarm
Optimization
(BMOPSO)

K Nearest Neighbor
(K-NN) 83.4 8/22

Motor Imagery (Left
hand, Right hand,
Foot) Movement

5.5. Other Methods

Shapelet-transformed EEG Channel Selection (StEEGCS) was introduced to select EEG
channels [25]. EEG is a brief sequence representing the original EEG data and divides EEG
into groups according to its distance from the EEG forms. Shapelet is a time series subse-
quence often used in series-time data extraction [25,65–67]. On the other hand, the EEG
form is a continuous EEG subsequence that is much shorter and inherits the structures
of the original EEG. They found, in comparison to the baselines of 10 EEG datasets, that
three EEG channels, the three with a length of 30, can select the most appropriate EEG
and yield the most appropriate classification of EEG channels and the better classification
performance of the EEG channels selected so that they set the best EEG channels. The opti-
mization problem by jointly learning the optimal EEG shapelets S, channel contributions π,
and the optimal hyperplane W, simultaneously,

min
S,π,W

F =
N

∑
i=1

V

∑
v=1

+
λW
2
‖W‖2 +

λS
2
‖A‖2.

Examine the impact of the StEEGCS-selected channels on EEG classification accuracy
using SVM first. The results show that the accuracy of the sampled EEG channels on all EEG
datasets increases typically with three shapelets of a length of 30. The channels selected by
StEEGCS further reveal that the accuracy of EEG grading for every EEG dataset improves
by 9.5% compared to non-selective channels (i.e., all channels). StEEGCS aims to locate
separate EEG forms, which are the original EEG data, to give the SVM classification more
usable EEG patterns. In other words, when shapelet-transformed StEEGCS is integrated
with logistic loss, it eliminates duplication in EEG data and strengthens significant patterns
for classifier modeling. In the meantime, the performance of the SVM classifier improves
compared to non-selected EEG channels as the number of picked EEG channels decreases.
The computational complexity of StEEGCS is O(Iiter(nckc2l3 + nvck3l3)), which indicates
a significant number of iterations(or time) to identify the ideal duration and number
of shapelets. The time consumption of StEEGCS is predominantly driven by optimum
format learning. k denotes the number of shapelets that need to learn; v denotes the
number of EEG classes; c denotes the number of EEG channels; l is the maximum length
of shapelets. The study of optimal channel selection and the neural network weight end-
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to-end through the Gumbel–SoftMax technique on the EEG channel selector layer [24,68].
In conjunction with a baseline EEG selection mechanism tailored to this job, the Gumbel-
SoftMax method is proposed: mutual information and gullible forward selection with
usefulness measurement. He proposed to use a concrete selector layer to resolve the
EEG channel selection problem from end to end [69]. This method incorporates channel
selection into the model’s training process, addressing its discrete character with categorical
reparameterization. Two different EEG tasks were used for the method’s performance:
motor performance and auditory matching.

A Cohen’s d effect size CSP (E-CSP) based channel selection approach was pro-
posed [70]. The approach filters out channels that do not provide any meaningful in-
formation. First, before determining the effect size of Cohen’s d channel selection, it
decreases the noisy trials for each channel. The noisy tests were removed via the z-score
approach, which computed the distance between each test and the middle. The test was
far from the mean and might be labeled as noisy. Cross-validation was used to determine
the z-score cutoff. For choosing channels, Cohen’s d effect size was used. The distance of
Cohen’s d was established using the following formula:

di =
||C̄1i − C̄2i||

σ
(13)

where,

σ =

(
σ

j
1i − σ

j
2i

)
2

. (14)

Across the selected jth trials, the standard deviation of 1 class of channel i is repre-
sented by jth. C̄ii is the l class average of ith. If the d value was more significant than
δ, the channel was chosen. L = {i : di > δ}; ∀i denotes the set of channels to be used.
The suggested range for δ is [0.01–0.1], calculated using cross-validation. To extract features,
CSP was implemented. To test the algorithm, two datasets were used. The first is from
competition BCI IV, Datasets IIa, and the third is from BCI III, IVa Dataset [71,72]. The SVM
classification outcomes were compared to the CSP techniques of SCSP1 and SCSP2. The re-
sults showed that the algorithm recommended exceeded 3% of other algorithms for a
dataset I on average, with an accuracy of 83.61% on eight channels. For dataset 2, the av-
erage classification precision with 9.20 channels was 85.85%. The results demonstrated
that, compared with earlier procedures, the strategy enhanced classification accuracy while
lowering selected channels.

Parshiva et al. [73] describe an approach to decreasing EEG dimension for MI-BCI
by training each participant to autonomously encode EEG data optimally via an artificial
neural network with a sub-complete, sparse autonomous autonomic encoder. A smaller
fraction (t = 0.5 s and t = 3.5 s) of the MI-based task data for each trial is further evaluated.
The average rating accuracy of only 13 encoded channels for ten patients is 74.3 ± 8.06%.
Following cross-validation, we see that the independent autocoder has an average rank-
ing precision of 66.64 ± 3.93% with just 11 channels. The research expands automatic
encoder-neural networks in the motorized brain-computer interfaces and demonstrates
that performance increases dramatically when data dimensions are dropped. The changes
in mental tasks (imagination of the left and the right) vs. relaxation times are measured by
Itakura distance (I.D.) [74]. The EEG data were acquired in conjunction with the BCI2000
platform utilizing the g.MOBIlab+ module from G.Tech Guger Technologies [75]. After sta-
tistical tests are performed, channels are selected. The linear discriminant analysis (LDA),
the quadratic discriminant analysis (QDA), and the Mahalanobis Distance (MD) Classifiers
are used to categorize the data on the specific channels. The QDA classification provides
the highest accuracy for classification. Table 4 presents an overview of additional MI-based
EEG channel selection strategies.
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6. Discussion and Guidelines

Selection algorithms and procedures. This article examined MI-EEG methods for
selecting channels with various strategies that considered various parameters for channel
evaluation and search strategies stated in the literature. This review paper provides the
advantages and disadvantages of the various methodologies for channel selection employed
in MI-based EEG applications. The extensively investigated channel selection methods
show that a limited selection of EEG channels with a small quantity of pre-calculation can
be used to attain decent performance metrics. According to the study, the use of a channel
selection technique can reduce the number of channels by up to 80% without significantly
impacting categorization jobs. Reducing the number of channels will minimize computer
complexity and reduce setup time. It enhances the maintenance of the gadget for the
subject well.

The most well-known MI EEG datasets are dataset IVa BCI competition III and dataset
I BCI competition IV; most of the experiments examined employed these two datasets.
Other MI EEG datasets are also accessible, however less frequently used, such as datasets
IIIa BCI competitive III, datasets IIa BCI competitive IV, High gamma, low limb motion,
and patients with Amyotrophic Lateral Sclerosis (ALS). Electrical signals on the scalp vary
according to physiological tasks. One of these distinctions is the frequency range of the
signals associated with specific tasks. Different frequency ranges for dealing with MI tasks
during the analysis process have been suggested in studies. The range was observed to be
within 0.05–200 Hz in the analyzed research, but several studies were conducted at high
frequencies, e.g., the high-gamma dataset. Tables 2–6 summarize the strategies used for
MI-based EEG applications in channel selection, as discussed in Section 5.

Several databases have been used to test these strategies. An extensive investigation
will be required to determine the efficiency of an algorithm in all MI-based EEG applications.
Finally, it was discovered that 12 of the 38 strategies used for channel selection attained
an average accuracy rate of better than 90%. Yu et al. [21] has shown the excellent channel
selection approach cross-correlation-based discriminant criterion (XCDS) with classifier
convolutional neural network (CNN) to achieve the most excellent accuracy of 99.64% and
99.28% on dataset IVa BCI competition III and (CLA) left/right hand MI dataset. This
approach achieves a channel selection rate of more than 50%. This method’s advantage
is that the EEG channels are quantified and classified in MI tasks as necessary, providing
a practical method to select the classification channels of MI BCI systems during the
calibration phases, thus, alleviating computational complexity and configuration difficulty
during subsequent steps, leading to more convenient, real-time BCI systems. It is impossible
to find the optimal subset of channels by assessing any combination. These methods provide
a sorted channel list sequentially or according to a number criterion. This method offers a
helpful way of resolving the two problems: specify reference accuracy and tolerance ratings
in the calibration phase and select the subset with the least number of channels that satisfy
the requirements. In this method, we use all-channel precision to evaluate the tolerance
rates of 5%, 1%, and 0%. However, these two parameters could be arbitrarily identified
according to current application requirements. This method will degenerate to select a
setup with maximum accuracy when the highest accuracy is chosen, and the tolerance
rate is set to 0. The disadvantage of this method, despite the encouraging performance
and efficiency, is how to compare channel ranking methods and choose a subset given
the results. The two central aspects of analysis are statistical, and machine learning/deep
learning analysis upon different datasets as follows:
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Table 6. Other techniques for motor imagery EEG channel selection.

Techniques Channel Selection
Strategy Classifier Accuracy (%)

No. of Selected
Channels/Total No.

of Channels
Dataset

He et al.,
(2013) [23]

Rayleigh coefficient
maximization Based
Genetic Algorithm

Fisher Discriminant
Analysis (FDA)

88.2
89.38

29/118
12/32

Dataset IVa BCI
Competition III
MI experiments

Shenoy et al.,
(2014) [19]

Min. Redundancy Max.
Relevancy (mRMR) SVM 90.77

81.22
10/118
10/22

Dataset IVa BCI
Competition III
Dataset IIa BCI
Competition IV

Das et al.,
(2015) [70] Cohens d effect size SVM 85.85 9/118 Dataset IVa BCI

Competition III

Eva et al.,
(2015) [74] Itakura Distance Method

Quadratic
Discriminant

Analysis (QDA)
96.6 8/20

G.Tech Gugar
Technologies Together

with BCI2000

Liu et al.,
(2017) [26] Fisher’s criterion LDA 93.50 5/33

MI dataset for patient
with Amyotrophic

lateral scelerosis

Joadder et al.,
(2018) [76] Wavelet Energy

LDA
SVM

K-NN

75.6
76

69.9
3/118 Dataset IVa BCI

Competition III

Gurve et al.,
(2019) [77]

Non-Negative Matrix
Factorization (NMF) LDA 96.66 13/19 Lower limb MI dataset

Parshiva et al.,
(2019) [73] Auto-encoder Auto-encoder 77.5 13/31 Data Acquisition

Conducted in NTU

Jin et al.,
(2020) [78]

Bispectrum based
channel selection (BCS) LDA

68.4
76.1
74.9

26/59
24/118
15/60

Dataset I BCI
Competition IV
Dataset IVa BCI
Competition III
Dataset IIIa BCI
Competition III

Dai et al.,
(2020) [25]

Shapelet Transform EEG
Channel Selection (STCS) SVM

90.75
77.7

82.63
69.39
77.31
74.4
75.01
70.88
68.55
75.76

4/6
2/7

2/59
16/59
16/59
9/22

11/22
8/22
3/10
7/10

Dataset Ia
Dataset Ib

Dataset IV 1 calib 1a
Dataset IV 1 calib 1b
Dataset IV 1 calib 1c

Dataset IV 2a s1
Dataset IV 2a s2
Dataset IV 2a s3
Dataset IV 3 s1
Dataset IV 3 s2

Zhang et al.,
(2021) [32]

Automatic Channel
Selection with Sparse

Squeeze and Excitation
Blocks (ACS-SE)

CNN 87.2 8/60 Motor
imagery recognition

Idowu et al.,
(2021) [22]

Neuro-evolution-ary
Algorithm (NEA)

Multilayer
Perceptron Neural

Network (MPL-NN)
89.95 17/64 EEG Dataset

Shi et al.,
(2021) [79]

Binary harmony search
(BHS)

LDA
SVM

Sparse
Representation

classification (SRC)

73.57
77.32
70.35
74.34
78.21

83

17/59
26/118
23/59
31/118
21/59
32/118

Dataset 1 BCI
Competition IV
Dataset IVa BCI
Competition III
Dataset 1 BCI

Competition IV
Dataset IVa BCI
Competition III
Dataset 1 BCI

Competition IV
Dataset IVa BCI
Competition III

Qi et al.,
(2021) [80]

Spatio-temporal-
Filtering-Based Channel

Selection (STECS)
Fisher’s LDA

80.32
90.70
88.49

40/118
25/60
20/32

Dataset IVa BCI
Competition III
Dataset IIIa BCI
Competition III

MI experiment provided
by Tshingua University

Strypsteen et al.,
(2021) [24] Gumbel softmax trick DNN 91 10/44 High Gamma Dataset
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6.1. Statistical Analysis
6.1.1. Dataset IVa BCI Competition III

Figures 5 and 6 demonstrate that techniques BSA with CSP, cross-correlation, and
mRMR, achieved an average classification accuracy of 94.16%, 99.64%, and 90.77%, respec-
tively, with 24, 71, and 10 of total channels 118. The cross-correlation-based discriminant
criterion (XCDS) channel selection technique and the CNN classifier achieved the most
remarkable accuracy with 60.16% of channels [21]. However, Table 6 summarizes that the
best channel choice technique to create maximum performance for Dataset IVa BCI Compe-
tition III had been the mRMR strategy with an average rating of 90.77% with just 8.47%
of the 118 correctly classified channels [71]. Figures 5 and 6 demonstrate the classification
accuracy and selected channels on dataset IVa BCI competition.

The mRMR approach has the benefit of focusing the typically appropriate channel
placements for right hand and foot motor-imagery tasks on the left hemisphere. These
illustrate that unilateral MI is concentrated in the contralateral hemisphere’s optimal
selection channels. The disadvantage of the mRMR method is that there is no simple
positive correlation between increasing the number of channels and improving classification
accuracy. In a relatively small number of channels, an increase in channel numbers will
significantly improve classification accuracy.

Figure 5. Accuracy by different techniques for Dataset IVa BCI Competition III.
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Figure 6. Selected channels by different techniques for Dataset IVa BCI Competition III.

6.1.2. Dataset I BCI Competition IV

This paper has 13 papers that used Dataset I BCI Competition IV and showed promis-
ing results using the channel selection technique Bhattacharya bound the sequential forward
search (B.B. and SFS) method, and Naïve Bayes (N.B.) classifier. The average classification
accuracy was 96.25%, with 50.88% of 59 channels [47,81].

The advantage of the B.B. and SFS method is that it is computed with all possible
channels of Bhattacharyya boundaries of CSP functions. The channel set selected by the
sequential search strategy is a sub-optimal solution. Figures 7 and 8 demonstrate the
classification accuracy and selected channels on dataset IVa BCI competition, respectively.
However, it has some limitations, including the need for additional data to provide sure
estimate accuracy in a classifier and the difficulty in determining which area of the brain
generates class-relevant activity.

6.1.3. Dataset IIIa BCI Competition III

This dataset was utilized in six studies, achieving the best results [63,82]. Jin et al. [59]
used a correlation-based CCS channel selection strategy with a classifier SVM and only
31.67% of total channels to reach the metric 91.9%. The advantage of this method is that it
is an effective way of choosing channels based on an analysis of the correlation. The CCS
algorithm requiring fewer channels can improve the performance of the MI-based BCI and
significantly improve the long-term performance of an application with disabled users.
The limitation is limited participation and data sizes, leading to an insufficient conviction.
Given the context of the correlation analysis, another limitation is the common noise.
If there are a lot of common noise components in specific channels, they can be chosen too.
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Figure 7. Accuracy by different techniques for Dataset I BCI Competition IV.

Figure 8. Selected channels by different techniques for Dataset I BCI Competition IV.

On the other hand, a channel selection technique called spatiotemporal-filtering-based
channel selection (STECS) was used with Fisher’s LDA to get 41.67% of total channels [82].
The computational complexity of STECS is modest and can be efficiently implemented to
ensure that the algorithm is ideal for online BCI systems in almost real-time. Two drawbacks
exist: firstly, STECS should be assessed with additional EEG datasets and superior to other
channel selection methods. Second, selecting STECS channels and optimizing multiple
spatiotemporal filters are carried out during different phases with different optimizing
criteria. Figures 9 and 10 demonstrate the classification accuracy and selected channels on
dataset IVa BCI competition.
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Figure 9. Accuracy by different techniques for Dataset IIIa BCI Competition III.

Figure 10. Selected channels by different techniques for Dataset IIIa BCI Competition III.

In the literature, there are numerous comparative studies on channel selection ap-
proaches. However, when this research is applied to different datasets, it can produce
inconsistent conclusions. Researchers can help to choose the correct channel selection
algorithm by examining the current literature under the following sections.

6.1.4. Dataset IIa BCI Competition IV

Figures 11 and 12 demonstrate the classification accuracy and selected channels on
dataset IVa BCI competition. With only 45.55% channels, the mRMR approach with SVM
obtains 81.22% accuracy, as seen in the figure. The advantage and disadvantage of this
method is mentioned in Section 6.1.1.

6.1.5. Other MI Datasets

Figures 13 and 14 show the classification accuracy and selected channels on a different
dataset. The trained model weight with the CNN classifier obtained 91.50% accuracy while
using 12.50% of channels, as seen in the figure. On other datasets, some approaches reach
incredibly high accuracy. Using CNN on (CLA) left/right hand MI datasets, the cross-
correlation chooses 78% of the channels and achieves 99.28% accuracy. However, utilizing
the trained model weight of CNN, the accuracy is 91.50% compared to 12.50% channels
on the dataset of the Chinese Academy of Science. So, using a deep learning model like
CNN’s we can select very informative channels and achieve very excellent accuracy.
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Figure 11. Accuracy by different techniques for Dataset IIa BCI Competition IV.

Figure 12. Selected channels by different techniques for Dataset IIa BCI Competition IV.

Figure 13. Accuracy by different techniques for different datasets.
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Figure 14. Selected channels by different techniques for different datasets.

6.2. Machine Learning (ML)/Deep Learning (DL) Based Analysis

We already talked about a detailed analysis in Section 6.1 on various datasets, but we
see these in terms of ML/DL-based analysis. In this review, the ML-based classifier,
i.e., SVM, and DL-based classifier, i.e., CNN, perform satisfactorily. We can achieve out-
standing accuracy using SVM and CNN classifiers with fewer channels. We can see this in
Section 6.1 many other datasets have good accuracy but are not promising.

6.3. Appropriate Evaluation Criteria

A channel subset must be evaluated for MI applications to establish the best channel
subset. Two sorts of measures/criteria may be utilized as assessment criteria: data-based
measures/criteria and classification-based measures/criteria.

6.3.1. Information-Based Criteria

Information-based measurements/criteria based on the classification system. The crite-
ria for evaluating a channel subset are needed to determine the optimum channel subset for
MI applications. As evaluation criteria, two sorts of measures/criteria can be used. The cor-
relation coefficient, mutual information, symmetrical uncertainty, and others were used to
rank channels [83,84]. The distances between the inter-class have been measured with differ-
ent comparison methods between the binary variables, such as the matching and numerical
variables, such as the distance and angular division of the Euclidian [82,85]. A probabilistic
dissimilarity measurement was carried out using Chernoff and Bhattacharyya [47,86].

Information-based measurements can be computationally simple, take less time,
and require only a single calculation. These metrics are the only viable alternative for
applications where time and computational complexity are constraints. The disadvantage
is that it does not ensure optimal results.

6.3.2. Classifier-Based Criteria

These measures used classification accuracy to evaluate a channel subset. A classifier
oversees determining the separability measure, and when the classifier performs well, a chan-
nel is chosen. The classifier’s error rate is a commonly used metric for evaluating the classifi-
cation method. The disadvantage of classifier assessment is that results will depend on the
classifier used and change the performance of the classifier effects. As a result, one can assume
that under challenging abilities, the temporal characteristic is more critical than timing [87]. It
does, however, ensure the best results. Figure 15 presents the summary of all classifiers used
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in this paper. The implementation details of the classifier used in this study are mentioned
for SVM [1,3,42,46,51,54,56,59,60,62,70,76,79], LDA [26,52,55,58,76–79], CNN [21,24,27,32],
Fisher’s LDA [53,80], FDA [23,43], and other’s classifier [22,25,43,47,57,61,64,73,74,79].

Figure 15. Different classifiers used for channel selections.

6.4. Channel Selection Approaches

Every channel selection method has its own set of features. Approaches independent
of the classifier used the statistical properties of channels to filter out weak channels. These
solutions rely on the information measure and are independent of the classifier. The use of
information measures for channel evaluation makes the filter approach more general and
computationally efficient. However, these procedures are typically less effective than other
methods. On the other hand, channel selection approaches with a classifier are computer-
intensive because a classifier evaluates channel subsets. Therefore, the methodology
depends on the classifier but significantly improves classification precision. The advantages
and limitations of each method are described in Table 7.

These two characteristics are part of a hybrid channel selection strategy that can be
employed to develop flexible methods for channel selection. An innovative technique
employs a wide range of channel selection strategies instead of selecting and accepting the
results as the final channel subset. Then add the results with an ensemble approach for
obtaining the best sub-set channel because several optimal channel sub-sets can exist [88,89].
Figure 16 shows the number of channel selection algorithms used in this paper.

Figure 16. Number of different channels.
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Table 7. Advantage and limitation of each techniques.

Technique Advantage Limitation

CSP Finds spatial filters for two classes Noise sensitivity and Overfitting
Correlation based Most discriminant channels Performance issue
Sequential based Achieve better recognition Slow execution and lack of generality
PSO Simple to implement and avoiding the unnecessary computations Slow searching around the global optimum
Others CNN achieved good results and automatic Unable to find the best channels

6.4.1. Search Algorithms

The search is complete; the three main algorithms are sequential and heuristic/random
search. Each has its own set of pros and cons. Consecutive search is the most frequent
search technique, in which channels are added and removed in sequential order. These
methods are usually not ideal, but they are simple to build quickly. The B.B. and SFS, GSFS,
and SFFS are the most common sequential search methods [47,61,65].

6.4.2. Feature Extraction

Features extraction is also vital in channel selection for EEG applications to maximize
the system’s performance. To increase inter-class variability, such feature extraction tech-
niques should be applied. MI applications’ four most used features are time domain, para-
metric model-based, transformed domain, and frequency-based [90,91]. Features including
mean, variance, and the parameter were utilized in the temporal domain, although they
were deemed weak features. The auto-regression models and common spatial patterns
are model-based characteristics [39,92,93]. The literature also used Fourier and Wavelet
to extract features categorized as transformational features. The most frequency domain
features in the literature are power spectral density and frequency-based spectral border
characteristics [12,94–96]. After analyzing the literature on channel selection algorithms,
the features recovered by CSP and its variants are more effective.

6.4.3. Feature Selection

Selecting features is also significant for optimizing system performance and choosing
appropriate channels. The EEG features collected may have high dimensionality, be redun-
dant, or have outliers that affect the system’s performance. A feature selection algorithm is
an option for dealing with these factors. If EEG data are too large, and the calculation cost
must also be reduced by using a function selection technique. Using the best functionality
to improve classification accuracy or class variance, the best and most appropriate EEG
channels are eventually chosen.

6.5. Future Direction

Evolutionary algorithms such as neural network-based methods in EEG channel
selection are currently being researched and are open to future inquiry. We must thoroughly
investigate each technique to create the best channel selection algorithm. We also need to
investigate the performance sensitivity of various workloads and classifiers. The automated
channel selection method based on deep learning could be a promising future solution
for portable EEG-based BCIs. The fewer channels used, the fewer data will be required.
As a result, the processing speed and mobility of EEG-based BCIs would be enhanced.
In principle, this unique strategy might apply an adaptive-learning approach to diverse BCI
paradigms: a technique that could eventually become beneficial for future channel-selection
strategies relevant to cutting-edge BCI software platforms, such as Web-based BCIs [97,98].
This study shows that a deep-learning approach to EEG data can yield promising and potent
task-relevant EEG characteristics, allowing for practical and ubiquitous channel-selection
applications for BCI technology.
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7. Conclusions

The most comprehensive empirical research of channel selection algorithms for MI
classification is presented in this work. The assessment of channel selection algorithms
is a complex issue. Different channel selection methods can be evaluated using various
factors such as time, complexity, and accuracy. In real-time applications, time and accuracy
are the most important criteria. The choice of classifier and subject significantly impacts
the performance of channel selection strategies. The classification of motor imageries from
selected channels is considerably better with correlation features than with the normalized
powers. The high classification may, therefore, offer input for MI training. KMI would be
more suited for BCI since its network properties were comparable to motor execution.

The other major issue in selecting channels is the optimum number of channels. The an-
swer to this matter is intricate because the human brain is the most complex entity [99]. It is
challenging to generalize EEG decoding methods as even minor experimental modifications
can alter signal treatment, feature extraction, and classification procedures. On the other
hand, classifier-independent approaches pick the optimum channel subset based on other
signal-related criteria. The best channel set depends on application, features, assessment
criteria, and channel selection classification. Traditional approaches used criteria to choose
the optimum number of channels based, amongst other things, on the convergence of
classification accuracy using cross-validation or an analytical solution for an optimization
problem. However, the idea of optimum channels is that task information is more con-
served than the other channels. Finally, the number of channels, system performance, time,
and calculation cost are all factors to consider.

After studying the research, we conclude that the application-relevant brain cortical
regions frequently occur in the optimal channel subset. For Dataset IVa BCI Competition III
and Dataset IIa BCI competition IV, the mRMR methods are more suitable because the gen-
erally applicable channel positions are focused on the left hemisphere and achieve excellent
accuracy compared to other techniques. The CNN-based techniques perform well on differ-
ent datasets with very few channels, apart from BCI competition datasets. For Dataset I BCI
Competition IV, the BB and SFS methods are more suitable for the sequential-based method
group because they are computed with all possible channels of Bhattacharyya boundaries
of CSP functions. Its accuracy on this dataset is very promising, with good amounts of
channels compared to other techniques. On the other hand, the correlation-based channel
selection strategy shows excellent results for Dataset IIIa BCI Competition III because of its
effective method of choosing channels based on correlation analysis.

Author Contributions: Conceptualization, A.; methodology, A.; software, A.; validation, A.; formal
analysis, A.; investigation, A.; resources, A.; data curation, A.; writing—original draft preparation, A.;
writing—review and editing, I.F. and M.R.I.; supervision, I.F. and M.R.I.; project administration, I.F.;
funding acquisition, I.F. All authors have read and agreed to the published version of the manuscript.

Funding: The authors acknowledge that this research was funded in part by the Ministry of Higher
Education Malaysia (MoHE) under the Higher Institution Centre of Excellence (HICoE) Scheme
awarded to the Center for Intelligent Signal and Imaging Research (CISIR) grant 015MAO-050.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data described in this study are accessible from the corresponding
author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Arvaneh, M.; Guan, C.; Ang, K.K.; Quek, C. Optimizing the channel selection and classification accuracy in EEG-based BCI. IEEE

Trans. Biomed. Eng. 2011, 58, 1865–1873. [CrossRef] [PubMed]
2. Blankertz, B.; Losch, F.; Krauledat, M.; Dornhege, G.; Curio, G.; Müller, K.R. The Berlin Brain-Computer Interface: Accurate

performance from first-session in BCI-naive subjects. IEEE Trans. Biomed. Eng. 2008, 55, 2452–2462. [CrossRef] [PubMed]

http://doi.org/10.1109/TBME.2011.2131142
http://www.ncbi.nlm.nih.gov/pubmed/21427014
http://dx.doi.org/10.1109/TBME.2008.923152
http://www.ncbi.nlm.nih.gov/pubmed/18838371


Bioengineering 2022, 9, 726 29 of 32

3. Lal, T.N.; Schroder, M.; Hinterberger, T.; Weston, J.; Bogdan, M.; Birbaumer, N.; Scholkopf, B. Support vector channel selection in
BCI. IEEE Trans. Biomed. Eng. 2004, 51, 1003–1010. [CrossRef] [PubMed]

4. Popescu, F.; Fazli, S.; Badower, Y.; Blankertz, B.; Müller, K.R. Single trial classification of motor imagination using 6 dry EEG
electrodes. PLoS ONE 2007, 2, e637. [CrossRef]

5. Altuwaijri, G.A.; Muhammad, G. Electroencephalogram-Based Motor Imagery Signals Classification Using a Multi-Branch
Convolutional Neural Network Model with Attention Blocks. Bioengineering 2022, 9, 323. [CrossRef]

6. Araújo, T.; Teixeira, J.P.; Rodrigues, P.M. Smart-data-driven system for alzheimer disease detection through electroencephalo-
graphic signals. Bioengineering 2022, 9, 141. [CrossRef]

7. Neuper, C.; Scherer, R.; Reiner, M.; Pfurtscheller, G. Imagery of motor actions: Differential effects of kinesthetic and visual–motor
mode of imagery in single-trial EEG. Cogn. Brain Res. 2005, 25, 668–677. [CrossRef]

8. Thomschewski, A.; Ströhlein, A.; Langthaler, P.B.; Schmid, E.; Potthoff, J.; Höller, P.; Leis, S.; Trinka, E.; Höller, Y. Imagine there
is no plegia. mental motor imagery difficulties in patients with traumatic spinal cord injury. Front. Neurosci. 2017, 11, 689.
[CrossRef]

9. Scherer, R.; Vidaurre, C. Motor imagery based brain–computer interfaces. In Smart Wheelchairs and Brain-Computer Interfaces;
Elsevier: Amsterdam, The Netherlands, 2018; pp. 171–195.

10. Baig, M.Z.; Aslam, N.; Shum, H.P. Filtering techniques for channel selection in motor imagery EEG applications: A survey. Artif.
Intell. Rev. 2020, 53, 1207–1232. [CrossRef]

11. Hanakawa, T.; Dimyan, M.A.; Hallett, M. Motor planning, imagery, and execution in the distributed motor network: A
time-course study with functional MRI. Cereb. Cortex 2008, 18, 2775–2788. [CrossRef]

12. Pfurtscheller, G.; Da Silva, F.L. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin. Neuro-
physiol. 1999, 110, 1842–1857. [CrossRef]

13. Chholak, P.; Niso, G.; Maksimenko, V.A.; Kurkin, S.A.; Frolov, N.S.; Pitsik, E.N.; Hramov, A.E.; Pisarchik, A.N. Visual and
kinesthetic modes affect motor imagery classification in untrained subjects. Sci. Rep. 2019, 9, 9838. [CrossRef] [PubMed]

14. Islam, M.R.; Yin, X.; Ulhaq, A.; Zhang, Y.; Wang, H.; Anjum, N.; Kron, T. A survey of graph based complex brain network analysis
using functional and diffusional MRI. Am. J. Appl. Sci. 2018, 14, 1186–1208. [CrossRef]

15. Wang, Y.; Zhang, L.; Xia, P.; Wang, P.; Chen, X.; Du, L.; Fang, Z.; Du, M. EEG-Based Emotion Recognition Using a 2D CNN with
Different Kernels. Bioengineering 2022, 9, 231. [CrossRef] [PubMed]

16. Bandara, D.; Arata, J.; Kiguchi, K. Towards control of a transhumeral prosthesis with EEG signals. Bioengineering 2018, 5, 26.
[CrossRef]

17. Prakash, B.; Baboo, G.K.; Baths, V. A Novel Approach to Learning Models on EEG Data Using Graph Theory Features—A
Comparative Study. Big Data Cogn. Comput. 2021, 5, 39. [CrossRef]

18. Faller, J.; Scherer, R.; Friedrich, E.V.; Costa, U.; Opisso, E.; Medina, J.; Müller-Putz, G.R. Non-motor tasks improve adaptive
brain-computer interface performance in users with severe motor impairment. Front. Neurosci. 2014, 8, 320. [CrossRef]

19. Handiru, V.S.; Prasad, V.A. Optimized bi-objective EEG channel selection and cross-subject generalization with brain–computer
interfaces. IEEE Trans. Hum.-Mach. Syst. 2016, 46, 777–786. [CrossRef]

20. Garrett, D.; Peterson, D.A.; Anderson, C.W.; Thaut, M.H. Comparison of linear, nonlinear, and feature selection methods for EEG
signal classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 141–144. [CrossRef]

21. Yu, J.; Yu, Z.L. Cross-correlation based discriminant criterion for channel selection in motor imagery BCI systems. J. Neural Eng.
2021, 18, 046083. [CrossRef]

22. Idowu, O.P.; Adelopo, O.; Ilesanmi, A.E.; Li, X.; Samuel, O.W.; Fang, P.; Li, G. Neuro-evolutionary approach for optimal selection
of EEG channels in motor imagery based BCI application. Biomed. Signal Process. Control 2021, 68, 102621. [CrossRef]

23. He, L.; Hu, Y.; Li, Y.; Li, D. Channel selection by Rayleigh coefficient maximization based genetic algorithm for classifying
single-trial motor imagery EEG. Neurocomputing 2013, 121, 423–433. [CrossRef]

24. Strypsteen, T.; Bertrand, A. End-to-end learnable EEG channel selection for deep neural networks with Gumbel-softmax. J. Neural
Eng. 2021, 18, 0460a9. [CrossRef]

25. Dai, C.; Pi, D.; Becker, S.I. Shapelet-transformed Multi-channel EEG Channel Selection. ACM Trans. Intell. Syst. Technol. 2020,
11, 1–27. [CrossRef]

26. Liu, Y.H.; Huang, S.; Huang, Y.D. Motor imagery EEG classification for patients with amyotrophic lateral sclerosis using fractal
dimension and Fisher’s criterion-based channel selection. Sensors 2017, 17, 1557. [CrossRef] [PubMed]

27. Mzurikwao, D.; Samuel, O.W.; Asogbon, M.G.; Li, X.; Li, G.; Yeo, W.H.; Efstratiou, C.; Ang, C.S. A channel selection approach
based on convolutional neural network for multi-channel EEG motor imagery decoding. In Proceedings of the 2019 IEEE Second
International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), Sardinia, Italy, 3–5 June 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 195–202.

28. Islam, M.R.; Liu, S.; Wang, X.; Xu, G. Deep learning for misinformation detection on online social networks: a survey and new
perspectives. Soc. Netw. Anal. Min. 2020, 10, 1–20. [CrossRef] [PubMed]

29. Holmes, P.; Calmels, C. A neuroscientific review of imagery and observation use in sport. J. Mot. Behav. 2008, 40, 433–445.
[CrossRef] [PubMed]

30. Teasdale, J.D.; Dritschel, B.H.; Taylor, M.J.; Proctor, L.; Lloyd, C.A.; Nimmo-Smith, I.; Baddeley, A.D. Stimulus-independent
thought depends on central executive resources. Mem. Cogn. 1995, 23, 551–559. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TBME.2004.827827
http://www.ncbi.nlm.nih.gov/pubmed/15188871
http://dx.doi.org/10.1371/journal.pone.0000637
http://dx.doi.org/10.3390/bioengineering9070323
http://dx.doi.org/10.3390/bioengineering9040141
http://dx.doi.org/10.1016/j.cogbrainres.2005.08.014
http://dx.doi.org/10.3389/fnins.2017.00689
http://dx.doi.org/10.1007/s10462-019-09694-8
http://dx.doi.org/10.1093/cercor/bhn036
http://dx.doi.org/10.1016/S1388-2457(99)00141-8
http://dx.doi.org/10.1038/s41598-019-46310-9
http://www.ncbi.nlm.nih.gov/pubmed/31285468
http://dx.doi.org/10.3844/ajassp.2017.1186.1208
http://dx.doi.org/10.3390/bioengineering9060231
http://www.ncbi.nlm.nih.gov/pubmed/35735474
http://dx.doi.org/10.3390/bioengineering5020026
http://dx.doi.org/10.3390/bdcc5030039
http://dx.doi.org/10.3389/fnins.2014.00320
http://dx.doi.org/10.1109/THMS.2016.2573827
http://dx.doi.org/10.1109/TNSRE.2003.814441
http://dx.doi.org/10.1088/1741-2552/ac0583
http://dx.doi.org/10.1016/j.bspc.2021.102621
http://dx.doi.org/10.1016/j.neucom.2013.05.005
http://dx.doi.org/10.1088/1741-2552/ac115d
http://dx.doi.org/10.1145/3397850
http://dx.doi.org/10.3390/s17071557
http://www.ncbi.nlm.nih.gov/pubmed/28671629
http://dx.doi.org/10.1007/s13278-020-00696-x
http://www.ncbi.nlm.nih.gov/pubmed/33014173
http://dx.doi.org/10.3200/JMBR.40.5.433-445
http://www.ncbi.nlm.nih.gov/pubmed/18782718
http://dx.doi.org/10.3758/BF03197257
http://www.ncbi.nlm.nih.gov/pubmed/7476241


Bioengineering 2022, 9, 726 30 of 32

31. Malekzadeh, A.; Zare, A.; Yaghoobi, M.; Alizadehsani, R. Automatic Diagnosis of Epileptic Seizures in EEG Signals Using Fractal
Dimension Features and Convolutional Autoencoder Method. Big Data Cogn. Comput. 2021, 5, 78. [CrossRef]

32. Zhang, H.; Zhao, X.; Wu, Z.; Sun, B.; Li, T. Motor imagery recognition with automatic EEG channel selection and deep learning. J.
Neural Eng. 2021, 18, 016004. [CrossRef]

33. Yu, T.; Xiao, J.; Wang, F.; Zhang, R.; Gu, Z.; Cichocki, A.; Li, Y. Enhanced motor imagery training using a hybrid BCI with feedback.
IEEE Trans. Biomed. Eng. 2015, 62, 1706–1717. [CrossRef]

34. Jiang, X.; Bian, G.B.; Tian, Z. Removal of artifacts from EEG signals: A review. Sensors 2019, 19, 987. [CrossRef] [PubMed]
35. Blum, A.L.; Rivest, R.L. Training a 3-node neural network is NP-complete. Neural Netw. 1992, 5, 117–127. [CrossRef]
36. Wang, Y.; Gao, S.; Gao, X. Common spatial pattern method for channel selelction in motor imagery based brain-computer

interface. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18
January 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 5392–5395.

37. Goksu, F.; Ince, N.F.; Tewfik, A.H. Sparse common spatial patterns in brain computer interface applications. In Proceedings of
the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27
May 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 533–536.

38. Friedman, J. Discriminant analysis. J. Am. Stat. Assoc. 1989, 84, 165–175. [CrossRef]
39. Wang, J.; Plataniotis, K.N.; Lu, J.; Venetsanopoulos, A.N. On solving the face recognition problem with one training sample per

subject. Pattern Recognit. 2006, 39, 1746–1762. [CrossRef]
40. Lu, H.; Plataniotis, K.N.; Venetsanopoulos, A.N. Uncorrelated multilinear discriminant analysis with regularization and

aggregation for tensor object recognition. IEEE Trans. Neural Netw. 2008, 20, 103–123.
41. Thibeault, C.M.; Srinivasa, N. Using a hybrid neuron in physiologically inspired models of the basal ganglia. Front. Comput.

Neurosci. 2013, 7, 88. [CrossRef]
42. Wang, Q.; Cao, T.; Liu, D.; Zhang, M.; Lu, J.; Bai, O.; Sun, J. A motor-imagery channel-selection method based on SVM-CCA-CS.

Meas. Sci. Technol. 2020, 32, 035701. [CrossRef]
43. Yang, T.; Ang, K.K.; Phua, K.S.; Yu, J.; Toh, V.; Ng, W.H.; So, R.Q. Eeg channel selection based on correlation coefficient for

motor imagery classification: A study on healthy subjects and als patient. In Proceedings of the 2018 40th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 1996–1999.
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