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Abstract: Lately, deep learning technology has been extensively investigated for accelerating dynamic
magnetic resonance (MR) imaging, with encouraging progresses achieved. However, without fully
sampled reference data for training, the current approaches may have limited abilities in recov-
ering fine details or structures. To address this challenge, this paper proposes a self-supervised
collaborative learning framework (SelfCoLearn) for accurate dynamic MR image reconstruction from
undersampled k-space data directly. The proposed SelfCoLearn is equipped with three important
components, namely, dual-network collaborative learning, reunderampling data augmentation and
a special-designed co-training loss. The framework is flexible and can be integrated into various
model-based iterative un-rolled networks. The proposed method has been evaluated on an in vivo
dataset and was compared to four state-of-the-art methods. The results show that the proposed
method possesses strong capabilities in capturing essential and inherent representations for direct
reconstructions from the undersampled k-space data and thus enables high-quality and fast dynamic
MR imaging.

Keywords: dynamic MR imaging; self-supervised learning; collaborative learning; reunderampling
data augmentation; co-training loss

1. Introduction

Deep learning-based dynamic magnetic resonance (MR) imaging has attracted substan-
tial attention in recent years. It draws knowledge from big datasets via network training
and then uses the trained network to reconstruct a dynamic image from the undersam-
pled k-space data. Compared to the classical compressed sensing methods [1–7], deep
learning-based methods have made encouraging performances and progresses.

Based on the reliance on the fully sampled dataset or not, existing methods for dynamic
MR imaging can be roughly classified into two types [8–10]: fully-supervised methods
and unsupervised methods. For the fully-supervised methods, data pairs are needed for
the training of the neural networks between the corrupted/ undersampled data and the
ground truth/fully sampled data [11–18]. In this category, different network structures and
prior knowledge have been explored [19–26]. For example, Schlemper et al. proposed a
cascade network architecture composed of an intermediate de-aliasing convolutional neural
network (CNN) module and a data consistency layer [22]. Chen et al. applied bidirectional
convolutional recurrent neural network (CRNN) with interleaved data consistency to
accelerate MR imaging [23]. Chen et al. designed a parallel framework, including a
time-frequency domain CRNN and an image domain CRNN to simultaneously exploit
spatiotemporal correlations [24]. Wang et al. applied both k-space and spatial prior
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knowledge to accelerate MR imaging [25]. Ke et al. exploited the low rank priors (SLR-
Net) [26]. The aforementioned methods have made great progress in accelerating dynamic
MRI reconstruction. However, one major challenge of the above methods is that, in many
practical imaging scenarios, obtaining high-quality fully sampled dynamic MR data is
infeasible due to various factors, such as the physiological motions of patients and imaging
speed restriction. Therefore, the requirement for fully sampled reference data of network
training limits the wide application of supervised learning methods.

To address this problem, researchers have developed unsupervised learning methods
to train models without fully sampled reference data [27–30]. For example, Jin et al.
extended the framework of deep image prior [31] to dynamic non-Cartesian MRI [29].
Recently, Yaman et al. proposed a classical self-supervised learning strategy (SSDU) for
static MR imaging [32], which divides the acquired undersampled data into two parts,
of which one is treated as input data, and another is used as the supervisory signals [33].
Subsequently, Acar et al. applied SSDU to reconstruct dynamic MR images [30]. The
above-mentioned works have made great contributions to unsupervised dynamic MR
image reconstruction. Nevertheless, since the undersampled data have incomplete inherent
representation compared to the fully sampled data, these works still have room to improve
in recovering fine details or structures.

To boost the performances for accelerating dynamic MR imaging without fully sam-
pled reference data, this paper proposes a self-supervised collaborative learning frame-
work named the SelfCoLearn. The SelfCoLearn is based on the assumption that the
latent representation of network predictions is consistent under different reundersam-
pling data augmentation from the same data. The SelfCoLearn performs collaborative
training of a dual-network using reundersampling data augmentation to explore more
sufficient prior knowledge compared to a single network. Specifically, from undersampled
k-space data, the reundersampling data augmentation operations are implemented to
obtain two reundersampling inputs for a dual-network. In addition, dual networks are
trained collaboratively with a special-designed co-training loss in an end-to-end manner.
By using this collaborative training strategy, the proposed framework can possess strong ca-
pabilities in capturing essential and inherent representations from the undersamled k-space
data in a self-supervised learning manner. Moreover, the proposed framework is flexible
and can be integrated with various model-based iterative un-rolled networks [34] for dy-
namic MR imaging. In summary, the main contributions of this work can be expressed
as follows:

1. We present a self-supervised collaborative learning framework with reundersampling
data augmentation for accelerating dynamic MR imaging. The proposed framework is
flexible and can be integrated with various model-based iterative un-rolled networks;

2. A co-training loss, including both undersampled consistency loss term and a con-
trastive consistency loss term, is designed to guide the end-to-end framework to
capture essential and inherent representations from undersamled k-space data;

3. Extensive experiments are conducted to evaluate the effectiveness of the proposed
SelfCoLearn with different model-based iterative un-rolled networks, with more
promising results obtained compared to self-supervised methods.

The remainder of this paper is organized as follows: Section 2 states the dynamic
MR imaging problem and the proposed SelfCoLearn with different backbone networks.
Section 3 summarizes the comparison experiments and results to demonstrate the effective-
ness of SelfCoLearn. Section 4 presents discussions about the impact of different backbone
networks and loss functions. Section 5 concludes the work.

2. Methodology
2.1. Dynamic MR Imaging Formulation

The problem of dynamic MR imaging aims to estimate dynamic MR image sequences
x ∈ CN from undersampled measurements y ∈ CM(M� N) in k-space. N = NhNW T is a
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vector. Nh and NW are the height and width of the frame, respectively. T represents the
number of frames in each sequence. Thus, the imaging model is described as follows:

y = Ax + e (1)

where e ∈ CM is noise and A = PF is an undersampled Fourier encoding operator, F is
2D Fourier transform to each frame in the image sequence and P is the undersampled
mask for each frame. In general, the reconstruction problem is formulated as the following
unconstrained optimization problem:

x∗ = arg min
x

1
2
‖Ax− y‖2

2 + λR(x) (2)

whereR(x) represents a prior regularization item on x, and λ is the weight of the regular-
ization. 1

2‖Ax− y‖2
2 is the data fidelity item, which guarantees the reconstruction result to

be consistent with the raw undersampled measurements.
For fully-supervised deep learning methods, it typically uses a CNN fCNN(y | θ) as

a regularization termR(x), by learning the mapping between corrupted/undersampled
data and their corresponding fully sampled data with parameters θ. Its mathematical
description can be given as:

θ∗ = arg min
θ

S

∑
i=1
L
(

fCNN(yi | θ), xre f
i

)
(3)

where i is the index of the subject in the training dataset, and S is its total number. xre f
i is

the ground truth (fully sampled reference data) of the subject data i. L(·) denotes the loss
function between the predicted output and the ground truth, which typically adopts the
l1−norm or l2−norm.

2.2. The Overall Framework

This work proposes a simple but effective self-supervised training framework for
dynamic MR imaging, whose paradigm is shown in Figure 1. The proposed framework
simultaneously trains two independent reconstruction networks, which have different
inputs and different weight parameters. The backbone network can adopt various iterative
un-rolled network, such as CRNN [23], k-t NEXT [21], and SLR-Net [26]. Based on the
consistency between two networks’ prediction results, the network provides complemen-
tary information for the to-be-reconstructed dynamic MR images in its peer partner. The
two networks will finally realize consistent reconstruction in the training process. Specifi-
cally, given a raw undersampled k-space data sequence Ω =

{
yt

Ω
}T

t=1, the original k-space

data yt
Ω are reundersampled to construct a partial data points sequence

{
yt

u
}T

t=1 as follows:

yt
u = Pt

u
(
yt

Ω
)
, t = 1, . . . , T, u = Θ, Λ (4)

where t is the sequence index, u denotes the index of the two training sequences and Pt
u is

the undersampled mask for frame t. To achieve full use of all data points in yt
Ω to learn

representation, and ensure that each network can provide complementary information for
the to-be-reconstructed dynamic MR images in its peer network, these training sequences
are generated to adhere to the following data augmented principles: (1) The union of data
points in two training sequences must be equal to the data yt

Ω, i.e., yt
Ω = yt

Θ ∪ yt
Λ. (2) The

data points in two training sequences should be different, i.e., yt
Θ 6= yt

Λ. (3) The training
sequences should include most of the low frequency signals and part of the high frequency
signals. Low frequency signals correspond to data points in the k-space center or close to it
and high frequency signals to the outer parts of the k-space. Following these principles, the
two training sequences contain different points in the high frequency region, and similar
data points in the low frequency region. It should be noted that data reundersampling is
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necessary only during training, whereas the reconstructed images can be inferred from the
test data directly.

Figure 1. An overview of the proposed self-supervised collaborative training framework. A raw
undersampled k-space data sequence yt

Ω is undersampled from the fully sampled data using an un-
dersampled mask Pt retrospectively, and then two k-space data sequences yt

Θ and yt
Λ are augmented

from yt
Ω. In the considered scenario, yt

Θ and yt
Λ are reundersampled from yt

Ω using reundersampled
mask Pt

Θ and Pt
Λ, respectively. Next, the two networks received inputs from zero-filling image

sequences of yt
Θ and yt

Λ. The predicted image sequences of networks are transformed to the k-space
data fΘ

(
yt

Θ
)

and fΛ
(
yt

Λ
)

by two-dimensional Fourier transform. Afterward, a co-training loss is
calculated using yt

Ω, fΘ
(
yt

Θ
)

and fΛ
(
yt

Λ
)
. The backbone reconstruction network can flexibly adopt

different iterative un-rolled network, such as CRNN, k-t NEXT and SLR-Net. Collaborative network-1
and collaborative network-2 have the same network structure but different weight parameters θΘ

and θΛ respectively.

2.3. Network Architectures
2.3.1. Model-Driven Deep Learning with Image-Domain Regularization

In these settings, the common practice is to decouple Equation (2) into a regularization
term and a data fidelity term via utilizing the variable splitting technique [22,23]. By
introducing an auxiliary variable z = x, Equation (2) can be re-formulated as a penalty
function [23], which can be expressed as follows:

arg min
x,z

λR(z) + 1
2
‖Ax− y‖2

2 + µ‖x− z‖2
2 (5)

where µ denotes a penalty parameter. Equation (5) can then be solved iteratively via
alternating minimization over z and x:

zn = arg min
z

λR(z) + µ‖xn−1 − z‖2
2 (6)

xn = arg min
x

1
2
‖Ax− y‖2

2 + µ‖x− zn‖2
2 (7)

where n ∈ {1, 2, . . . , N} is the nth iteration, x0 is the zero-filling image transformed from
original undersampled measurement, zn denotes the intermediate reconstruction sequence,
and xn denotes the final reconstruction sequence at each iteration. In Equation (7), the
operation on the intermediate reconstruction sequence zn is a data consistency step [22].
The iterative optimization process in Equations (6) and (7) is unrolled into a neural network.
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The CRNN [23] is a typical model-driven deep learning method with image-domain
regularization for dynamic MR imaging [35]. A single iteration of the CRNN can be
expressed as follows:

x(n)rnn = x(n−1)
rec + CRNN

(
x(n−1)

rec

)
(8)

x(n)rec = DC
(

x(n)rnn; y, λ
)

(9)

where x(n)rnn is the intermediate reconstruction sequence analogous to zn in Equation (6),
and x(n)rec denotes the final predicted result at each iteration analogous to xn in Equation (7).
The regularization subproblem in Equation (6) is solved by using a convolutional recurrent
neural network. The data consistency subproblem in Equation (7) is treated as a data
consistency network layer, which uses the original sampled k-space data points to replace
the corresponding data points in the reconstructed k-space data [22]. More details of CRNN
layers can be found in Ref. [23].

2.3.2. Model-Driven Deep Learning with Complementary Regularization

The complementary regularization is also an effective method for dynamic MR imag-
ing. The k-t NEXT [21] is a typical model-driven deep learning method with complementary
regularization [35], which exploits prior information in both combined spatial and temporal
Fourier (x-f) domain and spatiotemporal image (x-t) domain. A single iteration of the k-t
NEXT can be expressed as the following process:

ρ(n) = DC(ybase) + xf−CNN
(

y(n−1)
rec − ybase

)
, (10)

x(n)rec = CRNN
(

FH
f ρ(n); y0

)
, y(n)

rec = Fxyx(n)rec (11)

where ρ(n) denotes the intermediate reconstruction results in the x-f domain from xf-CNN
at nth iteration, x(n)rec denotes the reconstruction image sequence in the x-t domain at nth
iteration, ybase is the corresponding baseline signal, and Fxy and FH

f denote, respectively,
the Fourier transform in x-t domain and the inverse Fourier transform in x-f domain.

2.3.3. Model-Driven Deep Learning with Low-Rank Regularization

Another widely-used prior regularization is low-rank based dynamic MR imaging,
which applies low-rank priors as regularized terms. The SLR-Net [26] is a typical example
of a model-driven deep learning method with low-rank regularization. In the SLR-Net, by
introducing an auxiliary variable M, Equation (2) can be decoupled as the fidelity term,
sparse regularization term, and the low rank regularization term:

arg min
x,M

1
2
‖Ax− y‖2

2 + λ1‖Dx‖1 + λ2‖M‖∗ (12)

where D is a sparse transform in a certain sparse domain. M = Rx is a matrix (with size
(Nh × Nw, T)), in which each column corresponds to one frame in dynamic MR image
sequence. R is a reshaping operator. ‖M‖∗ is the nuclear norm. Previous works have
proven that nuclear norm minimization is effective in low-rank matrix recovery [36]. More
details of the iterative process in SLR-Net can be found in Ref. [26].

2.4. The Proposed Co-Training Loss

In this study, a co-training loss is defined to promote accurate dynamic MR image re-
construction in a self-supervised manner. The main idea of the co-training loss is to enforce
the consistency not only between the reconstruction results and the original undersampled
k-space data, but also between two network predictions. Compared with existing self-
supervised methods with single network, the consistency between two network predictions
is an additional regularization, which guides the dual-network to narrow the divergence
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and learn more correct information. Specifically, the co-training loss in SelfCoLearn, in-
cluding an undersampled consistency loss term and a contrastive consistency loss term, is
calculated to optimize the proposed framework.

Let fSel f CoLearn
(
yt

Ω
)

denote SelfCoLearn, yt
Ω is the original undersampled k-space

data. During training, two training sequences yt
Θ and yt

Λ are generated from yt
Ω following

the data augmented principles in Section 2.2 as follows:

yt
Θ = Pt

Θyt
Ω, yt

Λ = Pt
Λyt

Ω, (13)

where Pt
Θ and Pt

Λ are the reundersampled mask for yt
Ω. The undersampled consistency

loss is mainly referred to the actually sampled k-space points in yt
Ω, which ensures that

the corresponding sampled points in network prediction are consistent with the actually
sampled k-space points in yt

Ω. The actually sampled points in these two network predic-
tions are denoted as yt

Θ→Ω and yt
Λ→Ω, respectively. yt

Θ→Ω and yt
Λ→Ω in these two network

predictions can be written as:

yt
Θ→Ω = Pt f

(
yt

Θ
)
, yt

Λ→Ω = Pt f
(
yt

Λ
)
, (14)

where k-space data f
(
yt

Θ
)

and f
(
yt

Λ
)

are transformed from the predicted image sequences
of two networks, respectively. Pt is the undersampled mask, which is applied to generate
the raw undersampled k-space data yt

Ω from the fully sampled data.
The Undersampled Consistency loss term is used to calculate the MSE between the

actually sampled k-space points in yt
Ω and those predicted by the network as follows:

LUC =
∥∥yt

Θ→Ω − yt
Ω
∥∥2

2 +
∥∥yt

Λ→Ω − yt
Ω
∥∥2

2. (15)

In the ideal case, when different reundersampled k-space data from the same data
are set as inputs of the two networks, the networks’ predictions should approximate the
fully-sampled reference data after network optimization. However, when fully sampled
reference data are unavailable, these two networks can be trained only using the undersam-
pled consistency loss, and they will be likely to generate different prediction results, which
will lead to different reconstruction performances. As mentioned above, a contrastive
consistency loss is defined to compute the MSE between two network predictions obtained
by using different reundersampling inputs generated from the same data. Specially, the pro-
posed contrastive consistency loss term mainly refers to the points in network predictions
corresponding to unsampled k-space points in yt

Ω. Points ȳt
Θ→Ω and ȳt

Λ→Ω in two network
predictions f

(
yt

Θ
)

and f
(
yt

Λ
)

can be expressed as follows:

ȳt
Θ→Ω =

(
I− Pt) f

(
yt

Θ
)
, ȳt

Λ→Ω =
(
I− Pt) f

(
yt

Λ
)
, (16)

therefore, the Contrastive Consistency loss term is formulated as:

LCC =
∥∥ȳt

Θ→Ω − ȳt
Λ→Ω

∥∥2
2. (17)

combining the two loss terms, the final co-training loss function can be defined as follows:

Lco = LUC + γLCC, (18)

where γ is used to balance the weight parameter of the undersampled consistency loss
and the contrastive consistency loss. During the testing phase, the undersampled data is
used as input of the collaborative network-1 or collaborative network-2 to obtain the final
reconstruction result.

3. Experimental Results

Extensive experiments have been performed to evaluate the effectiveness of Self-
CoLearn. SelfCoLearn is compared with fully-supervised and self-supervised learning
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methods at different acceleration factors. Besides, SelfCoLearn with different backbone
networks for dynamic MR imaging have been experimented. Then, the results of the
ablation studies are reported to investigate the impacts of the undersampled consistency
loss term and contrastive consistency loss term. Finally, reconstruction results with a
different co-training loss calculated in different domains are reported to further evaluate
the proposed SelfCoLearn.

3.1. Experimental Setup
3.1.1. Dataset

The dataset includes fully sampled 2D+t complex-valued short-axis cardiac cine MR
data collected on a 3T Siemens Magnetom Trio scanner from 101 healthy volunteers. T1-
weighted FLASH sequence is utilized. Each scan includes single-slice FLASH acquisition
from the volunteer with retrospectively electrocardiogram ECG-gating. Each volunteer
needed to breath-hold for 15–20 s on each slice. The parameters of data acquisition include
24 receiving coils, FOV of 330 mm × 330 mm, acquisition matrix of 192 × 192, slice thickness
of 6 mm, repetition time of 50 ms, and echo time of 3 ms. Each scan with a single slice
covers the entire cardiac dynamic process with 25 temporal frames. This retrospective
study was approved by local ethics committee and the informed consent was obtained
from all of the involved volunteers. In the experiments, the set of scanned multi-coil MR
data for each frame is transformed to a single-channel MRI by the adaptive reconstruction
technique [37]. The corresponding k-space data to the single-channel MRI can be viewed
as a fully sampled single-coil data. To enlarge the training dataset, we implement data
augmentation strategies by shearing the single-channel complex-valued image along the
dimensions of x, y, and t. After data augmentation, the dataset includes 6214 complex-
valued data sequences of size 128 × 128 × 14. A total of 5950 cardiac MR data sequences
were selected as the training dataset, 50 cardiac sequences were used as the validation
dataset, and the remaining sequences were used for testing.

3.1.2. Reundersampling K-Space Data Augmentation

In the proposed method, the fully sampled data are only used to generate the original
undersampled k-space data yt

Ω with a Cartesian retrospective undersampled mask Pt.
Following the principles of training data augmentation in Section 2.2, yt

Ω is augmented to
two training sequences yt

Θ and yt
Λ with two Cartesian reundersampled masks Pt

Θ and Pt
Λ.

Pt
Θ with 2-fold acceleration is used for collaborative network-1, and Pt

Λ, which combines
the complementary set of Pt

Θ with some low-frequency data points of Pt, is used for
collaborative network-2.

3.1.3. Evaluation Metrics

Reconstruction performances are evaluated by calculating mean-squared-error (MSE),
peak-signal-to-noise ratio (PSNR), and structural similarity index (SSIM) [38] on magnitude
images. The evaluation metrics are measured between the reconstruction image sequence
Rec with the reference image sequence Ref as follows:

MSE = ‖Ref− Rec‖2
2 (19)

PSNR = 20 log10
MAXRe f√

MSE
(20)

SSIM =

(
2µRe f µRec + c1

)(
2σRe f ,Rec + c2

)
(

µ2
Re f + µ2

Rec + c1

)(
σ2

Re f + σ2
Rec + c2

) (21)

where MAXRe f is the maximum possible value in the image. µRe f and µRec are the averaged
intensity values of the corresponding images. σRe f and σRec are the variances. c1 and c2
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are adjustable constants. σRe f ,Rec is the covariance. (details of SSIM index can be found in
Ref. [38]).

3.1.4. Model Configuration and Implementation Details

The proposed framework is flexible and can be integrated with various iterative un-
rolled networks, such as CRNN, k-t NEXT and SLR-Net. Most of our experiments adopt
CRNN as the backbone network. In detail, the network is composed of a bidirectional
CRNN layer, three CRNN layers, a 2D CNN layer, a residual connection and a DC layer.
For the bidirectional CRNN and CRNN layer, the convolution filter is set as 64 and the
kernel size is set as 3. The 2D CNN layer has kernel size k = 3 and convolution filter
N f = 2. We use stride = 1 and the padding is set to half of the filter size (rounded down).
The DC layer is followed by the 2D CNN layer, which forces the actually sampled points in
the predicted k-space data to be consistent with that in the input data.

For model training, the number of iteration steps is set to N = 5. The batch size is set
to 1. All training data and test data are normalized to the range of [0, 1]. The SelfCoLearn
framework with CRNN and k-t NEXT is implemented in PyTorch 1.8.1, and that with
SLR-Net is implemented in Tensorflow 2.2.0. The experiments are performed on an Nvidia
Titan Xp GPU, with 12GB memory. SelfCoLearn is trained by Adam optimizer [39] with
parameters β1 = 0.5 and β2 = 0.999. The learning rate is set to 10−4. The weight parameter
γ in co-training loss is set to 0.01. It takes 52 h to train SelfCoLearn with CRNN and each
cardiac MR data sequence takes roughly 0.5 s to get the reconstructed result.

3.2. Comparisons to State-of-the-Art Unsupervised Methods

To evaluate the proposed SelfCoLearn, we compared it with two self-supervised
methods, SS-DCCNN and SS-CRNN, at different acceleration factors. It is worth noting that
the state-of-the-art self-supervised method SSDU [32] was developed for static MR imaging.
Ref. [30] adopted a similar self-supervised training manner as SSDU for dynamic MR
imaging. They evaluated several backbone architectures for dynamic MR imaging including
DCCNN and CRNN, whereas SSDU adopted ResNet as the backbone network. We choose
two self-supervised learning methods SS-DCCNN and SS-CRNN [30] for comparison. In
this experiment, the proposed SelfCoLearn selects the CRNN as the backbone network.

Figure 2 plots the reconstruction results of different self-supervised methods at 4-fold
acceleration, 8-fold acceleration, and 12-fold acceleration, respectively. The first row and
fourth row show the ground truth (fully sampled image) and the reconstruction images of
the respective methods in the diastolic and systolic at different accelerations, respectively
(display range [0, 1]). The second row and fifth row show their corresponding enlarged
images in the heart regions. The third row and sixth row plot the error images of the
corresponding methods (display range [0, 0.2]). The y-t images at the 40th slice along the
dimensions of y and t are shown in the seventh row. The corresponding error images of y-t
images are plotted in the last row. From the visualization results, the proposed SelfCoLearn
generates better reconstruction results than the two self-supervised methods, SS-DCCNN
and SS-CRNN, at all acceleration factors. The reconstruction images of SelfCoLearn show
finer structural details and more precise heart borders with fewer artifacts.

The quantitative results of these self-supervised methods are listed in Table 1. Similar
conclusions can be obtained, showing that the SelfCoLearn achieves better quantitative
performance than these self-supervised learning methods. Therefore, our collaborative
learning strategy can effectively capture essential and inherent representations from under-
sampled k-space data directly.
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Figure 2. Reconstruction results of different self-supervised methods (SS-DCCNN, SS-CRNN, and
SelfCoLearn) at 4-fold acceleration, 8-fold acceleration, and 12-fold acceleration. The first row and
fourth row show the ground truth (fully sampled image) and the reconstruction images of the
respective methods in the diastolic (the 10th frame of image sequence) and systolic (the 5th frame
of image sequence), respectively. The second row and fifth row show their corresponding enlarged
images in the heart regions. The third row and sixth row plot the error images of corresponding
methods. The last two rows show y-t images (the 40th slice along the dimensions of y and t) and the
corresponding error images.

Table 1. Quantitative reconstruction results of different self-supervised methods (SS-DCCNN, SS-
CRNN, and SelfCoLearn) at 4-fold, 8-fold, and 12-fold acceleration factors (mean ± std).

AF Methods Training Pattern PSNR (dB) SSIM MSE (×10−4)

SS-DCCNN Self-supervised 25.81 ± 2.86 0.6409 ± 0.0739 32.81 ± 24.85
4-fold SS-CRNN Self-supervised 32.49 ± 1.79 0.8383 ± 0.0387 6.14 ± 2.62

SelfCoLearn Self-supervised 40.34 ± 2.69 0.9536 ± 0.0239 1.11 ± 0.72

SS-DCCNN Self-supervised 22.56 ± 2.71 0.5615 ± 0.0732 67.87 ± 49.27
8-fold SS-CRNN Self-supervised 30.81 ± 1.77 0.8015 ± 0.0427 9.02 ± 3.75

SelfCoLearn Self-supervised 37.27 ± 2.40 0.9243 ± 0.0338 2.17 ± 1.22

SS-DCCNN Self-supervised 22.17 ± 2.76 0.5270 ± 0.0702 74.89 ± 54.96
12-fold SS-CRNN Self-supervised 30.14 ± 1.78 0.7943 ± 0.0444 10.54 ± 4.40

SelfCoLearn Self-supervised 35.19 ± 2.24 0.8985 ± 0.0399 3.44 ± 1.78

Figure 3 shows the box plots displaying the median and interquartile range (25th–75th
percentile) of the reconstruction results of different self-supervised methods on the test
cardiac cine data at 4-fold acceleration, 8-fold acceleration, and 12-fold acceleration, respec-
tively. The results in Figure 3 show that, for all dynamic cine sequences, the SelfCoLearn
outperforms the two self-supervised learning methods (SS-DCCNN and SS-CRNN) at all
three acceleration factors.
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Figure 3. Box plots of different methods (SS-DCCNN, SS-CRNN, and SelfCoLearn) at 4-fold, 8-fold,
and 12-fold accelerations are presented, which show the median and interquartile range of the PSNR,
SSIM, and MSE on the cardiac cine test dataset.

3.3. Comparisons to State-of-the-Art Supervised Methods

We further compare our SelfCoLearn with different supervised methods, including
supervised U-Net and supervised CRNN [23], at different acceleration factors. Figure 4
plots the reconstruction images of different methods at 4-fold acceleration, 8-fold accelera-
tion, and 12-fold acceleration, respectively. The error images of SelfCoLearn indicate minor
reconstruction errors than those of supervised U-Net.

Figure 4. Reconstruction results of different methods (Supervised U-Net, SelfCoLearn, and Super-
vised CRNN) at 4-fold acceleration, 8-fold acceleration, and 12-fold acceleration. The first row and
fourth row show the ground truth (fully sampled image) and the reconstruction images of respective
methods in the diastolic (the 10th frame of the image sequence) and systolic (the 5th frame of the
image sequence), respectively. The second row and fifth row show their corresponding enlarged
images in the heart regions. The third row and sixth row plot the error images of the corresponding
methods. The last two rows show y-t images (the 40th slice along the dimensions of y and t) and the
corresponding error images.

In addition, the reconstruction results generated by SelfCoLearn are close to those
of supervised CRNN at low acceleration factors. From the quantitative results in Table 2,
the PSNR and SSIM of SelfCoLearn present 1.3% and 0.17% lower than those of super-
vised CRNN at 4-fold acceleration factors, respectively. At higher acceleration factors,
such as 12-fold acceleration, the reconstructed images of SelfCoLearn become slightly
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blurred. Nevertheless, most of the structural details in the heart regions are still success-
fully restored by SelfCoLearn. The PSNR and SSIM of SelfCoLearn present 3.2% and
0.69% lower than those of supervised CRNN at 12-fold acceleration factors, respectively.
Therefore, SelfCoLearn can achieve comparable reconstruction performance with baseline
fully-supervised methods via self-supervised dual-network collaborative learning.

Table 2. Quantitative reconstruction results of different methods (Supervised U-Net, Supervised
CRNN and SelfCoLearn) at 4-fold, 8-fold, and 12-fold acceleration factors (mean ± std).

AF Methods Training Pattern PSNR (dB) SSIM MSE (×10−4)

U-Net Supervised 33.77 ± 1.96 0.8698 ± 0.0391 4.66 ± 2.22
4-fold SelfCoLearn Self-supervised 40.34 ± 2.69 0.9536 ± 0.0239 1.11 ± 0.72

CRNN Supervised 40.89 ± 2.90 0.9553 ± 0.0237 1.01 ± 0.68

U-Net Supervised 32.63 ± 1.97 0.8329 ± 0.0456 6.06 ± 2.88
8-fold SelfCoLearn Self-supervised 37.27 ± 2.40 0.9243 ± 0.0338 2.17 ± 1.22

CRNN Supervised 38.09 ± 2.52 0.9269 ± 0.0342 1.83 ± 1.07

U-Net Supervised 31.96 ± 1.88 0.8315 ± 0.0478 6.99 ± 3.03
12-fold SelfCoLearn Self-supervised 35.19 ± 2.24 0.8985 ± 0.0399 3.44 ± 1.78

CRNN Supervised 36.32 ± 2.29 0.9048 ± 0.0392 2.67 ± 1.42

4. Discussion
4.1. Network Backbone Architectures

In this section, we explore the reconstruction results of the proposed self-supervised
learning strategy with different backbone networks for dynamic MR imaging. The ex-
periments are conducted using SLR-Net [26], k-t NEXT [21], and CRNN [23] at 8-fold
acceleration. The reconstruction results with different backbone networks are exhibited in
Figure 5 and Table 3. Compared with SS-CRNN [11], the proposed SelfCoLearn can achieve
better results regardless of the utilized backbone network. Among the three different back-
bone networks, SLR-Net generates worse results than k-t NEXT and CRNN. The reason for
this phenomenon may be that SLR-Net needs to learn a singular value threshold, and the
absence of the fully sampled reference data causes the learned singular value threshold
to be suboptimal. However, the proposed self-supervised learning strategy with SLR-Net
still obtains acceptable reconstruction results. The qualitative results in Figure 5 clearly
show that SelfCoLearn can better restore the structural details and achieve clearer recon-
structed MR images (especially in the heart regions around the red and yellow arrows) than
SS-CRNN. The quantitative results also indicate more accurate reconstructions achieved
by the proposed SelfCoLearn. These results indicate that our proposed self-supervised
learning framework is flexible, and it can achieve promising reconstruction results with
various iterative un-rolled networks for dynamic MR imaging.

Table 3. Quantitative results of SS-CRNN and SelfCoLearn with different backbone networks at
8-fold acceleration (mean ± std).

Methods Training Pattern PSNR (dB) SSIM MSE (×10−4)

SS-CRNN Self-supervised 30.81 ± 1.77 0.8015 ± 0.0427 9.02 ± 3.75
SelfCoLearn

with SLR-Net Self-supervised 33.58 ± 2.24 0.9001 ± 0.0369 5.57 ± 10.48

SelfCoLearn
with k-t Next Self-supervised 36.95 ± 2.39 0.9226 ± 0.0343 2.34 ± 1.32

SelfCoLearn
with CRNN Self-supervised 37.27 ± 2.40 0.9243 ± 0.0338 2.17 ± 1.22
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Figure 5. Reconstruction results of SS-CRNN and the proposed SelfCoLearn with SLR-Net, k-t
NEXT, and CRNN backbone networks at 8-fold acceleration. The first row shows ground truth (fully
sampled image), the reconstruction images of SS-CRNN and the proposed self-supervised learning
strategy with SLR-Net, k-t NEXT, and CRNN (10th frame). The second row shows their enlarged
images in the heart regions. The third row plots the error images of these two methods. The last
two rows show the y-t images (the 40th slice along the dimensions of y and t) and the corresponding
error images.

4.2. Co-Training Loss Function

In this section, we investigate the utility of the designed co-training loss function.
The backbone network in these experiments adopts CRNN. Different training strategies at
8-fold acceleration are utilized. Strategy B-I: a single reconstruction network is trained in
self-supervised manner. Only the loss function between the output f

(
yt

Θ
)

of network and
yt

Λ is used to train the network. Strategy B-II: a strategy similar to B-I but the loss function
here is calculated between the output f

(
yt

Θ
)

of the network and the original undersampled
k-space data yt

Ω. SelfCoLearn: two networks are trained collaboratively with LUC and LCC,
and the two collaborative networks adopt the same backbone network as that in strategy
B-I. Reconstruction images of methods utilizing the different training strategies are plotted
in Figure 6. Quantitative results are listed in Table 4. From both qualitative and quantitative
results, we can observe that SelfCoLearn (training two networks collaboratively with both
loss terms) achieves the best performance (especially in the heart regions around the red
and yellow arrows). In particular, the contrastive consistency loss term results in a large
reconstruction performance improvement. For example, PSNR is improved from 31.04 dB
(Strategy B-II) to 37.27 dB (SelfCoLearn).

Table 4. Quantitative results of reconstruction models utilizing different training strategies at 8-fold
acceleration (mean ± std).

Methods Single-Net Parallel-Net LUC LCC PSNR (dB) SSIM MSE (×10−4)

Strategy B-I √ × × × 30.81 ± 1.77 0.8015 ± 0.0427 9.02 ± 3.75
Strategy B-II √ × √ × 31.04 ± 1.74 0.8102 ± 0.0411 8.53 ± 3.50
SelfCoLearn × √ √ √ 37.27 ± 2.40 0.9243 ± 0.0338 2.17 ± 1.22
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Figure 6. Ablation studies utilizing different training strategies at 8-fold acceleration. The first row
shows the ground truth (fully sampled image), and the reconstruction images of strategy B-I, strategy
B-II, and proposed SelfCoLearn (10th frame). The second row shows their enlarged images in the
heart regions. The third row plots the error images of respective methods. The last two rows show
y-t images (the 40th slice along the dimensions of y and t) and the corresponding error images.

4.3. Loss Functions

In this section, we inspect the effects of loss functions. The backbone network in these
experiments adopts CRNN. Reconstruction results at 8-fold acceleration are given in Figure 7
and Table 5. Three strategies utilizing different loss function settings are investigated. In
Strategy C-I, two networks are trained collaboratively with LUC and LCC, in which LUC is
calculated in the x-t domain, and LCC is calculated in the k-space domain. In Strategy C-II,
both LUC and LCC are calculated in the x-t domain. In Strategy C-III, both LUC and LCC
are calculated in the k-space domain. From both qualitative and quantitative results, we can
observe that the influence of utilizing different loss function settings on the reconstruction
performance is insignificant. All the other experiments in this work adopt the setting of
strategy C-III.

Table 5. Quantitative results of methods utilizing different loss function strategies at 8-fold accelera-
tion (mean ± std).

Methods LUC LCC PSNR (dB) SSIM MSE (×10−4)

Strategy C-I x-t domain k-space 37.00 ± 2.35 0.9230 ± 0.0344 2.30 ± 1.29
Strategy C-II x-t domain x-t domain 37.20 ± 2.37 0.9235 ± 0.0343 2.20 ± 1.22
Strategy C-III k-space k-space 37.27 ± 2.40 0.9243 ± 0.0338 2.17 ± 1.22
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Figure 7. Effects of loss functions calculated in different domains on the reconstruction results at
8-fold acceleration. The first row shows ground truth (fully sampled image), the reconstruction results
of models utilizing Strategy C-I, C-II and C-III (10th frame). The second row shows their enlarged
images in the heart regions. The third row plots their error images of respective strategies. The last
two rows show y-t images (the 40th slice along the dimensions of y and t) and the corresponding
error images.

5. Conclusions

In our work, we propose a self-supervised collaborative training framework to boost
the image reconstruction performance for accelerating dynamic MR imaging. Specifically,
two independent reconstruction networks are trained collaboratively with different inputs,
which are augmented from the same k-space data. To guide the dual-network in cap-
turing the detailed structural features and spatiotemporal correlations in dynamic image
sequences, a co-training loss function is designed to promote the consistency between
network predictions to provide complementary information for the to-be-reconstructed
dynamic MR images. The proposed framework is flexible and can be integrated with
various iterative un-rolled networks. In addition, the proposed method has been com-
prehensively evaluated on a cardiac cine dataset. The quantitative and qualitative results
indicate that SelfCoLearn possesses strong capabilities in capturing essential and inherent
representations directly from the undersampled k-space data and thus enable high-quality
and fast dynamic MR imaging.
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