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Abstract: (1) Background: In this paper, an artificial neural network approach for effective and
real-time quantitative microwave breast imaging is proposed. It proposes some numerical analyses
for the optimization of the network architecture and the improvement of recovery performance
and processing time in the microwave breast imaging framework, which represents a fundamental
preliminary step for future diagnostic applications. (2) Methods: The methodological analysis of
the proposed approach is based on two main aspects: firstly, the definition and generation of a
proper database adopted for the training of the neural networks and, secondly, the design and
analysis of different neural network architectures. (3) Results: The methodology was tested in noisy
numerical scenarios with different values of SNR showing good robustness against noise. The results
seem very promising in comparison with conventional nonlinear inverse scattering approaches
from a qualitative as well as a quantitative point of view. (4) Conclusion: The use of quantitative
microwave imaging and neural networks can represent a valid alternative to (or completion of)
modern conventional medical imaging techniques since it is cheaper, safer, fast, and quantitative,
thus suitable to assist medical decisions.

Keywords: microwave tomography; breast imaging; neural networks; artificial intelligence;
electromagnetic inverse scattering

1. Introduction
1.1. Motivation

Breast cancer is one of the commonest types of cancer which affects women, and its
early detection is of vital importance for successful treatments [1–3]. Among the commonest
clinical imaging and diagnostic modalities employed for this aim it is worth mentioning
X-ray mammography, magnetic resonance imaging (MRI), ultrasound scanning and nuclear
medicine [4].

X-ray mammography is based on the use of very-high-frequency radiations (10 PHz–
10 EHz) which travels along the scanned area. Thus, it exploits ionizing radiations and
it represents an uncomfortable exam due to compression of the breast to carry out the
diagnosis. Some other limitations are related to the limited dynamic range, low contrast
and grainy image, for which it is difficult to visualise very subtle lesions in women who
have implants or surgical scars [5]. Another disadvantage is related to its poor spatial
resolution and the requirement of a large storage place.

Conversely, due to the use of ionizing radiation to perform the investigation, the use
of breast MRI is more recommended for women who are high risk, representing a valuable
alternative to X-ray mammography since it does not involve any ionizing radiation expo-
sure. This medical exam produces good spatial resolution images but has some limitations
related to the low specificity which results in further tests and biopsies, which drives higher
costs [6]. Besides being expensive, this imaging modality is not portable, is slow in the
acquisition process and is unsuitable for patients with metallic devices implanted.
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Breast ultrasound imaging, which is based on the use of ultrasonic mechanical waves
for non-invasive diagnostics, is used as a follow-up test for abnormalities found by mam-
mogram and provides some guidelines for biopsy inspections. This medical examination
produces both qualitative and quantitative diagnostic information with a good image
quality [7]. The main drawbacks are related to the operator-dependent nature of this exam
and to the poor resolution of the image and the low contrast.

Complementary information can be inferred from nuclear medicine, whose functional
images are based on the molecular properties of the tissues and on the injected radioactive
substance. This imaging modality uses ionizing radiation, as in the mammography case,
and it is very expensive. Different from the other imaging modalities, it can investigate the
physiological function of the system, but has limited resolution and slow imaging time [8].

The drawbacks and limitations of the aforementioned diagnostic methodologies have
motivated the research community to develop new imaging techniques and modalities to
realise early, reliable and inexpensive diagnostics. In this framework, the use of microwaves
for breast imaging and cancer detection has received significant attention, since they might
provide better sensitivity and safety due to their non-ionizing nature [9,10].

Microwave tomography exploits microwave signals to investigate breast tissues and
provide quantitative permittivity and conductivity maps (the dielectric properties) of the
imaged tissues. This imaging technique offers several advantages over other classical
methods since it is not expensive, is non-ionizing, and is comfortable with respect to the
treatment [11]. The capability of these systems to perform the imaging is related to the fact
that different types of tissues, including both normal and malignant ones, have different
electrical properties in the microwave frequency range, both in terms of permittivity and
conductivity values [12]. Thus, by virtue of these differences, microwave imaging might
represent a good candidate to discriminate between healthy and cancer tissues, and the
clinical benefits deriving from its use for imaging purposes are supported by several articles
in the scientific literature [9,11,13–15].

In particular, microwave systems can provide complementary information on the
investigated regions which can be merged with the one deriving from traditional exams to
support medical decisions. Nevertheless, there are still some technical challenges and open
topics to be solved, which involve both hardware and software [11,15]. Among them, it is
worth mentioning the challenges related to the choice of an effective coupling medium to
maximise the microwave signal transmitted into the body, the design of proper microwave
antennas to allow a high enough number of sensors in a small area to investigate the region
of interest, and the reduction of the impact of mutual coupling between close antennas and
electromagnetic interference with other radio-frequency devices.

Moreover, another main limitation, especially for quantitative microwave imaging, is
related to the well-known nonlinearity and ill-posedness issues and their consequences
affecting these kinds of inverse problems, such as the presence of local minima [16],
and whose difficulty further increases when dealing with three-dimensional modelling,
which is computationally demanding. In particular, the impact of the ill-posedness can be
partially mitigated by exploiting some a priori information [17–19].

It is worth noting that, since the use of microwave imaging in the medical community
is relatively recent compared to other state-of-the-art approaches, the authors intended this
work to explore the potentialities that the proposed neural-network-based methodology
allows us to reach in terms of imaging performance in the context of microwave breast
imaging. For these motivations, in this manuscript we did not report a comparison with
other conventional imaging modalities nor some recoveries including the malignant-tissue
case, which will be properly considered in future work. The main aim of this work is to
explore the potential improvement that the proposed methodology allows us to obtain in
terms of the quality of the recovery.



Bioengineering 2022, 9, 651 3 of 22

1.2. Prototypes

Due to the potentialities of the microwave imaging modality, several research groups
developed and realised different prototypes in recent years. In [20], the authors propose a
2D imaging system which consists of a circular array of 12 printed monopole antennas with
some recoveries related to simplified phantoms that mimic the human tissues. Further work
more focused on the radar system hardware is reported in [21–24]. Complementary to the
previous articles, the effort of the research community was also focused on software aspects,
such as finding hybrid nonlinear strategies to improve the recovery performance [25] or
the improvement in sensitivity of radar-based breast imaging [26]. All the previously
mentioned work contributed to the development of microwave breast imaging. As a matter
of fact, the last years have been characterised by several clinical trials [27–32]. Nevertheless,
these systems all share the feature of employing more antennas arranged around the object
of interest with more (virtual or real) transmitters and receivers with the aim of producing
an image of the objects located in the investigation region. These approaches are also
called tomographic.

Initial experimental setups consisted of a three-dimensional (3D) prototype for mi-
crowave tomography with more transmitters and one receiver which surrounded the
imaging domain and were controlled by a motion control system [33]. In this case, the ob-
ject to be imaged was immersed in deionized water (used as matching medium) in a
cylindrical chamber. Other systems followed this setup with an increment in the number of
employed antennas [34]. After these preliminary microwave imaging experiences, some
clinical prototypes were developed and tested, still preserving the cylindrical arrangement
of the sensors around the imaging area [35,36], but employing a different kind of antenna
immersed in a saline coupling medium to improve signal penetration inside the tissues.
After that, several improvements followed in both hardware and software [37–39] which
yielded to the latest arrangement of the antennas located in a hemispherical shape to make
the exam more comfortable on the patient’s side [40,41].

Nowadays, some of the aforementioned imaging systems have started their active clini-
cal trials, showing the potentialities of this technology for supporting medical decisions [42].
Some results of these trials are summarised in Table 1.

Table 1. Summary of main microwave breast imaging systems with studies on patients [42].

System Position Processing Frequency
[GHz] Antenna Scan Time Reference

Bristol University prone radar 3–8 slot 30 s [26]
Dartmouth College prone tomographic 0.7–1.7 monopole 5 min [22]

ETRI (Korea) prone tomographic 3–6 monopole 15 s/slice [28]
McGill University—table prone radar 2–4 TWTLTLA 18 min [29]

McGill University—wearable wearable radar 2–4 microstrip 5 min [29]
Southern University of China prone radar 4–8 horn 4 min [30]

Calgary University prone radar 1.3–7.6 vivaldi 30 min [31]
Microwave Vision prone radar 1–4 vivaldi 10 min [23]

Mammowave prone Huygens 1–9 PulsON P200 10 min [32]
Kobe University supine tomographic 0.05–12 UWB 30 min [24]

1.3. Algorithms

In order to obtain the permittivity and conductivity maps of the imaged tissues,
an inversion algorithm can be adopted for solving the electromagnetic inverse scattering
(EIS) problem, which is ill-posed and strongly nonlinear in its general formulation [16].
The non-linearity of the considered inverse problem is related to the multiple scattering
interactions between points of different tissues and also inside the same tissue, which
makes the problem at hand hard to solve and affected by false solutions. These two
challenging issues have stimulated different research groups to develop several methods in
order to provide tomographic qualitative as well as quantitative images of the biological
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tissues under test [16,43]. In this framework, the former approaches aim at identifying the
pathology within a region without, necessarily, providing an image of the region under
test [10,42] while the latter ones aim at producing full maps of the biological tissues in
terms of permittivity and conductivity or in terms of labels which are uniquely related to
the considered tissues (i.e., segmentation and classification maps).

The possibility of providing quantitative maps of the electromagnetic properties of
tissues under test in a non-invasive way can represent a paramount tool for diagnostic
purposes. In this context, the capability of tomographic approaches to provide maps of
the investigated biological tissues makes them very attractive for clinical applications.
Thus, several imaging strategies have been developed over the past thirty years to solve
this problem. With regard to the tomographic approaches, three main categories can be
identified: qualitative, approximated and quantitative methods [44].

Qualitative methods aim at solving an inverse obstacle problem [45–47] by processing
the scattered field and providing an estimation of the total tissue extension in the breast,
but not its characterisation (i.e., the type of tissue). Approximated methods exploit some
approximations of the scattering phenomena in order to allow easy implementation and to
keep the computational complexity low. Although they are quite fast, they suffer from some
limitations related to the adopted approximated model, as in the case of the well-known
Born and Kirchhoff approximations [48]. Another relevant linearised approach proposed
in recent years for biomedical imaging purposes is based on the virtual experiments
framework [49], which is based on the combination of real and “virtual” experiments that
propose a linear approximation of the EIS problem in the case of non-weak scattering
regime. Furthermore, higher-order Born approximations can be exploited to reconstruct
the conductivity function of the dielectric tissues under test [50].

In order to overcome the limited retrieving performance related to the aforementioned
classes, quantitative approaches can be exploited [51]. With regard to these methods,
the class of retrievable objects becomes wider at the expense of higher computational
burden and processing time. Different iterative approaches can be employed to solve this
problem and to face the issues related to non-linearity which may drive into false solutions
due to the presence of local minima. Due to the high computational complexity of these
methods, some local minimisation approaches are adopted and thus the choice of the initial
step is paramount [52]. However, when the non-linearity of the problem at hand is very
strong, then it might be beneficial to use global optimization to avoid local minima [44,53].
Unfortunately, their complexity grows exponentially with the number of unknowns and
this makes their use very hard to apply for realistic and/or real-time applications. Moreover,
due to non-linearity, the inversion procedure may be more sensitive to modelling errors
and uncertainties on the scenario.

1.4. Machine Learning for Quantitative Microwave Imaging

In the framework of inverse problems, fast and reliable non-linear approaches are
desirable for addressing the imaging problem in the biomedical area of breast cancer
diagnostics. Among the most recent methodologies, artificial neural networks represent
a useful and flexible tool for quantitative imaging. As a matter of fact, neural networks
and artificial intelligence proved to perform well in the field of computer vision, image
processing and classification. First, methodologies based on artificial neural networks
were applied to extract some general information about the geometric and electromagnetic
properties of the scatterers and tissues at hand [54,55]. Most of these first attempts to face
the imaging problem via neural networks used a few spatial as well as electromagnetic
parameters to represent the scatterers.

Recently, most of the literature has focused on the use of deep convolutional neural
networks (CNNs) for solving the inverse problem [56–62]. Neural networks with regression
features have provided very impressive results on EIS problems. The majority of these
articles do not propose a direct inversion scheme, i.e., the approach does not allow us to
move directly from the data collected at receivers to an estimate of the profile, but they
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usually perform a super-resolution of the recovery starting from a raw image obtained
via other conventional approaches. One of the most adopted techniques consists of the
training of a U-net architecture [63] for obtaining quantitative recoveries via preliminary
manipulations, e.g., approximated models and a priori information to move from the data
(i.e., the scattered field samples) to contrast/induced currents approximations [57,58]. In
order to solve the EIS problem with high contrast, a contrast-source-based neural network
combined with a traditional subspace-based optimisation method and CNNs might be
employed [59]. Furthermore, neural networks can be also employed as regularisation
strategies in conventional inversion approaches [64,65] as well as to obtain super-resolved
reconstructions [66].

Contrary to the contemporary scientific literature which focuses on the use of CNNs,
in this work we focused on artificial neural networks (ANNs) based on multilayer percep-
trons. This kind of network allows us to implement a direct inversion scheme from the
scattered field samples to directly retrieve a quantitative map of the dielectric features of
breast profiles in a fast, efficient way. Despite the ease in network design, a critical issue lies
in the choice of a large enough dataset for training the network, which proves to be of vital
importance for the estimation of the links’ strength between nodes [63]. Thus, the main
bottleneck of this kind of approaches is related to the computational burden required to
train the network. Nevertheless, after the initial training, then a direct mapping between
data and unknowns can be obtained, producing reliable images in a considerably fast
inversion procedure.

Inspired by the universal approximation theorem (UAT) [67]—which states that any
arbitrary non-linear function can be approximated via a proper fully-connected neural
network with a large number of neurons in its hidden layers under some mild assumptions—
in this manuscript we propose an ANN architecture for the real-time quantitative imaging
of female breast dielectric properties. The motivation in choosing such an architecture
is supported by the need to define a general approach for the retrieval of whatever non-
linear profile, as supported by the UAT. As a matter of fact, in an ANN architecture, all
the inputs contribute to every single output, resulting in being more suitable for this
kind of application than CNNs, the latter being the default choice when dealing with
highly-structured modalities such as images or video.

It is worth noting that the proposed work is focused on the potentialities that deep
learning via quantitative tomographic imaging at microwave frequencies can deliver in
the framework of biomedical breast imaging. Moreover, the use of an end-to-end network
which implements a direct inversion scheme further strengthens the proposed approach,
allowing the processing of the scattered field samples to provide a quantitative map of the
tissues properties.

Therefore, in short, it is possible to summarize the main element of novelty of the
considered work into three main aspects:

• The use of fully-connected neural networks to perform quantitative imaging of the
breast tissues;

• The use of a direct inversion scheme to obtain the permittivity and conductivity maps
of breast tissues;

• The realistic in-house numerical phantom generator and the corresponding dataset for
an overall population of 120,000 elements, which is paramount for a proper training
of the neural networks to perform a certain task, and therefore an important element
of novelty.

On the other hand, the main limitations of the proposed methodology, as with most
deep learning approaches, lie in the initial training time necessary for the correct operation
of the neural networks and in the database generation which is task-specific. Nevertheless,
it is worth noting that, except for the initial training time, the quantitative imaging of the
target tissues is very fast (less than 0.01 s on a Linux Mint machine with an AMD Ryzen
Threadripper 3990X processor and 250 GB RAM memory).
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The outline of the paper is as follows. In Section 2, an overview of the mathematics
involved in electromagnetic inverse scattering (EIS) problem is recapped. In Section 3,
an overview of the proposed fully-connected ANN approach is reported with a focus on the
dataset generation dealing with a realistic breast-like phantom generator for the database
population. Finally, some results on synthetic breast phantoms are shown in Section 4 and
a comparison with conventional nonlinear EIS approaches is proposed. Some conclusions
are drawn at the end of the article.

2. Problem Statement

In the following, a simplified two-dimensional geometry is considered. The back-
ground medium is supposed to be homogeneous with complex permittivity εb and with
magnetic permeability µ0 = 4π · 10−7 H/m. The reason for such an assumption is related
to the fact that biological tissues are characterised by a constant value of the magnetic
permeability while a certain variability of the complex permittivity can be observed. The
antennas are located along a measurement curve Γ which surrounds the imaging domain
Ω. The targets located inside this domain are illuminated via transverse-magnetic electric
fields generated by z-oriented current wires located on Γ.

A sketch of the geometry is reported in Figure 1. The scattering phenomena depend on
the contrast between the dielectric properties of the background medium and those ones of
the target. The aim of the proposed method is to provide the breast tissue properties maps
by solving an EIS problem, i.e., their relative complex permittivity ε(r) = ε′(r)− j σ(r)

ωε0
,

with ε′(r) and σ(r) being the relative permittivity and conductivity maps, respectively.
Thus, the electromagnetic scattering equations ruling these phenomena can be written
as [16]:

Es = Ae
(
ε′, σ, Et

)
+ n , (1)

Et = Ei +Ai
(
ε′, σ, Et

)
, (2)

in which the dependence on the operating frequency and background dielectric features
have been implied. Ei and Et represent the incident and total electric field inside the
imaging domain Ω, respectively, while Es represents scattered field at receivers locations
on Γ. The quantities Ai and Ae are the radiating operators which depend on the dielectric
properties of background medium εb, and n is the noise which affects the collected data,
here assumed to be additive, white and Gaussian (AWGN).

Figure 1. Sketch of the 2D geometry. The antennas are located on the measurement line Γ and
arranged in a multiview-multistatic fashion.
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As regards the imaging applications, the considered framework can be dealt with as
an EIS problem consisting of the retrieval of a quantitative estimate of the unknown relative
permittivity ε′ and conductivity σ functions inside Ω from the scattered field samples
measured on Γ. As previously stated in Section 1.3, such a problem is both nonlinear and
ill-posed [43,68,69], thus finding a solution to this problem is not trivial and requires facing
a high computational burden and time-consuming approaches. Nevertheless, reliable and
fast algorithms able to provide dielectric properties maps of the tissues under test are desir-
able for early diagnosis in the biomedical field. In this framework, conventional nonlinear
approaches can achieve good recovery performance [70–74] at the expense of high compu-
tational burden, which might imply no real time applications. Moreover, considerable a
priori information and data pre-processing are required to obtain reliable recoveries.

In this framework, artificial neural networks (ANNs) can be of interest and represent
a very attractive alternative to real-time applications with more accurate reconstructions.
In this case, the challenge is related to the network design and the dataset generation for
the training step which considerably impacts on the recovery performance.

3. Methodology

In order to define the proposed approach to solving the inverse problem at hand, two
main aspects have to be described: the characteristics of the database adopted for the ANN
training and the layout of the implemented neural network.

3.1. Breast Database

In order to perform quantitative inversion via neural networks in a reliable way, it is
fundamental to properly model the specific scenario under test and to have large datasets
of realistic breast profiles. Some research groups focused on the generation of these datasets
to be used by the scientific community [75,76]. Unfortunately, in most cases the available
population is very limited or not flexible enough to be exploited in the framework of
neural networks training, since they are limited to a specific measurement configuration
and/or in a certain frequency range. In order to overcome these limitations and with the
aim of providing a useful simulation tool for the testing of breast microwave imaging
algorithms, a numerical realistic breast phantom generator has been developed to populate
the database. After that, the corresponding scattering matrices are calculated, exploiting a
forward solver based on the method of moments (MoM). These matrices, together with
the generated breast profiles, represent the data adopted for the proposed neural network
approach. Figure 2 illustrates the main steps of the breasts’ phantom generation, which
together with the related scattering matrices define the database. The whole procedure is
detailed in the following.

It is worth noting that the aim of the generated dataset is focused on providing a
performance assessment of artificial neural networks (ANN) approaches for quantitative
microwave breast imaging to be used for clinical applications of breast cancer. Future
work will deal with the improvement of recovery performance, tumor detection and
characterization at different operating conditions.

The first step of the generator consists of the creation of an elliptical-shape phantom.
The dimensions of the ellipse axes vary uniformly in the range [6.5, 12] cm. The center of
the ellipse is randomly set inside a circle of radius 1 cm and located in the middle of the
imaging domain. The orientation of the ellipse and its thickness, emulating the skin layer,
are also randomly selected in the range [0, 2π] and [1.5, 2.5] mm, respectively.

The geometry of breast inner tissues is generated by exploiting a stochastic 2D multi-
fractal random field generator [77]. The obtained map is segmented into three tissues,
i.e., the fibro-glandular, the transitional and the adipose tissues. Similar to [12], we chose to
simulate four breast classes characterized by different tissues percentage, as reported in
Table 2, to test the inversion performance.
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(a) (b) (c)

Figure 2. Overview of the realistic numerical breast phantom generation procedure. (a) Elliptical-
shape phantom generation with corresponding skin layer. (b) Internal-tissue spatial distribution
via a random field generator [77] and (c) estimated electromagnetic (i.e., relative permittivity and
conductivity) tissues assignment (for the sake of brevity, only the relative permittivity is reported).

Table 2. Breast phantom tissues composition.

Class Percentage of Tissue (%)

Fibro-glandular Transitional Adipose
A 5–20 5–15 65–90
B 20–30 10–20 50–70
C 30–40 15–20 40–55
D 40–65 20–25 10–40

In order to generate realistic values of the tissues dielectric features, they are generated
according to the statistical distributions estimated from the database described in [12].
Finally, spatial correlation among neighbouring pixels has been added to the data. This
procedure is repeated to populate the database composed of 120,000 profiles (30,000 per
each breast class). For each profile (discretized into 108× 108 pixels), the scattering matrix
has been computed via a fast Fourier transform-conjugate gradient (FFT-CG) forward
solver based on the MoM [68] assuming a multiview-multistatic system with transmitters
and receivers located in 30 angular equally-spaced locations on a measurement circle of
radius 12 cm. The transmitting signal is a line source at a fixed frequency which impinges
on an imaging domain of size 15× 15 cm2 discretized according to Richmond’s rule [78].

The database has been partitioned in order to use the 85% of the profiles for the
training phase, the 10% for the validation phase and the remaining 5% for the testing.

3.2. Neural Network Design and Training

Differently from other approaches presented in literature, in this manuscript a fully-
connected architecture is considered instead of the commonly adopted CNNs. Some
preliminary (and partial) work can be found in [79–81].

The key concept of an EIS inversion consists of the fact that a direct mapping be-
tween two different spaces, i.e., the scattered field and the dielectric contrast, is established.
Most of the work proposed in the scientific literature focuses on the use of CNNs architec-
ture [56–58], but these architectures are very useful typically when the input information
flow is local, i.e., each output value is related to an input subset, such as denoising or
despeckling applications [82,83]. Conversely, in the case of EIS problems, there is not a
direct link between the data and unknown spaces, therefore a preliminary extra-mapping
is usually required for reaching good accuracy and optimal inversion performance. Practi-
cally, an initial raw inversion is mostly performed to move from the data to the unknown
space, and then a CNN architecture is usually applied which represents the second part
of a two-step inversion procedure [58]. Thus, for imaging purposes, the fully connected
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ANN’s feature of having global links between all nodes of consecutive layers seems to be
the key aspect to us.

A sketch of the adopted neural network architectures is reported in Figure 3. As previ-
ously mentioned, a direct mapping between the scattered field samples (yi, i = {1, 2, . . . , M},
with M number of scattered field samples) and the tissues relative permittivity εr and con-
ductivity σ pixel by pixel (xj, j = {1, 2, . . . , N}, with N number of pixels in the imaging
domain) is established. In the network architectures considered in the following, an adap-
tive moment estimation method (ADAM) was employed to minimize an l2-cost function
with an initial learning rate of 5 · 10−5 and 30 epochs per each training phase. It is worth
noting that in all the considered numerical tests, a wide enough dataset (composed of
102,000 breast profiles for the training) was adopted to avoid the risk of overfitting, as con-
firmed by the validation and training loss curves. This aspect, which also drives a heavy
computational burden due to the high number of trainable parameters to be learnt, rep-
resents one of the main limiting factors compared to convolutional neural networks and
other conventional approaches. All the information mentioned previously regarding the
adopted neural network architecture and its training is summarized in Table 3 for the sake
of clarity.

Figure 3. Sketch of the inversion procedure. The input of the fully-connected neural network is the
scattering matrix Esct re-arranged in a vector form yi, i = {1, 2, . . . , M}, with M number of scattered
field samples. The output of is represented by the tissues relative permittivity εr and conductivity σ

pixel by pixel xj, j = {1, 2, . . . , N}, with N number of pixels in the imaging domain.

Table 3. Details on the implemented neural network architecture.

Neural Network Details

Input size 1800 (30× 30× 2)
Output size 23,328 (108× 108× 2)
Optimization method ADAM, initial learning rate: 5 · 10−5

Training epochs 30
Mini-batch size 64
Architecture 3 layers, 2000 nodes per each
Population 120,000 (training: 85%, validation: 10%, testing: 5%)

A proper numerical analysis of the optimal network layout in terms of number of
hidden layers and neurons is reported in the performance assessment in Section 4.1. Re-
garding the computational time, the training of each architecture depends on the number
of involved layers and varies from 3 h (1 layer) up to 8 h (5 layers), while the inversion
phase is real-time, requiring about 3.5 ms to estimate the permittivity and conductivity
maps. These evaluations were performed on a Linux 64 bit workstation with an AMD
Ryzen 3990X processor and an NVIDIA Quadro RTX 6000 graphics card.
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3.3. Quality Performance Indicator on Testing Population

In order to perform a numerical assessment, some quantitative, fair metrics to deter-
mine the quality of the recoveries are required. Conventionally in the image processing
community, parameters such as the normalized root mean square error (NRMSE) and the
structural similarity index measure (SSIM) are considered. Nevertheless, every metric has
its own peculiarities and makes it possible to capture only a limited amount of information
regarding the retrieved image. Thus, in order to integrate this information and to evaluate
the capability of the approach in terms of details retrieval, another quality measure based
on the analysis of the spectral features of the reconstruction profile is here proposed. This
approach can be considered as the evaluation of the filtering properties of the inverse
radiating operator and of the imaging algorithm.

For every image of the testing set, the 2D power spectrum in polar coordinates (ν, θ)
was evaluated and averaged with respect to all the images spectra, obtaining a mean-
squared spectrum T (ν, θ). By averaging along the angle coordinate, a one-dimensional
spectrum S(ν) is obtained, i.e.,

T (ν, θ) =
1
N

N

∑
n=1
|F (x̃n)|2 , (3)

S(ν) = 1
2π

∫ π

−π
T (ν, θ)dθ , (4)

in which N = 6000 is the number of testing profiles, F is the Fourier transform operator,
x̃n is the retrieved estimate of the breast profile obtained via ANN inversion.

The motivation supporting this performance indicator lies in the fact that the closer
the recovery is to the true profile, the closer their spectral information will be, providing
an indirect measure of the filtering properties of the inverse radiating operator and of its
impact at each frequency. This procedure clearly yields a spectral comparison rather than a
direct similarity measure. Thus, the radial spectrum indicator of Equation (4) is exploited to
further improve the reconstruction performance analysis of the different ANN architectures
considered in Section 4.1 and to properly identify a good trade-off between computational
burden (for the network training) and high accuracy values.

4. Results

In this section a numerical analysis to properly design the network architecture, i.e., the
number of nodes and layers, will be addressed. Moreover, the methodology is tested in
the case of different scenarios. The recovery performance was evaluated by comparing
the proposed ANN reconstructions with those ones obtained via conventional nonlinear
approaches.

4.1. Performance Assessment

In order to find a trade-off between computational complexity and accuracy in the
recovery, a performance assessment on different network topologies was carried out. As
a first analysis, the impact of the number of nodes was evaluated in the case of a three-layer
fully-connected network. As expected, Figure 4 shows that the higher the number of nodes,
the better the quality of the recovery since the averaged spectrum S(ν) tends to the ideal
behavior of the true profile. Nevertheless, the higher the number of nodes, the higher the
computational burden, which yields a longer training time. Thus, the 2000-node case was
selected since the improvement in the averaged spectrum trend starts to be negligible from
this topology and represents a good trade-off for the computational complexity.

Complementary to the previous analysis, a similar study about the number of layers
was performed. To this aim, the averaged spectrum S(ν) is reported while increasing
the number of hidden layers from one to five and adopting 2000 nodes per each layer.
The related results are shown in Figure 5. In this case, there is no visible difference in the
recovery performance among the networks using more than three layers.
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Figure 4. Averaged spectrum S(ν) for six different three-layer architectures as a function of nodes
number per each hidden layer.

Thus, in order to keep the computational burden reasonably low and, at the same time,
a reconstruction quality sufficiently high, a three-layer, 2000-node architecture was selected
(except the last regression layer not considered in these analyses). It is worth noting that
we selected a number of breast profiles in the dataset high enough for ensuring an effective
training for all the architectures considered in this work.

Figure 5. Averaged spectrum S(ν) for five different architectures with two-thousand nodes per layer
as a function of the number of hidden layers.

4.2. Comparison with Other Nonlinear Approaches

The performance of the real-time ANN approach proposed has previously been com-
pared with other well-known nonlinear methods, which are the distorted Born iterative
method (DBIM) [84,85] and the contrast source inversion (CSI) [86]. In the former case,
a solution to the considered inverse problem is sought via a series of linear problems
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which gradually recover the full nonlinear profile, while in the latter case an iterative in-
version scheme based on a functional minimisation involving both Equations (1) and (2) is
exploited. These conventional nonlinear inversion approaches are iterative and usually em-
ploy local minimisation schemes in order to avoid prohibitive computational time required
by global optimisation schemes. Under these assumptions, the choice of the initial guess
for starting the minimization procedure becomes paramount for obtaining good recoveries.
In more detail, the authors adopted the DBIM implementation proposed in [70], which is a
multi-frequency, multi-threshold sparse-based approach named AMTISTA, and, for the
CSI implementation, the one proposed in [87] in its cross-correlated formulation (CC-CSI).

Figures 6 and 7 show the retrieved complex permittivity maps (i.e., real and imaginary
parts) for four different breast profiles, one per each breast class (A-D) at the operating fre-
quency of 1 GHz and with data corrupted by additive white Gaussian noise (AWGN) with
a signal-to-noise ratio (SNR) equal to 30 dB. Further information regarding the considered
configuration and the data generation is reported in Section 3.1. More specifically, these
figures compare the recoveries obtained by the proposed ANN approach with other con-
ventional nonlinear inversion strategies. It is worth noting that the recoveries obtained via
adopting AMTISTA and CC-CSI were carried out with a frequency-hopping process using
five frequencies—{200, 400, 600, 800, 1000} MHz—and starting the initial local minimiza-
tion procedure from the background. Conversely, the proposed neural network approach
processes the single-frequency data with no a priori information and in a direct fashion,
i.e., no iteration is required, and it is still able to guarantee good accuracy and a better
resolution performance compared with the considered conventional nonlinear approaches
as reported in Figures 6 and 7.

To realize a quantitative comparison among the considered reconstructions, three qual-
ity metrics were employed further to the quality spectral indicator reported in Equation (4):
the structural similarity index (SSIM, values in the range [0, 1], higher is better), the nor-
malised root mean square error (NRMSE, values in the range [0, 1], lower is better) and
the correlation coefficient (CORR, values in amplitude in the range [0, 1], higher is better).
These metrics were evaluated via default Matlab® functions and are reported in Table 4,
while the spectral indicators of Equation (4) are shown in Figure 8.

Table 4. Quality metrics for both permittivity and conductivity retrieved maps of Figures 6 and 7.
The bold quantities refer to the best value per row, identifying the approach which provides the best
recovery according to the considered metric.

Breast
Phantom

Quality
Metric

AMTISTA CC-CSI ANN

ε′ σ ε′ σ ε′ σ

Breast 1
SSIM 0.10 0.02 0.20 0.16 0.45 0.24

NRMSE 0.15 0.62 0.35 7.00 0.06 0.22
CORR 0.70 0.56 0.06 0.23 0.89 0.86

Breast 2
SSIM 0.05 0.22 0.17 0.24 0.46 0.21

NRMSE 0.14 0.36 0.35 3.44 0.10 0.21
CORR 0.78 0.75 0.44 0.18 0.85 0.86

Breast 3
SSIM 0.06 0.22 0.19 0.18 0.45 0.27

NRMSE 0.14 0.36 0.19 1.70 0.08 0.17
CORR 0.76 0.74 0.66 0.17 0.86 0.89

Breast 4
SSIM 0.06 0.04 0.25 0.30 0.40 0.21

NRMSE 0.14 0.46 0.10 0.34 0.07 0.17
CORR 0.79 0.79 0.81 0.74 0.87 0.88
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(a) AMTISTA (b) CC-CSI (c) ANN (d) Breast 1

(e) AMTISTA (f) CC-CSI (g) ANN (h) Breast 2

(i) AMTISTA (j) CC-CSI (k) ANN (l) Breast 3

(m) AMTISTA (n) CC-CSI (o) ANN (p) Breast 4

Figure 6. Comparison between recoveries related to four different breast profiles (one per each class).
Retrieved relative permittivity maps (dimensionless quantity) for AMTISTA (DBIM formulation
as reported in [70]) (a,e,i,m), cross-correlated CSI (CC-CSI) [87] (b,f,j,n), and proposed ANN ap-
proach (c,g,k,o). Reference permittivity maps are reported in (d,h,l,p). Both the x and y axes are in
centimeter units.

By comparing the recoveries and looking at the quality metrics, which are better in
the ANN case than in the AMTISTA and CC-CSI cases, it is clear that the proposed ANN
approach outperforms these classical techniques, providing good performance also on the
conductivity estimate, which represents the hardest part to be retrieved by conventional
methods and also the most important information for diagnostic and therapeutic treatments.

As further proof of the good and stable recovery performance obtained by exploiting
the proposed ANN architecture, Figure 9 and Table 5 report the histograms and corre-
sponding means and standard deviations of the considered quality metrics for the whole
testing population. It is interesting to note by considering these values that the recov-
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ery performance remains quite stable on the whole testing population regardless of the
breast type.

(a) AMTISTA (b) CC-CSI (c) ANN (d) Breast 1

(e) AMTISTA (f) CC-CSI (g) ANN (h) Breast 2

(i) AMTISTA (j) CC-CSI (k) ANN (l) Breast 3

(m) AMTISTA (n) CC-CSI (o) ANN (p) Breast 4

Figure 7. Comparison between recoveries related to four different breast profiles (one per each class).
Retrieved conductivity maps (measure unit: S/m) for AMTISTA (DBIM formulation as reported
in [70]) (a,e,i,m), cross-correlated CSI (CC-CSI) [87] (b,f,j,n), and proposed ANN approach (c,g,k,o).
Reference conductivity maps are reported in (d,h,l,p). Both the x and y axes are in centimeter units.

Concerning the computational time, the proposed ANN approach results in a real-time
procedure, conversely from conventional nonlinear approaches which are time-consuming
per frequency and, sometimes, also per iteration (e.g., the AMTISTA case, for which a
forward solver has to be run at each inversion iteration, involving at least 1.5-h simulation
for 30 iterations for all the five frequencies on the same workstation). It is worth observing
that the proposed ANN approach is able to provide information about the shape and
location of the breast and, more specifically, about the skin layer, which still represents an
issue for its dielectric features and thickness at the considered operating frequency.
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(a) (b)

(c) (d)

Figure 8. One-dimensional power spectrum indicator of Equation (4) for the retrieved profiles
reported in Figures 6 and 7.

Figure 9. Histograms evaluated on the whole testing population for the adopted metrics.

Furthermore, the good recovery performance noticeable in the reconstructions related
to tissues relative permittivity maps are also evident in the corresponding conductivity
maps, which still represents the hardest, most challenging part in nowadays inverse
scattering imaging approaches.

In order to test the robustness of the proposed method versus noise, Figure 10 illus-
trates a comparison among the recoveries of the selected breast phantoms reported in
Figures 6 and 7 for a much lower value of the SNR, i.e., 5 dB. The corresponding quality
metrics are reported in Table 6. These results prove that the proposed approach is robust
against noise and has good inversion performance in very noisy scenarios.
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(a) SNR = 5 dB (b) Breast 1 (c) SNR = 5 dB (d) Breast 1

(e) SNR = 5 dB (f) Breast 2 (g) SNR = 5 dB (h) Breast 2

(i) SNR = 5 dB (j) Breast 3 (k) SNR = 5 dB (l) Breast 3

(m) SNR = 5 dB (n) Breast 4 (o) SNR = 5 dB (p) Breast 4

Figure 10. Performance assessment of the proposed ANN approach for an SNR = 5 dB. Retrieved per-
mittivity ((a,e,i,m)—dimensionless quantity) and conductivity ((c,g,k,o)—measure unit: S/m) maps,
and corresponding reference profiles (b,f,j,n,d,h,l,p). Both the x and y axes are in centimeter units.

To further prove the robustness of the approach, its recovery performance was tested
on realistic numerical breast phantoms generated from magnetic resonance images of
female breasts collected by the Cross-disciplinary Electromagnetics Laboratory at the
University of Wisconsin-Madison (CEM-UW) [12,75].

Thus, a few slices of these breast phantoms reported in the repository were considered,
i.e., breast ID: 012204, slice 54, and breast ID: 062204, slices 47 and 71, which correspond
to some examples of classes B and C, respectively. The measurement configuration and
frequency were the same as the ones reported in Section 3.1 and an AWGN noise with
SNR = 30 dB was applied to the data. As proved by the results shown in Figure 11, the re-
coveries were still good, especially on the conductivity of the considered breast profiles,
and also allows good enough resolution of the skin layer and a fast inversion approach.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 11. Recoveries obtained via the proposed ANN approach for some realistic breast phantoms
proposed by [12,75]. Breast ID: 012204, slice 54: retrieved permittivity and conductivity maps (a,c)
and reference (b,d). Breast ID: 062204, slices 47 and 71: retrieved permittivity and conductivity maps
(e,i,g,k), and references (f,j,h,l), respectively.

Table 5. Means and standard deviations of the considered quality metrics per each class of the testing
population (6000 breast profiles in total). The number of profiles per class is reported in brackets).

Breast
Class

Quality
Metrics

Retrieved Permittivity Retrieved Conductivity

Mean Standard Deviation Mean Standard Deviation

A
(1422)

SSIM 0.458 0.035 0.182 0.040
NRMSE 0.102 0.031 0.345 0.100
CORR 0.795 0.066 0.779 0.067

B
(2115)

SSIM 0.453 0.037 0.179 0.043
NRMSE 0.102 0.030 0.253 0.066
CORR 0.818 0.056 0.835 0.045

C
(1837)

SSIM 0.431 0.036 0.158 0.037
NRMSE 0.104 0.035 0.225 0.062
CORR 0.818 0.060 0.845 0.046

D
(626)

SSIM 0.417 0.035 0.147 0.035
NRMSE 0.087 0.028 0.176 0.043
CORR 0.849 0.048 0.871 0.037
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Table 6. Quality metrics for retrieved maps of Figure 10 in the case of high and low noise.

SNR 30 dB 5 dB

Quality Metric SSIM NRMSE CORR SSIM NRMSE CORR

Breast 1 ε′ 0.50 0.06 0.89 0.46 0.08 0.85
σ 0.21 0.23 0.86 0.21 0.31 0.81

Breast 2 ε′ 0.46 0.10 0.85 0.44 0.13 0.78
σ 0.21 0.21 0.86 0.20 0.29 0.80

Breast 3 ε′ 0.45 0.08 0.86 0.36 0.12 0.79
σ 0.27 0.17 0.89 0.18 0.26 0.82

Breast 4 ε′ 0.45 0.07 0.87 0.38 0.12 0.77
σ 0.19 0.17 0.88 0.09 0.28 0.80

5. Conclusions

In this paper, a fully-connected artificial neural network for real-time microwave
breast imaging applications has been proposed. The considered network was trained by
exploiting an in-house realistic breast-like phantom generator adopted for the dataset
population and by in-house forward solver codes for the generation of the scattered field
data matrices to be exploited in the training of the network.

The methodology was tested in numerical noisy scenarios with different values of SNR
proving good robustness against noise (i.e., 30 and 5 dB) and a performance assessment
for the choice of the network architecture was carried out. It is worth noting that the
recovery performance depends on the network architecture and each topology provides an
improvement in retrieving information in proper bandwidths of the scenario under test.

The results seem good in comparison with conventional nonlinear inverse scattering
approaches from a quantitative point of view as confirmed by the metrics reported in
Tables 4 and 5. Indeed, by considering the quality metrics reported in Table 4, it is worth
noting that the proposed neural network-based approach allows us to obtain a better
recovery performance compared with the considered state-of-the-art approaches in terms
of permittivity and conductivity. Furthermore, the values of the metrics reported in Table 5
confirm the general improvement in the quality of the recoveries obtained by the proposed
approach on the whole testing population. Lastly, the considered ANN approach proved
to be robust versus noise and promising enough to be used on realistic anthropomorphic
breast phantoms and, potentially, on experimental data.

The proposed real-time methodology allows us to obtain good recoveries both in terms
of permittivity and conductivity maps, the latter usually representing an issue in inverse
scattering approaches but also important, useful information for biomedical applications in
diagnostics and therapy.

Future work will focus on the design of advanced neural network strategies to im-
prove the quality of the results, enhancing resolution capability, and to process a three-
dimensional dataset for the detection and characterization of potential malignant areas,
also via exploiting more complex architecture and testing on laboratory experimental data.
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Abbreviations
The following abbreviations are used in this manuscript:

MRI Magnetic Resonance Imaging
SNR Signal to Noise Ratio
EIS Electromagnetic Inverse Scattering
CNN Convolutional Neural Network
ANN Artificial Neural Network
UAT Universal Approximation Theorem
AWGN Additive, White, Gaussian Noise
MoM Method of Moments
FFT-CG Fast Fourier Transform-Conjugate Gradient
NRMSE Normalised Root mean Square Error
SSIM Structural Similarity Index Measure
DBIM Distorted Born Iterative Method
CSI Contrast Source Inversion
CC-CSI Cross Correlated-Contrast Source Inversion
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