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Abstract: Electrocardiogram classification is crucial for various applications such as the medical
diagnosis of cardiovascular diseases, the level of heart damage, and stress. One of the typical
challenges of electrocardiogram classification problems is the small size of the datasets, which may
lead to limitation in the performance of the classification models, particularly for models based
on deep-learning algorithms. Transfer learning has demonstrated effectiveness in transferring
knowledge from a source model with a similar domain and can enhance the performance of the
target model. Nevertheless, the consideration of datasets with similar domains restricts the selection
of source domains. In this paper, electrocardiogram classification was enhanced by distant transfer
learning where a generative-adversarial-network-based auxiliary domain with a domain-feature-
classifier negative-transfer-avoidance (GANAD-DFCNTA) algorithm was proposed to bridge the
knowledge transfer from distant sources to target domains. To evaluate the performance of the
proposed algorithm, eight benchmark datasets were chosen, with four from electrocardiogram
datasets and four from the following distant domains: ImageNet, COCO, WordNet, and Sentiment140.
The results showed an average accuracy improvement of 3.67 to 4.89%. The proposed algorithm was
also compared with existing works using traditional transfer learning, revealing an average accuracy
improvement of 0.303–5.19%. Ablation studies confirmed the effectiveness of the components of
GANAD-DFCNTA.

Keywords: auxiliary domain; cardiovascular disease; deep learning; distant transfer learning;
electrocardiogram (ECG); heterogeneous datasets; knowledge transfer; negative transfer

1. Introduction

Electrocardiograms (ECG) have been helping human beings in medical monitoring
and diagnosis for more than a century. Machine learning algorithms were applied to
formulate ECG classification problems such as the detection of various types of cardiovas-
cular disease [1], heart muscle damage detection [2], stress detection [3], and drowsiness
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detection [4]. Large-scale medical data collection is challenging due to privacy [5], ethics [6],
and security [7]. This usually results in small-scale electrocardiogram dataset collection by
medical institutions and research groups. In the algorithmic perspective, deep-learning al-
gorithms have superior advantages in the enhancement of models when sufficient training
data is available [8,9]. There were some studies suggesting the applicability of deep-support
vector machines for small-scale datasets [10].

Attention is drawn to transfer learning, which could leverage the performance of the
target model based on the pretrained source model. Typically, both the source and target
datasets have similar domains and modalities. It is observed in related works that transfer
learning can improve the performance of the target model to a certain extent; however,
there is room to achieve excellent performance. In regard to ECG classification, where the
problem is often encountered, biased classification and small-scale datasets occur. The
vision to apply the deep-learning algorithm to enhance the performance of the classification
model is required to overcome potential model overfitting with limited training data. In
view of this concern, the extension of the problem formulation of transfer learning with
heterogenous datasets between source and target domains was considered in this article.
This is an emergent research area, namely distant transfer learning, which has benefits such
as the unlimited possibilities in choosing pretrained source models, particularly for source
domains that are highly dissimilar to the target domain. The pretrained source models
are trained with large-scale datasets that could benefit the fine-tuning of the target ECG
classification models in new knowledge, the reduction of model overfitting and biased
classification, etc. Nevertheless, distant transfer learning experiences a tradeoff in the key
challenges in the design of new auxiliary domains and negative transfer avoidance algo-
rithms. With the success of distant transfer learning, the enhancement of the performance
of the target model can be achieved by both similar and distant source domains.

In the following, a literature review was conducted to study the methodology and
results of the existing works. Several research limitations were observed, which served as
the rationale of our proposal: to address the limitations of the existing works.

1.1. Literature Review

To the best of our findings, there were no related works in distant transfer learning
using auxiliary domains for ECG classifications. Therefore, the discussion in this subsection
considered traditional transfer learning for ECG classification without the introduction of
auxiliary domains as the bridge between the source and target domains. Related works
of distant transfer learning in other areas were studied, which provided insights for our
design and formulation for the proposed distant transfer learning algorithm.

1.1.1. Traditional Transfer Learning for ECG Classification

Various works considered a knowledge transfer from a source model with different
domains compared with the target domain. Transfer learning was performed to transfer
knowledge from a pretrained model using the ImageNet database to the MIT-BIH arrhyth-
mia database [11]. Before model construction, the continuous wavelet transform was used
to transform the 1D ECG signals to 2D ECG signals. The input signals were passed to a
convolutional neural network (CNN) algorithm for feature extraction and classification.
The algorithm achieved a sensitivity of 96.2%, a specificity of 99.3%, and an accuracy of
99.1%. The accuracy was enhanced by 0.507% to 1.86% compared with existing works. An-
other work [12] also applied transfer learning to the MIT-BIH arrhythmia database. Three
pretrained models, AlexNet, ResNet18, and GoogleNet, were selected for analysis. These
models facilitated the knowledge transfer to the target model based on the CNN. The CNN
model was optimized using different optimizers such as RMSprop, Adam, and SGDM. A
performance evaluation showed that the AlexNet-CNN achieved the best accuracy with
RMSprop (98.5%), the ResNet18-CNN achieved the best accuracy with SGDM (99.5%), and
the GoogleNet-CNN achieved the best accuracy with Adam (98.6%). To prepare 2D ECG
signals, the short-time Fourier transform was employed [13]. EfficientNet was selected as
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the pretrained model to support CNN-based target model construction for the MIT-BIH
arrhythmia database and the PTB Diagnostic ECG database. An ablation study showed
that the average accuracy improved from 94.7% to 97.0%.

For existing works using traditional machine learning-based classifiers, a preliminary
study with 294 ECG samples (a small portion of six benchmark datasets) was carried out for
ECG classification [14]. The continuous wavelet transform was firstly applied to prepare
2D ECG signals. ResNet50 was served as a pretrained model to fine-tune the target model.
Three algorithms, namely XGBoost, random forest, and Softmax, were chosen to build the
classifiers. These classifiers yielded an accuracy of 98.3%, 94.9%, and 93.2%, respectively.

The abovementioned works considered source and target domains that were not simi-
lar. In [15], a pretrained model for right bundle branch block classification was transferred
to Brugada syndrome classification. The CNN and bidirectional long short-term memory
(Bi-LSTM) were two core components for the ECG classification problem. An ablation
study showed that the sensitivity of the model could be improved from 79.2% to 87.6%,
whereas the specificity kept constant at 69.6%. Another work [16] presented a pretrained
model using various datasets from different hospitals. Knowledge was transferred to a
hybrid CNN and autoencoder target model. The design of the model was able to suppress
the noise level of ECG signals and, thus, improve the model accuracy from 94.5% to 98.9%.

1.1.2. Distant Transfer Learning Applications

A distant-domain high-level feature fusion approach was proposed for distant transfer
learning [17]. The source domain was from one of the benchmark datasets, namely Dslr,
Webcam, Amazon, and Catech-256. The auxiliary domain was based on breast ultrasound
images, and the target domain was based on thyroid ultrasound images. Ablation studies
showed that distant transfer learning improved the accuracy of the target model from 82.5%
to 86.7% (Dslr), 79.5% to 84.4% (Webcam), 76.1% to 83.4% (Amazon), and 78.5% to 82.7%
(Catech). The work [18] adopted these four source datasets for multiple-dataset distant
transfer learning using distant feature fusion and the reduced-size Unet Segmentation
model. Chest X-rays were selected as the auxiliary dataset for the bridge between multiple-
source domains and target domains (COVID-19 computed tomography). An ablation study
concluded that there was an accuracy improvement of the model from 86% to 96%.

Differed from the common assumption of distant transfer learning that the source
and target domains are different, the work [19] considered the adoption of distant transfer
learning when both the source and target domains were similar (industrial fault sam-
ples). A transitive distant-domain adaptation network was proposed for the transitive
exploration of distant-domain samples. The average accuracy was 81.4% for five types
of faults. Another work [20] proposed an autonomous machine learning pipeline with a
feature transfer. Three experiments were carried out for the performance evaluation of
the algorithm in the research topics: (i) text classification, where the source domain (BERT
dataset) transferred knowledge to the target domain (the toxic comment dataset or the
spam-email classification dataset); (ii) image classification, where the source domain (the
ImageNet dataset) transferred knowledge to the target domain (the Cifar-10 dataset or
the CASIA-FaceV5 dataset); and (iii) audio classification, where the source domain (the
Audioset dataset) transferred knowledge to the target domain (the ESC-50 dataset or the
Speech Command dataset).

1.2. Limitations of the Existing Works

After the studies of the existing works in transfer learning for ECG classifications [11–16]
and distant transfer learning applications [17–20], the major research limitations were
illustrated as follows:

• There were inadequacies in the performance evaluation and analysis in some existing
works that did not employ cross-validation [11–14,17–19] and did not conduct ablation
studies on the components of the algorithms [11,12,14,19,20].

• There was a lack of research on distant transfer learning for ECG classifications.
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• Some of the research works [19,20] in distant transfer learning that considered both
the source and target domains were similar; however, traditional transfer learning
algorithms with a lower model complexity can achieve a similar performance.

• The details of the design and the formulation of multiple-source datasets on the distant
transfer learning process [18] were insufficient.

• There were limited discussions on negative transfer avoidance between source and
target domains in the aspects of domain, instance, and feature.

1.3. Research Contributions of the Article

To address the research limitations, a generative-adversarial-network-based auxiliary
domain with a domain-feature-classifier negative-transfer-avoidance (GANAD-DFCNTA)
algorithm was proposed for the knowledge transfer from distant source to target domains.
The research contributions of the article were summarized below. It is worth noting that
k-fold cross-validation where k = 5 was adopted for the performance evaluation, and
analysis and ablation studies were carried out to reveal the effectiveness of the components
of the GANAD-DFCNTA algorithm.

• Distant transfer learning was newly applied for ECG classifications. Six benchmark
ECG datasets were selected for the research studies.

• With the unrestricted discipline of the source domain in distant transfer learning,
generative-adversarial-network-based auxiliary domains were designed using both
the source and target datasets.

• To minimize the risk of negative transfer from the source model to the target model,
a domain-feature-classifier negative-transfer-avoidance algorithm was proposed to
minimize loss for domain reconstruction, feature extraction, and the classifier.

• The GANAD-DFCNTA algorithm improved the accuracy by 0.303–5.19% compared
with existing works.

• An investigation was carried out on the extension of the GANAD-DFCNTA algorithm
with multiple-source datasets. An evaluation showed that the target model can
enhance the accuracy by 3.67 to 4.89% with multiple-source datasets.

• Ablation studies of the GANAD-DFCNTA algorithm revealed the improvement of the
accuracy of the target model by 2.42–3.58%, 1.35–2.73%, 0.767–2.37%, and 1.72–2.90%,
compared with DFCNTA, GANAD-FCNTA, GANAD-DCNTA, and GANAD-DFNTA
algorithms, respectively.

1.4. Organization of the Article

The rest of the article was organized as follows: Section 2 presented the details of
the design and formulation of the GANAD-DFCNTA algorithm. The summary of the
benchmark datasets and the performance evaluation of the GANAD-DFCNTA algorithm
can be found in Section 3. To evaluate the contributions of the components of the GANAD-
DFCNTA algorithm, Section 4 shared the ablation studies that were carried out to remove
the individual components in each study. This article was ended with a conclusion and
future research directions in Section 5.

2. Methodology

The methodology begins with the overview of the proposed distant transfer learning.
For the design and formulation of the GANAD-DFCNTA algorithm, the first part of the
GANAD algorithm was firstly presented in Section 2.2, followed by the second part of the
DFCNTA algorithm.

2.1. Overview of the Proposed Distant Transfer Learning Algorithm for ECG Classification

Figure 1 compares the conceptual architecture between traditional transfer learning
for ECG classifications (Left) and the proposed distant transfer learning (Right). The former
assumed that the source and target domains are similar, i.e., ECG-related datasets for
both source and target datasets. The latter considered distant source and target domains.
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Since the desired application was ECG classification, the source domain was assumed as
non-ECG-related, whereas the target domain was ECG-related. Exhaustive search and
analysis (of infinitely many datasets) may be required for the selection of the appropriate
auxiliary domain to serve as a bridge between the source and target domains. In our work,
an algorithmic approach was selected to generate two auxiliary domains based on the
employment of GAN by the source and target domains. One auxiliary domain was based
on GAN with the source domain and another was based on GAN with the target domain.
These auxiliary domains have the advantage of the generation of more relevant data and,
thus, reduce the dissimilarities between the source domain and the target domain using the
original formulation of direct distant transfer learning. As a result, the auxiliary domains
contribute to negative transfer avoidance. In regard to the elements of positive transfer,
attention was drawn into the nature of small-scale ECG datasets. The deep-learning-based
ECG classifiers may experience overfitting and biased classification. Bringing large-scale
image-based and text-based datasets for distant transfer learning could resolve the issues of
overfitting and biased classification. The distant transfer learning process became a three-
stage approach: (i) distant transfer learning stage 1, where knowledge was transferred from
the distant source domain to the GAN-based auxiliary domain stage 1; (ii) distant transfer
learning stage 2, where knowledge was transferred from the GAN-based auxiliary domain
stage 1 to the GAN-based auxiliary domain stage 2; and (iii) distant transfer learning stage
3, where knowledge was transferred from the GAN-based auxiliary domain stage 2 to the
target domain.
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2.2. Generative-Adversarial-Network-Based Auxiliary Domains (GANAD) Algorithm

The generative adversarial network (GAN) has demonstrated its superiority in gen-
erating additional training data for the training of machine learning models [21–23]. One
of the key advantages is the generation of additional training data for minority classes to
reduce the impact of imbalanced classifications. To formulate the GAN for the two auxiliary
domains (one relates to the source domain and one relates to the target domain), it is impor-
tant to ensure good diversity for the generated data in order to enhance the functionality
of the auxiliary domains as bridges between the source and target domains. Otherwise,
without good diversity, the problem reduces to the traditional transfer learning process.
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Starting with the formulation of the conditional GAN (cGAN) [24], there is a con-
ditional mapping function named generator G : X → Y which uses the input x ∈ X to
conditionally generate the output y ∈ Y. The latent variable z→ Z is important to control
the learning problem of multi-modal mapping G : X× Z → Y , such that an input x is
mapped to diverse multiple outputs y. The minimization problem of the generator, with D
as the discriminator, is given by:

min
G

FG(D, G) = Ex,z[log(1− D(x, G(x, z)))] (1)

Equivalently, maximizing the score D(x, G(x, z)) produces the outputs from the true
data distribution. The discriminator aims at minimizing the score it gives to generated
samples G(x, z) with the minimization of the D(x, G(x, z)) and the maximization of the
D(x, y) that it gives to the ground truth x. G attempts to fake D to believe that the generated
samples are from x. This requires the formulation of the maximization problem of D as:

max
D

FD(D, G) = Ex,y[log(D(x, y))] + Ex,z[log(1− D(x, G(x, z)))] (2)

Combining Equations (1) and (2), the loss function of the cGAN is defined as:

min
G

max
D

F(D, G) = Ex,y[log(D(x, y))] + Ex,z[log(1− D(x, G(x, z)))] (3)

In a typical formulation of GAN, mapping is learnt from a latent distribution pz to
a complicated distribution. This requires a large-scale dataset. With the nature of small-
scale ECG datasets in the target domain, increasing the network depth was not a feasible
approach. Alternatively, enhancing the latent distribution for better modelling power was
chosen. From [24], the diversity of the data can be enhanced by modifying the latent space
with the Gaussian model:

pz(z) =
N

∑
i=1

ωi f (z|αi, Σi) (4)

where ω = [ω1, . . . , ωN ] is the mixture weights vector and f (z|αi, Σi) is the probability
of the sample z following normal distribution N(αi, Σi). If equal weights are assumed,
Equation (4) is reduced to:

pz(z) =
N

∑
i=1

f (z|αi, Σi)

N
(5)

However, normal distribution has low kurtosis, and equal weights reduce the flexibility
of mixture weights. It is also not practical to have equal importance for the generated
samples because transferring knowledge between distant domains is more challenging with
less relevant samples. In contrast to the traditional formulations of cGAN in Equations (1)–(5),
in our work, we proposed the reformulation of Equation (4) with the logistic distribution
g(z|µ, ρ) with high kurtosis and the mixture weights vector β = [β1, . . . , βN ] with unequal
weights:

pz(z) =
N

∑
i=1

βig(z|µ, ρ) (6)

Individual samples can be obtained by:

z = γi + δi (7)

where γi is the deterministic function, δi is the covariance matrix, and σ is the auxiliary
noise following logistic distribution. The model was then specified as:

pdata(G(z)) =
N

∑
i=1

∫ pdata(G(γi + δiσ)|σ)p(σ)
N

dσ (8)
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with N logistic components.
For data generation, one of the N logistic components was selected and sample z was

obtained from the selected component. The sample was passed to the generator to obtain
the output. By applying L2 regularization to the generator, Equation (1) was updated to:

min
G

FG(D, G) = Ex,z[log(1− D(x, G(x, z)))] + λ
N

∑
i

βi(1− θi)
2 (9)

where θi = [θi1, . . . , θiK] is the K-dimensional covariance matrix for the selected ith logistic
component and λ is the regularization hyperparameter.

Algorithm 1 summarizes the workflow for training G and D for GAN-based auxiliary
domain stage 1 using the distant source domain. G generated a batch of synthetic non-
ECG-related samples along with samples from the input non-ECG-related sample. The
outmost for loop of Algorithm 1 iterated oversteps to train G and D. Every cycle completed
the specific batch updates to G and D. The epoch was related to a cycle via the distant
source dataset. The samples of the distant source dataset were utilized for the update of
the weighting factor of the model in the minibatch.

Algorithm 1: GAN-based auxiliary domain stage 1

for epoch i = 1:L do
for D, steps j = 1:M do

Sample minibatch of size p from the ground truth sample of the distant source dataset
Sample minibatch of size p from the latent space
Applying gradient ascent to D to solve the maximization problem:
max

D
FD(D, G) = Ex,y[log(D(x, y))] + Ex,z[log(1− D(x, G(x, z)))]

end
for G, steps k = 1:N do

Sample minibatch of size p from the latent space
Applying gradient descent to G to solve the minimization problem:

min
G

FG(D, G) = Ex,z[log(1− D(x, G(x, z)))] + λ
N
∑
i

βi(1− θi)
2

end
end

Likewise, Algorithm 2 summarizes the workflow to train G and D for GAN-based
auxiliary domain stage 2 using the distant target domain. G generated a batch of synthetic
ECG-related samples along with samples from the input ECG-related sample.

Algorithm 2: GAN-based auxiliary domain stage 2

for epoch i = 1:L do
for D, steps j = 1:M do

Sample minibatch of size p from the ground truth sample of the distant target dataset
Sample minibatch of size p from the latent space
Applying gradient ascent to D to solve the maximization problem:
max

D
FD(D, G) = Ex,y[log(D(x, y))] + Ex,z[log(1− D(x, G(x, z)))]

end
for G, steps k = 1:N do

Sample minibatch of size p from the latent space
Applying gradient descent to G to solve the minimization problem:

min
G

FG(D, G) = Ex,z[log(1− D(x, G(x, z)))] + λ
N
∑
i

βi(1− θi)
2

end
end
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2.3. Domain-Feature-Classifier Negative-Transfer-Avoidance (DFCNTA) Algorithm

In the distant transfer learning process (recall from Figure 1), there exists a feature
space shared between the source and target domains in all stages. Referring to the basic
formulations of the GAN loss LGAN and the classification loss Lclass [25]:

LGAN(F, D) = Exu∼PT(X)[log(D(F(xu)))] + Exs∼PS(X)[log(1− D(F(xs)))] (10)

Lclass(F, C) = Exl ,yl∼TL [lclass(C(F(xl))), yl ] + Exs ,ys∼S[lclass(C(F(xs))), ys] (11)

where xu is the sample from the unlabeled target domain, PT(X) is the target marginal, D
is the discriminator, F(xu) is the true feature, xs is the input sample from the labeled source
domain, PS(X) is the source marginal, F(xs) is the fake feature, xl is the input sample from
the labeled target domain based on the target joint PT(X, Y), yl is the output sample from
the labeled target domain based on PT(X, Y), TL is the labeled target domain dataset, C
is the classifier, F(xl) is the joint feature, ys is the output sample from the labeled source
domain, and S is the labelled source set.

It is worth noting that the following assumption (Equation (12)) that every xs provides
positive transfer to the target domain is not appropriate:

PT(Y|xt) = PS(Y|xs) = P(Y|F(xt)) = P(Y|F(xs)) (12)

Instead, there exists x′εXt. Equation (12) was revised as:

PT(Y|xt) = PS(Y|xs) = P(Y|F(xt)) = P(Y|F(xs)) (13)

To ensure good transferability of the marginal discriminator and the joint discrim-
inator, a virtual label yv was defined so that a discriminator can served as the marginal
discriminator and the joint discriminator. Particularly, the joint discriminator can use xu
because the labeled data are limited. yv was passed to the feature network. Equation (10)
was updated as:

LGAN(F, D) = Exu∼PT(X)[log(D(F(xu))), yv] + Exs∼PS(X)[log(1− D(F(xs))), yv]

+Exl ,yl∼TL [logD(F(xl), yl)] + Exs ,ys∼S[log(1− D(F(xs)), ys)]
(14)

Since each sample in the source domain set may contribute to different extents to the
positive transfer, weighting factors can be introduced to the second term of Equation (11).
In [25–27], the weighting factors were estimated by the ratio between the target joint and the
source joint. In our work, to improve diversity, the weighting factors ϕ were not restricted
by this ratio. Instead, the factors were considered as hyperparameters to be optimized.
Equation (11) was modified as:

Lclass(F, C) = Exl ,yl∼TL [lclass(C(F(xl))), yl ] + γExs ,ys∼S[ϕlclass(C(F(xs))), ys] (15)

where γ is the scaling factor to control ϕ.
As a result, the transfer learning problem became:

argmin
F,C

argmax
D

Lclass(F, C)− σLGAN(F, D) (16)

where σ is the hyperparameter.

3. Benchmark Datasets and Performance Evaluation

This section first starts with a brief summary of the eight benchmark datasets in three
data types: image, text, and ECG signal. The performance evaluation and the analysis of
the GANAD-DFCNTA algorithm were shared. It was then compared with existing works.
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3.1. Benchmark Dataset

Retrieving benchmark datasets is important for the performance evaluation of the
GANAD-DFCNTA algorithm. For the source datasets, image-based and text-based datasets
were selected because of their popularity and their successful previous works in transfer
learning. More importantly, these datasets are not related to ECG classification and time-
series data. For image-based datasets, ImageNet [28] and COCO [29] were chosen. For
text-based datasets, WordNet [30] and Sentiment140 [31] were used. In regard to the
target datasets, four ECG-based datasets were chosen, namely PTB-XL [32], the MIT-
BIH arrhythmia database [33], the European ST-T database [34], and the long-term ST
database [35]. Table 1 summarizes the details of the eight benchmark datasets. With the
formulation of the GANAD-DFCNTA algorithm using multiple-source datasets (from 1
to 4) with ordering of datasets, 64 scenarios can be generated for each target dataset. Overall,
64 × 4 = 256 models were analyzed. The ECG signals performed ECG beat segmentation to
obtain individual samples. Since the ECG beat segmentation is a well-known technique,
we only highlighted the major steps where the full details can be referred to [36,37].

Table 1. Summary of the benchmark datasets.

Dataset Domain Data Type Description

ImageNet [28] Source Image It contains about 14.2 million annotated images which are
divided into more than 21,000 categories.

COCO [29] Source Image It comprises about 330,000 images (>200,000 labeled images).
The images involve 250,000 people and 1.5 million objects.

WordNet [30] Source Text

It has more than 150,000 index words which are categorized
into adverbs, adjectives, verbs, and nouns. Every word can
be attached to multiple-synonym sets (representing a
semantic concept).

Sentiment140 [31] Source Text It has about 1.6 million annotated tweets with positive,
neutral, and negative polarities.

PTB-XL [32] Target ECG It recruits 18,885 patients for the data collection of
21,837 clinical 12-lead ECGs.

MIT-BIH Arrhythmia Database [33] Target ECG It comprises 48 30-min 2-channel ECGs from 47 volunteers.
European ST-T Database [34] Target ECG It has 90 annotated ECGs from 79 subjects.

Long-Term ST Database [35] Target ECG It collects 86 long-term ECG recordings of at least 21 h from
80 participants.

The general idea of the ECG beat segmentation is to locate all R waves so that individ-
ual ECG samples is defined as the small segment between two consecutive R waves. Given
that the typical frequency range of QRS complexes is from 10 to 30 Hz. A high pass filter
with transfer function Hhigh(z) is firstly applied to the ECG signal:

Hhigh(z) =
1− 2z−6 − 64z−7 + z−12 + 32z−16 + 32z−18

32(1− 2z−1 + z−2)
(17)

with delay and cutoff frequency of samples and 5 Hz, respectively.
A linear phase low-pass filter Hlow(z) is then applied to the ECG signal:

Hlow(z) =
1− 2z−6 + z−12

1− 2z−1 + z−2 (18)

where the powerline noise and muscle noise can be significantly attenuated by 35 dB. The
delay and the gain of the Hlow(z) are 5 samples and 31 dB, respectively.

To extract the slope information of the ECG signals (particularly QR and RS segments),
a linear phase derivative filter with impulse response hd[n] is defined:

hd[n] = [−1,−2, 2, 1] (19)
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where the delay and gain are 2 samples and 14 dB, respectively.
It is followed by the employment of signal squaring (taking square) on the output.

Afterwards, moving integration with difference equation yMI[n] is applied:

yMI [n] =
[x[nT − (N − 1)T] + x[nT − (N − 2)T] + · · ·+ x[nT]]

N
(20)

with the total number of samples N in the window.
The first sample of the output is the location of Q wave and the length of the output

is the summation of twice QS segments and window width. Defining two thresholds,
δ1 = PN + 0.25(PS − PN) and δ2 = 0.5δ1 with noise peak PN and signal peak PS. The
locations of Q waves, R waves, and S waves can be obtained.

Table 2 summarizes the sample size of each class for four ECG benchmark datasets [32–35].

Table 2. Summary of the benchmark ECG datasets after ECG beat segmentation.

Dataset Class Sample Size

PTB-XL [32]

Class 0: Normal 118962
Class 1: Myocardial infarction 68410
Class 2: ST/T Change 65463
Class 3: Conduction disturbance 61259
Class 4: Hypertrophy 33108

MIT-BIH Arrhythmia Database [33]

Class 0: Normal 75052
Class 1: Left bundle branch block 8075
Class 2: Right bundle branch block 7259
Class 3: Premature ventricular contraction 7130
Class 4: Paced beat 7028
Class 5: Atrial premature contraction 2546
Class 6: Fusion of paced and normal beat 982
Class 7: Fusion of ventricular and normal beat 803
Class 8: Ventricular flutter wave 472
Class 9: Nodal escape beat 229
Class 10: Non-conducted P-wave 193
Class 11: Aberrated atrial premature beat 150
Class 12: Ventricular escape beat 106
Class 13: Nodal premature beat 83
Class 14: Atrial escape beat 16

European ST-T Database [34]
Class 0: Tachycardia 780606
Class 1: Normal 431376
Class 2: Bradycardia 32760

Long-Term ST Database [35] Class 0: Normal 8832788
Class 1: Myocardial ischemia 727956

3.2. Performance Evaluation and Analysis of the GANAD-DFCNTA Algorithm
3.2.1. Two Auxiliary Domains

The ECG classification model was supported by the GANAD-DFCNTA and CNN
algorithms. The formulations were based on interpatient ECG classification to align with
the settings in existing works [11–16] in an apple-to-apple comparison. The architecture
of the CNN is summarized as follows: layer 1—conv1D with kernel = 50, unit = 128,
ReLU = 3, and strides = 3; layer 2—batch normalization; layer 3—maximum pooling with
size = 2 and stride = 3; layer 4—conv1-D with kernel = 8, unit = 32, ReLU = 1, and strides = 1;
layer 5—batch normalization; layer 6—maximum pooling with size = 2 and stride = 2;
layer 7—conv1-D with kernel = 5, unit = 512, ReLU = 1, and strides = 1; layer 8—conv1-D
with kernel = 3, unit = 128, ReLU = 1, and strides = 1; layer 9—fully connected layer; and
layer 10—output layer. For all experiments, k-fold cross-validation with k = 5 was selected
as a common order in classification problems [38–40]. Table 3 summarizes the performance
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of the best model for the multiple datasets (from 1 to 4) using specificity, sensitivity, and
accuracy. These evaluation metrics are defined as follows:

Speci f icity =
TN
N

(21)

Sensitivity =
TP
P

(22)

Accuracy =
TP + TN

P + N
(23)

where TN is the true negative, TP is the true positive, N is the number of real negatives,
and P is the number of real positives.

Since four distant source domains (two image-based [28,29] and two text-based do-
mains [30,31]) were selected to perform distant transfer learning to enhance the performance
of the target model for ECG classification problems, four models were built for [32–35]. An
evaluation and an analysis were also conducted on the number of distant source domains
and on the enhancement of the target domain. Therefore, four scenarios were set up with a
different number of source domains using one dataset, two datasets, three datasets, and
four datasets. In view of presenting the long list of the 25 pairs of sensitivity and specificity
(25 classes in Table 2), Tables 3–5 summarize the overall sensitivity and specificity.

Table 3. Performance evaluation of the GANAD-DFCNTA algorithm.

Specificity/Sensitivity/Accuracy (%)

Target Dataset Baseline One Dataset Two Datasets Three Datasets Four Datasets

PTB-XL [32] 92.8/93.7/93.3 93.8/94.5/94.2
with COCO

94.6/95.5/95.1
with COCO and

ImageNet

95.7/96.4/96.1 with
COCO, ImageNet, and

Sentiment140
96.6/97.2/96.9

MIT-BIH
Arrhythmia

Database [33]
94.4/95.1/94.8 96.3/96.8/96.6

with COCO

97.5/98.1/97.8
with COCO and

ImageNet

98.4/99.1/98.8 with
COCO, ImageNet, and

Sentiment140
99.1/99.7/99.4

European ST-T
Database [34] 92.6/93.5/93.0 93.7/94.7/94.2

with ImageNet

94.8/95.5/95.2
with COCO and

ImageNet

95.6/96.4/96.0 with
COCO, ImageNet, and

Sentiment140
96.4/97.1/96.8

Long-Term ST
Database [35] 94.4/93.6/94.1 95.5/94.5/95.1

with COCO

96.3/95.4/95.9
with COCO and

ImageNet

97.1/96.3/96.8 with
COCO, ImageNet, and

WordNet
97.9/97.0/97.5

Table 4. Performance evaluation of the GANAD-DFCNTA algorithm with one GAN-based auxiliar
domain based on the source domain.

Specificity/Sensitivity/Accuracy (%)

Target Dataset Baseline One Dataset Two Datasets Three Datasets Four Datasets

PTB-XL [32] 91.4/92.2/91.9 92.0/92.5/92.3
with COCO

93.1/93.8/93.5
with COCO and

ImageNet

94.5/95.1/94.9 with
COCO, ImageNet, and

Sentiment140
95.6/96.1/95.9

MIT-BIH
Arrhythmia

Database [33]
92.6/93.4/93.0 94.5/95.2/94.8

with ImageNet

95.8/96.5/96.1
with COCO and

ImageNet

96.7/97.5/97.1 with
COCO, ImageNet, and

Sentiment140
97.5/98.4/97.9

European ST-T
Database [34] 90.6/91.7/91.1 91.9/93.0/92.4

with ImageNet

93.5/94.1/93.8
with COCO and

ImageNet

93.8/94.7/94.3 with
COCO, ImageNet, and

Sentiment140
94.8/95.4/95.1

Long-Term ST
Database [35] 92.3/91.7/92.0 93.5/92.7/93.1

with COCO

94.7/93.8/94.3
with COCO and

ImageNet

95.5/94.3/95.0 with
COCO, ImageNet, and

WordNet
96.3/95.2/95.8
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Table 5. Performance evaluation of the GANAD-DFCNTA algorithm with one GAN-based auxiliar
domain based on the target domain.

Specificity/Sensitivity/Accuracy (%)

Target Dataset Baseline One Dataset Two Datasets Three Datasets Four Datasets

PTB-XL [32] 90.7/91.6/91.2 91.3/92.1/91.8
with COCO

92.4/93.0/92.7
with COCO and

ImageNet

93.9/94.4/94.2 with
COCO, ImageNet, and

Sentiment140
94.5/95.2/94.9

MIT-BIH
Arrhythmia

Database [33]
92.0/92.7/92.3 93.6/94.4/94.0

with ImageNet

96.1/94.9/96.4
with COCO and

ImageNet

96.2/97.0/96.5 with
COCO, ImageNet, and

Sentiment140
96.6/97.3/96.9

European ST-T
Database [34] 89.9/91.1/90.5 91.1/92.3/91.6

with COCO

92.8/93.3/93.0
with COCO and

ImageNet

93.1/93.7/93.4 with
COCO, ImageNet, and

Sentiment140
93.6/94.3/93.9

Long-Term ST
Database [35] 91.8/91.3/91.5 92.1/92.5/92.3

with COCO

93.9/93.1/93.5
with COCO and

ImageNet

93.3/94.2/93.7 with
COCO, ImageNet, and

WordNet
95.4/94.4/94.9

The key observations were drawn as follows:

• Distant transfer learning via the GANAD-DFCNTA algorithm improved the perfor-
mance (specificity, sensitivity, and accuracy) of the baseline ECG classification model.
With more source datasets, the performance of the model can further be enhanced.
It is worth noting that the saturation of model performance may be reached at some
point, depending on the similarities between the source and target datasets.

• The percentage improvement of the specificity, sensitivity, and accuracy in PTB-XL
was: 1.08, 0.854, and 0.965% for one dataset; 1.94, 1.92, and 1.93% for two datasets;
3.13, 2.88, and 3.00% for three datasets; 4.09, 3.74, and 3.86% for four datasets; and
1.02, 0.935, and 0.965% on average.

• The percentage improvement of the specificity, sensitivity, and accuracy in the MIT-
BIH arrhythmia database was: 2.01, 1.79, and 1.90% for one dataset; 3.28, 3.15, and
3.19% for two datasets; 4.24, 4.21, and 4.22% for three datasets; 4.98, 4.84, and 4.89%
for four datasets; and 1.25, 1.21, and 1.22% on average.

• The percentage improvement of the specificity, sensitivity, and accuracy in the Euro-
pean ST-T database was: 1.19, 1.28, and 1.25% for one dataset; 2.38, 2.14, and 2.22%
for two datasets; 3.24, 3.10, and 3.18% for three datasets; 4.10, 3.85, and 4.02% for four
datasets; and 1.03, 0.963, and 1.00% on average.

• The percentage improvement of the specificity, sensitivity, and accuracy in the long-
term ST database was: 1.17, 0.962, and 1.07% for one dataset; 2.01, 1.92, and 1.96% for
two datasets; 2.86, 2.88, and 2.87% for three datasets; 3.71, 3.63, and 3.67% for four
datasets; and 0.928, 0.908, and 0.918% on average.

• The deviations between overall specificity and sensitivity with a varying number of
datasets were 0.763% in PTB-XL, 0.613% in the MIT-BIH arrhythmia database, 0.842%
in the European ST-T database, and 0.940% in long-term ST database.

• To better investigate the individual classes of highly imbalanced datasets [33], the
overall deviations of the top five classes of the highest imbalanced ratios were 1.81% in
Class 14, 1.45% in Class 13, 1.27% in Class 12, 1.13% in Class 11, and 1.03% in Class 10.

• As a remark, the baseline CNN algorithm serves as a common architecture that was
adopted in many existing works. The main theme is the distant transfer learning
process between distant multiple-source domains and target domains.

3.2.2. One Auxiliary Domain

To reveal the benefits of two auxiliar domains, one less domain was formulated. The
two scenarios were (i) a GAN-based auxiliary domain based on the source domain; and
(ii) a GAN-based auxiliary domain based on the target domain. Similar to the settings of
Section 3.2.1 with two auxiliary domains, Tables 4 and 5 summarize the performance of the
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best model for the multiple datasets (from 1 to 4) using specificity, sensitivity, and accuracy
for scenario (i) and scenario (ii), respectively. In both scenarios, the performance of the
target models was enhanced with the increase in the number of datasets. Compared with
the proposed GANAD-DFCNTA algorithm with two auxiliary domains, the formulation
with one GAN-based auxiliar domain based on the source domain is less accurate, and a
GAN-based auxiliar domain based on the target domain is least accurate. This revealed that
both auxiliar domains were important to bridge the gap between domains using distant
transfer learning.

• Cross-validation: Only single-split training and testing datasets were defined in related
works [11–14]. Our work and [16] adopted 5-fold cross-validation.

• Ablation study: An ablation study was omitted in some works [11,12,14]. Our work
and [13,16] included an ablation study to analyze the effectiveness of the individual
components of the algorithm where multiple techniques were incorporated.

• Sensitivity and specificity: The differences between sensitivity and specificity were
3.22% for [11] which suggests a slightly biased classification towards the majority class.
The differences in our work were ranged from 0.621 to 0.928%. Other works [12–14,16]
did not report the sensitivity and specificity.

• Accuracy: Our work outperformed the existing work [11,13,14,16] by 0.303–5.19%.
Compared with [12], our work enhanced the accuracy by 0.303–2.47% in 8 out of 9 scenarios.

3.3. Performance Comparison between GANAD-DFCNTA Algorithm and Existing Works

Table 6 compares the performance between GANAD-DFCNTA algorithm and exist-
ing works. For fair comparison, only target domains that were matched with the four
benchmark datasets in [32–35] were included.

The discussion of the comparison was presented based on each item:

• Method: The basic architecture for ECG classification was typically the CNN, ex-
cept [14] when using XGBoost. The CNN was a useful architecture that could auto-
matically extract a feature and serve as a classifier.

• Source domain: In related works, the source domain was similar to the target domain
in the field of ECG datasets. To the best of our knowledge, this work was the first
work to consider distant transfer learning for ECG classifications with multiple distant
source domains and target domains.

• Target domain: In related works, the MIT-BIH arrhythmia database [11–13,16] and
the long-term ST database [14] were considered as the benchmark datasets in the
target domain. Our work included two more benchmark datasets, the European ST-T
database and the long–term ST database, for analysis.

To further analyze the effectiveness of the deep-learning-based algorithm, it was
compared with traditional machine learning algorithms. Table 7 summarizes the results. It
can be seen from the results that our work outperformed existing works with traditional
machine learning in all the target ECG classification models. The accuracy of our GANAD-
DFCNTA algorithm outperformed existing works by 36.3% in PTB-XL, 6.88% in the MIT-
BIH arrhythmia database, 2.54–2.98% in the European ST-T database, and 2.96–8.94% in the
long–term ST database. Therefore, it is worth formulating the ECG classification problem
with deep learning, even though traditional machine learning has less model complexity.
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Table 6. Performance comparison between GANAD-DFCNTA algorithm and existing deep-learning-
based works.

Work Method Source
Domain

Target
Domain

Cross-
Validation

Ablation
Study Specificity (%) Sensitivity (%) Accuracy (%)

[11]
Continuous

wavelet transform
and CNN

ImageNet MIT-BIH Arrhythmia
Database No No 96.2 99.3 99.1

[12]
RMSprop, Adam,
SGDM optimizers,

and CNN

ImageNet and
COCO

MIT-BIH Arrhythmia
Database No No N/A N/A 97.0 to 99.5

[13]
Short-time Fourier

transform and
CNN

ImageNet MIT-BIH Arrhythmia
Database No Yes N/A N/A 97.0

[14]
Continuous

wavelet transform
and XGBoost

COCO

MIT-BIH Arrhythmia
Database and
Long-Term ST

Database

No No N/A N/A 98.3

[16] Autoencoder and
CNN

Dataset from
different
hospitals

MIT-BIH Arrhythmia
Database and 5-fold Yes N/A N/A 94.5% to 98.9%

Our Work GANAD-DFCNTA
and CNN

ImageNet,
COCO,

WordNet, and
Sentiment140

PTB-XL

5-fold Yes

96.6 97.2 96.9
MIT-BIH Arrhythmia

Database, 99.1 99.7 99.4

European ST-T
Database, and 96.4 97.1 96.8

Long-Term ST
Database 97.9 97.0 97.5

Table 7. Performance comparison between GANAD-DFCNTA algorithm and traditional machine
learning works.

Work Method Dataset Cross-
Validation

Ablation
Study Specificity (%) Sensitivity (%) Accuracy (%)

[41] Few-shot learning with
random forest PTB-XL 5-fold No 67.8 68.4 N/A

[42] K-nearest neighbor, PTB-XL No No N/A N/A 71.1

Our Work GANAD-DFCNTA, and
CNN PTB-XL 5-fold Yes 96.6 97.2 96.9

[43] Support vector machine
with SMOTE

MIT-BIH
Arrhythmia

Database
5-fold Yes N/A N/A 93

[44] Decision tree
MIT-BIH

Arrhythmia
Database

10-fold No 98.6 88.6 N/A

Our Work GANAD-DFCNTA and
CNN

MIT-BIH
Arrhythmia

Database
5-fold Yes 99.1 99.7 99.4

[45] Complex support vector
machine

European ST-T
Database No No N/A N/A 94

[46] Subspace k-nearest
neighbor

European ST-T
Database 10-fold No N/A N/A 94.4

Our Work GANAD-DFCNTA and
CNN

European ST-T
Database 5-fold Yes 96.4 97.1 96.8

[47] Support vector machine Long-Term ST
Database 5-fold No N/A N/A 94.7

[47] Neural network Long-Term ST
Database 5-fold No N/A N/A 89.5

Our Work GANAD-DFCNTA and
CNN

Long-Term ST
Database 5-fold Yes 97.9 97.0 97.5

4. Ablation Studies

Ablation studies of the GANAD-DFCNTA algorithm were carried out to evaluate the
effectiveness of the components. Four algorithms, namely DFCNTA, GANAD-FCNTA,
GANAD-DCNTA, and GANAD-DFNTA, were considered.

4.1. DFCNTA

To evaluate the effectiveness of the generative-adversarial-network-based auxiliary
domains algorithm, we considered the DFCNTA algorithm for ECG classifications in the
four target domains. Table 8 presents the performance of the DFCNTA algorithm.

The key observations were drawn as follows:

• The percentage improvement of the specificity, sensitivity, and accuracy in PTB-XL
was: 0.323, 0.213, and 0.276% for one dataset; 0.647, 0.640, and 0.643% for two datasets;
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1.08, 0.961, and 0.989% for three datasets; 1.29, 1.07, and 1.18% for four datasets; and
0.323, 0.268, and 0.295% on average.

• The percentage improvement of the specificity, sensitivity, and accuracy in the MIT-
BIH arrhythmia database was: 0.424, 0.421, and 0.422% for one dataset; 0.742, 0.736,
and 0.738% for two datasets; 0.953, 1.05, and 0.988% for three datasets; 1.27, 1.25, and
1.26% for four datasets; and 0.318, 0.313, and 0.315% on average.

• The percentage improvement of the specificity, sensitivity, and accuracy in the Euro-
pean ST-T database was: 0.324, 0.428, and 0.382% for one dataset; 0.756, 0.749, and
0.752% for two datasets; 0.972, 1.07, and 0.995% for three datasets; 1.30, 0.962, and
1.09% for four datasets; and 0.325, 0.241, and 0.273% on average.

• The percentage improvement of the specificity, sensitivity, and accuracy in the long-
term ST database was: 0.424, 0.321, and 0.379% for one dataset; 0.742, 0.641, and 0.690%
for two datasets; 0.953, 0.962, and 0.956% for three datasets; 1.27, 1.18, and 1.22% for
four datasets; and 0.318, 0.295, and 0.305% on average.

• Consider four dataset-based scenarios: the GANAD-DFCNTA algorithm outperforms
the DFCNTA algorithm by 2.77, 2.64, and 2.69% for PTB-XL; 3.66, 3.53, and 3.58%
for the MIT-BIH arrhythmia database; 2.77, 2.53, and 2.71% for the European ST-T
database; and 2.41, 2.43, and 2.42% for the long-term ST database.

Table 8. Performance evaluation of the DFCNTA algorithm.

Specificity/Sensitivity/Accuracy (%)

Target Dataset Baseline One Dataset Two Datasets Three Datasets Four Datasets

PTB-XL [32] 92.8/93.7/93.3 93.1/93.9/93.5 93.4/94.3/93.9 93.8/94.6/94.2 94.0/94.7/94.4
MIT-BIH Arrhythmia Database [33] 94.4/95.1/94.8 94.8/95.5/95.2 95.1/95.8/95.5 95.3/96.1/95.7 95.6/96.3/96.0

European ST-T Database [34] 92.6/93.5/93.0 92.9/93.9/93.4 93.3/94.2/93.7 93.5/94.5/94.0 93.8/94.7/94.2
Long-Term ST Database [35] 94.4/93.6/94.1 94.8/93.9/94.4 95.1/94.2/94.7 95.3/94.5/94.9 95.6/94.7/95.2

To further investigate the effectiveness of the generative-adversarial-network-based
auxiliary domains algorithm, the performance of Classes 10–14 in the MIT-BIH arrhyth-
mia database [33] with and without the algorithm is summarized in Table 9. The key
observations were explained as follows:

• The percentage improvement of the accuracy in Class 10 was: 29.9% for one dataset,
25.7% for two datasets, 25.6% for three datasets, 21.0% for four datasets, and 25.6%
on average.

• The percentage improvement of the accuracy in Class 11 was: 28.5% for one dataset,
32.1% for two datasets, 31.6% for three datasets, 28.6% for four datasets, and 30.2%
on average.

• The percentage improvement of the accuracy in Class 12 was: 40.3% for one dataset,
33.6% for two datasets, 34.7% for three datasets, 36.3% for four datasets, and 34.7%
on average.

• The percentage improvement of the accuracy in Class 13 was: 44.8% for one dataset,
41.7% for two datasets, 43.8% for three datasets, 37.6% for four datasets, and 42.0%
on average.

• The percentage improvement of the accuracy in Class 14 was: 153% for one dataset,
120% for two datasets, 56.8% for three datasets, 66.7% for four datasets, and 99.1%
on average.
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Table 9. Performance comparison between the GANAD-DFCNTA and DFCNTA algorithms.

Accuracy (%)

Algorithm Class One Dataset Two Datasets Three Datasets Four Datasets

GANAD-DFCNTA

Class 10 74.7 78.2 83.9 87.1
Class 11 70.3 75.7 81.6 84.0
Class 12 68.9 73.1 78.8 82.3
Class 13 62.7 68.3 74.5 77.9
Class 14 47.5 55 58.8 62.5

DFCNTA

Class 10 57.5 62.2 66.8 72.0
Class 11 54.7 57.3 62 65.3
Class 12 49.1 54.7 58.5 60.4
Class 13 43.3 48.2 51.8 56.6
Class 14 18.8 25 37.5 37.5

The improvement was due to the contribution of the generation of additional training
data to enhance the model. Particularly, the enhancement was more significant in the minor-
ity classes (for example, Classes 10–14 in Table 9). This aligned with the nature of machine
learning problems where biased classification is usually towards the majority classes.

4.2. GANAD-FCNTA

To evaluate the effectiveness of the domain level in the domain-feature-classifier
negative-transfer-avoidance algorithm, we considered the generative-adversarial-network-
based auxiliary domains with the domain-feature-classifier negative-transfer-avoidance
(GANAD-FCNTA) algorithm for ECG classifications in the four target domains. Table 10
presents its performance.

Table 10. Performance evaluation of the GANAD-FCNTA algorithm.

Specificity/Sensitivity/Accuracy (%)

Target Dataset Baseline One Dataset Two Datasets Three Datasets Four Datasets

PTB-XL [32] 92.8/93.7/93.3 93.3/94.1/93.7 93.7/94.6/94.2 94.1/94.9/94.5 94.2/95.1/94.7
MIT-BIH Arrhythmia Database [33] 94.4/95.1/94.8 95.1/95.8/95.5 95.5/96.2/95.9 95.9/96.8/96.4 96.4/97.1/96.8

European ST-T Database [34] 92.6/93.5/93.0 93.1/94.1/93.6 93.7/94.6/94.1 94.3/95.3/94.8 95.0/95.9/95.4
Long-Term ST Database [35] 94.4/93.6/94.1 95.1/94.2/94.7 95.5/94.6/95.1 96.0/95.2/95.7 96.6/95.7/96.2

The key observations were drawn as follows:

• The percentage improvement of the specificity, sensitivity, and accuracy in PTB-XL
was: 0.539, 0.467, and 0.502% for one dataset; 0.970, 0.961, and 0.965% for two datasets;
1.40, 1.28, and 1.34% for three datasets; 1.51, 1.49, and 1.50% for four datasets; and
0.378, 0.373, and 0.375% on average.

• The percentage improvement of the specificity, sensitivity, and accuracy in the MIT-
BIH arrhythmia database was: 0.742, 0.736, and 0.739% for one dataset; 1.17, 1.16, and
1.16% for two datasets; 1.59, 1.79, and 1.69% for three datasets; 2.12, 2.10, and 2.11%
for four datasets; and 0.53, 0.525, and 0.528% on average.

• The percentage improvement of the specificity, sensitivity, and accuracy in the Euro-
pean ST-T database was: 0.540, 0.642, and 0.610% for one dataset; 1.19, 1.18, and 1.18%
for two datasets; 1.84, 1.93, and 1.89% for three datasets; 2.59, 2.57, and 2.58% for four
datasets; and 0.648, 0.643, and 0.645% on average.

• The percentage improvement of the specificity, sensitivity, and accuracy in the long-
term ST database was: 0.742, 0.641, and 0.689% for one dataset; 1.17, 1.07, and 1.11%
for two datasets; 1.69, 1.71, and 1.70% for three datasets; 2.33, 2.24, and 2.27% for four
datasets; and 0.583, 0.56, and 0.568% on average.
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• Consider four dataset-based scenarios: the GANAD-DFCNTA algorithm outper-
formed the GANAD-FCNTA algorithm by 2.55, 2.21, and 2.32% for PTB-XL; 2.80,
2.68, and 2.73% for the MIT-BIH arrhythmia database; 1.47, 1.25, and 1.36% for the
European ST-T database; and 1.35, 1.36, and 1.35% for the long-term ST database.

The findings reveal that the domain level-based negative transfer avoidance algorithm
is important to the enhancement of the accuracy of the target model. Particularly, the
dissimilar between the source and target domains in distant transfer learning is high, that
requires the incorporation of domain-level information in the algorithm.

4.3. GANAD-DCNTA

To evaluate the effectiveness of the feature level in the domain-feature-classifier
negative-transfer-avoidance algorithm, we considered the generative-adversarial-network-
based auxiliary domains with the domain-feature-classifier negative-transfer-avoidance
(GANAD-DCNTA) algorithm for ECG classifications in the four target domains. Table 11
presents its performance.

Table 11. Performance evaluation of the GANAD-DCNTA algorithm.

Specificity/Sensitivity/Accuracy (%)

Target Dataset Baseline One Dataset Two Datasets Three Datasets Four Datasets

PTB-XL [32] 92.8/93.7/93.3 92.8/93.7/93.3 93.5/94.2/93.9 94.1/95.0/94.6 94.6/95.4/95.0
MIT-BIH Arrhythmia Database [33] 94.4/95.1/94.8 94.4/95.1/94.8 95.2/95.9/95.6 95.8/96.4/96.1 96.4/97.2/96.8

European ST-T Database [34] 92.6/93.5/93.0 92.6/93.5/93.0 93.3/94.3/93.8 94.1/95.3/94.7 94.7/95.8/95.2
Long-Term ST Database [35] 94.4/93.6/94.1 94.4/93.6/94.1 95.3/94.4/94.9 96.0/95.1/95.7 96.6/95.8/96.3

The key observations were drawn as follows:

• The percentage improvement of the specificity, sensitivity, and accuracy in PTB-XL
was: 0.754, 0.534, and 0.643% for one dataset; 1.40, 1.39, and 1.39% for two datasets;
1.94, 1.81, and 1.86% for three datasets; 2.48, 2.13, and 2.25% for four datasets; and 0.62,
0.533, and 0.563% on average.

• The percentage improvement of the specificity, sensitivity, and accuracy in the MIT-
BIH arrhythmia database was: 0.847, 0.841, and 0.844% for one dataset; 1.48, 1.37, and
1.42% for two datasets; 2.12, 2.21, and 2.17% for three datasets; 2.54, 2.42, and 2.47%
for four datasets; and 0.635, 0.605, and 0.618% on average.

• The percentage improvement of the specificity, sensitivity, and accuracy in the Euro-
pean ST-T database was: 0.756, 0.856, and 0.802% for one dataset; 1.62, 1.93, and 1.81%
for two datasets; 2.27, 2.46, and 2.35% for three datasets; 2.81, 2.99, and 2.88% for four
datasets; and 0.703, 0.748, and 0.72% on average.

• The percentage improvement of the specificity, sensitivity, and accuracy in the long-
term ST database was: 0.953, 0.855, and 0.899% for one dataset; 1.69, 1.60, and 1.65%
for two datasets; 2.33, 2.35, and 2.34% for three datasets; 2.86, 2.88, and 2.87% for four
datasets; and 0.715, 0.72, and 0.718% on average.

• Consider four dataset-based scenarios: the GANAD-DFCNTA algorithm outper-
formed the GANAD-FCNTA algorithm by 1.58, 1.57, and 1.57% for PTB-XL; 2.38,
2.36, and 2.37% for the MIT-BIH arrhythmia database; 1.26, 0.831, and 1.11% for the
European ST-T database; and 0.824, 0.727, and 0.767% for the long-term ST database.

The findings revealed that the feature-level-based negative-transfer-avoidance algo-
rithm enhanced the accuracy of the target model. Transferring new features from the source
domain and retaining representative features in the target domain were two essential
factors for the feature construction process.
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4.4. GANAD-DFNTA

To evaluate the effectiveness of the classifier level in the domain-feature-classifier
negative-transfer-avoidance algorithm, we considered the generative-adversarial-network-
based auxiliary domains with the domain-feature-classifier negative-transfer-avoidance
(GANAD-DFNTA) algorithm for ECG classifications in the four target domains. Table 12
presents its performance.

Table 12. Performance evaluation of the GANAD-DFNTA algorithm.

Specificity/Sensitivity/Accuracy (%)

Target Dataset Baseline One Dataset Two Datasets Three Datasets Four Datasets

PTB-XL [32] 92.8/93.7/93.3 93.2/94.0/93.6 93.6/94.4/94.0 93.9/94.7/94.4 94.2/95.0/94.7
MIT-BIH Arrhythmia Database [33] 94.4/95.1/94.8 95.0/95.7/95.4 95.4/96.1/95.8 95.8/96.7/96.3 96.1/97.0/96.6

European ST-T Database [34] 92.6/93.5/93.0 93.0/94.0/93.5 93.5/94.5/94.0 94.0/95.0/94.5 94.4/95.4/94.9
Long Term ST Database [35] 94.4/93.6/94.1 94.9/94.1/94.6 95.4/94.6/95.1 95.8/95.0/95.5 96.2/95.4/95.9

The key observations were drawn as follows:

• The percentage improvement of the specificity, sensitivity, and accuracy in PTB-XL
was: 0.431, 0.320, and 0.375% for one dataset; 0.862, 0.747, and 0.785% for two datasets;
1.19, 1.07, and 1.13% for three datasets; 1.51, 1.39, and 1.45% for four datasets; and
0.378, 0.348, and 0.363% on average.

• The percentage improvement of the specificity, sensitivity, and accuracy in the MIT-
BIH arrhythmia database was: 0.636, 0.631, and 0.633% for one dataset; 1.06, 1.05, and
1.05% for two datasets; 1.48, 1.68, and 1.58% for three datasets; 1.80, 2.00, and 1.90%
for four datasets; and 0.45, 0.5, and 0.475% on average.

• The percentage improvement of the specificity, sensitivity, and accuracy in the Eu-
ropean ST-T database was: 0.432, 0.535, and 0.538% for one dataset; 0.972, 1.07, and
1.02% for two datasets; 1.51, 1.60, and 1.55% for three datasets; 1.94, 2.03, and 1.98%
for four datasets; and 0.485, 0.508, and 0.495% on average.

• The percentage improvement of the specificity, sensitivity, and accuracy in the long-
term ST database was: 0.530, 0.534, and 0.532% for one dataset; 1.06, 1.07, and 1.06%
for two datasets; 1.48, 1.50, and 1.49% for three datasets; 1.91, 1.92, and 1.91% for four
datasets; and 0.478, 0.48, and 0.479% on average.

• Consider four dataset-based scenarios: the GANAD-DFCNTA algorithm outper-
formed the GANAD-DFNTA algorithm by 2.55, 2.32, and 2.43% for PTB-XL; 3.12,
2.78, and 2.90% for the MIT-BIH arrhythmia database; 2.12, 1.78, and 2.00% for the
European ST-T database; and 1.77, 1.68, and 1.72% for the long-term ST database.

The findings revealed that the classifier-level-based negative-transfer-avoidance algo-
rithm enhanced the accuracy of the target model. The fine tuning of the hyperparameters
of the classifiers in the target model was crucial to ensure a positive transfer.

5. Conclusions

Distant transfer learning has received attention in recent years because the constraints
of the high similarities between the source and target domains are released. Owning the
fact that distant transfer learning has not yet been studied in ECG classification problems,
this paper conducted a research study on the applicability of distant transfer learning
for ECG classifications. A generative-adversarial-network-based auxiliary domain with
the domain-feature-classifier negative-transfer-avoidance algorithm was proposed. Four
benchmark distant-domain datasets were selected as source datasets, and four benchmark
ECG datasets were selected as target datasets. A performance evaluation of the proposed
algorithm showed that the accuracy improvement was 3.67 to 4.89% using four source
datasets. Compared with existing works using traditional transfer learning, our work
enhanced the accuracy of the ECG classification by 0.303–5.19%. Ablation studies on
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the generative-adversarial-network-based auxiliary domains algorithm with the domain-
feature-classifier negative-transfer-avoidance algorithm also confirmed the effectiveness of
the components.

As the first work to study distant transfer learning in ECG classifications with auxiliary
domains, several future research directions were discussed: (i) investing an algorithm for
the selection of appropriate distant source domains; (ii) investing an algorithm for the
minimization of the number of distant source domains; (iii) merging similar and distant
source domains to further enhance the performance of the target model; (iv) studying
other baseline classification models; (v) investigating the performance of ECG classification
models using varying settings such as personalized, interpatient, and intrapatient ECG
classifications; (vi) enhancing the images with an image enhancement algorithm [48]; and
(vii) proposing new variants of the generative adversarial network for data generation [49].
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