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Abstract: The purpose of the present study was to evaluate the physicochemical properties and
antibacterial activity of three calcium silicate cements. Mineral trioxide aggregate (MTA Biorep “BR”),
Biodentine (BD) and Well-Root PT (WR) materials were investigated using scanning electron mi-
croscopy (SEM) at 24, 72 and 168 h of immersion in phosphate buffered saline (PBS). The antibacterial
activity against Enterococcus faecalis (E. faecalis), the solubility, roughness, pH changes and water
contact angle were also analyzed. All results were statistically analyzed using a one-way analysis of
variance test. Statistically significant lower pH was detected for BD than WR and BR (p < 0.05). No
statistical difference was found among the three materials for the efficacy of kill against E. faecalis
(p > 0.05). Good antibacterial activity was observed (kill 50% of bacteria) after 24 h of contact. The
wettability and the roughness of BR were higher than for the other cements (p < 0.05). BD was
more soluble than WR and BR (p < 0.05). In conclusion, the use of bioceramic cements as retrograde
materials may play an important role in controlling bacterial growth and in the development of
calcium phosphate surface layer to support healing. Moreover, the premixed cement was easier to
use than powder–liquid cement.

Keywords: calcium silicate cement; retrograde materials; premixed cement; powder–liquid cement

1. Introduction

The success of surgical endodontic treatment requires root-end filling materials that
are easy to use, biocompatible, stable and economical [1–3]. The goal is to seal the apex
hermetically and prevent microorganisms from entering the root canal [4,5].

Retrograde root-end filling materials have included zinc oxide eugenol cements, amal-
gam, glass ionomer and resins which have failed to meet the ideal requirements of root-end
filling treatment [6,7].

Calcium silicate cement materials, colloquially denoted as “Bioceramic”, in both forms,
sealer [8] or thicker mixture [9], are considered as the ideal endodontic material for retro-
grade treatment due to their excellent physicochemical and biological properties [10–15],

Bioengineering 2022, 9, 624. https://doi.org/10.3390/bioengineering9110624 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering9110624
https://doi.org/10.3390/bioengineering9110624
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0001-7376-371X
https://orcid.org/0000-0001-8577-2285
https://orcid.org/0000-0001-6768-138X
https://doi.org/10.3390/bioengineering9110624
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering9110624?type=check_update&version=2


Bioengineering 2022, 9, 624 2 of 10

including biocompatibility and stability. These inorganic and non-corrosive ceramic ce-
ments contain tricalciums silicate and various radiopaque powders [16].

Mineral Trioxide aggregate (MTA) was the original calcium silicate cement introduced
for endodontic treatment in 1993 and it is considered as the gold-standard material for
various endodontic applications [10]. Other tricalcium silicate-based products have been
developed, improvements on the original Portland cement invention [10]. MTA Biorep
(Itena Clinical, Paris, France) is a powder–liquid product containing calcium silicate cement
and calcium tungstate. Its water-based liquid, containing an organic plasticizer, improves
the handling and plasticity [10].

Biodentine™ (Septodont, Saint-Maur-des-fossés, France) is a calcium silicate cement
material and it has higher strength than other similar products [17]. This product consists
of a powder–liquid material, where the liquid contains calcium chloride with an admixture
of polycarboxylate [17]. MTA Biorep and Biodentine cements are indicated for several
endodontic treatments, including pulpotomy, pulp capping, resorption, apicoectomy and
open apex [9,10,18–21].

Some bioceramic cements require manual mixing and handling, powder–liquid sys-
tems, which require certain skills [16,22]. In addition, any change in the powder–liquid ratio
or the mixing could affect and alter the physicochemical properties of these cements [8,23].
Premixed cements have been introduced to avoid errors during manual mixing. These
premixed materials do not require any preparation before clinical application [8,16]. As
mentioned in previous studies [8,16], these premixed materials are advantageous for some
clinicians in the handling.

Well-Root™ PT is a novel premixed calcium aluminosilicate cement delivered in
capsules for direct clinical use [24]. No information was found in the literature on the
antibacterial activity and the physicochemical properties of this cement.

The purpose of the present research was to investigate the physicochemical properties
and the antibacterial activity of three calcium silicate cements. The hypothesis concerned
whether there would be antibacterial and physicochemical differences between the three
tested materials.

2. Materials and Methods
2.1. Materials

MTA Biorep “BR” (Itena Clinical, Paris, France), Biodentine™ “BD” (Septodont, Saint-
Maur-des-fossés, France) and Well-Root™ PT “WR” (Vericom, Gangwon-Do, Korea) were
used in the present study, following the manufacturer’s instructions (Table 1). All specimens
were conserved in the dark in a container at 37 ◦C and 95% relative humidity for 48 h until
completely set [25].

2.2. pH Measurements of the Aqueous Solution in Contact with the Cement

Five samples of each group were prepared using Teflon molds (3.8 mm in high and
3 mm in diameter). Each sample was put in contact with 10 mL distilled water at 37 ◦C. A
pH meter, “CyberScan pH 510” (Thermo Scientific, Waltham, Massachusetts, USA), was
used to measure the pH of water at 3, 24, 72 and 168 h. Before each pH test, the calibration
of pH meter was performed using standard solutions at pH 10, 4 and 7 (Hanna Instruments,
Lingolsheim, France). Distilled water was used to rinse and eliminate the previous solution
from the pH meter electrode.

2.3. Solubility

Five samples (2 mm in height and 20 mm in diameter) of each material were analyzed
following the method of a previous study [26]. The samples were weighed using a digital
system, then the disks were immersed for 24 h in 50 mL of water at 37 ◦C. The samples were
removed from distilled water and then dried at 37 ◦C for 24 h. Finally, the samples were
weighed again to obtain the final weight. The solubility was defined from the difference in
mass between the final and the initial weight.
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Table 1. Manufacturer and manipulation of the tested materials.

Materials Manufacturer Lot Mixing Composition

MTA Biorep Itena Clinical,
Paris, France 53505

Powder: 1
capsule

Liquid: 4 drops

Powder: Tricalcium silicate;
Dicalcium silicate;

Tricalcium aluminate;
Calcium oxide; Calcium

Tungstate
Liquid: Water

and Plasticizer.

Biodentine™
Septodont, Saint-
Maur-des-fossés,

France
B28033

Powder: 1
capsule

Liquid: 5 drops

Powder: Tricalcium silicate;
Dicalcium silicate; Calcium

carbonate; Zirconiom
dioxide; Iron oxide

Liquid: Calcium chloride;
Hydrosoluble polymer

Well-Root™
PT

Vericom,
Gangwon-Do,

Korea
WT010100 Premixed

Calcium aluminosilicate
compound; Zirconium

oxide; Thickening agent

2.4. Scanning Electron Microscope (SEM) of Crystallites Creation

Twelve samples for each material were created (3.8 mm in high and 3 mm in diameter.
After the setting time, as described in Section 2.1, three samples from each group were
stored in hermetic boxes and kept in dry condition. The remaining samples (9 samples)
from each group were put in 10 mL of phosphate-buffered saline (PBS10×, Dominique
Dutscher, Bernolsheim, France) at 37 ◦C. After 24, 72 and 168 h in PBS, 3 samples for each
period were washed with distilled water for 5 min, sputter-coated with gold–palladium
(20/80) [27], then, analyzed using an SEM (FEI Company, Eindhoven, The Netherlands,
10 kV) at a magnification of 5000×. Energy Dispersive X-ray (EDX) analysis was used
during an acquisition time of 1 min and a working length of 10 mm to attain the spectrum
of chemical elements present on the surface.

2.5. Roughness and Water Sorption Tests

Five samples from each product were created using Teflon molds (10 mm in diameter
and 2 mm in height). After the setting time, as described in Section 2.1, the samples were
kept in dry in the fume hood overnight. The roughness of each surface was measured using
a 3D digital profilometer (Keyence, Osaka, Japan) at 2500× magnification. The average
roughness (Sa) was calculated using software (Keyence 7000 VHX, Osaka, Japan).

After measuring the surface roughness, on the same samples, a contact angle device
(Biolin Scientific, Espoo, Finland) was used to observe the infiltration time of a 5 µL droplet
of water into the material surface. A movie was recorded to track the profile and the
absorption time of the water droplet.

2.6. Antimicrobial Activity

Brain Heart Infusion medium (BHI) (Darmstadt, Germany) was used to culture Entero-
coccus faecalis (E. faecalis, ATCC 29212). The turbidity was adjusted to OD600 (nm) = 0.3. A
direct contact test (DCT) was performed to investigate the antibacterial activity of the three
products against E. faecalis. Triplicate samples were placed in 24-well culture plates. One
milliliter of the bacterial medium was put to each well and incubated anaerobically for 24 h
at 37 ◦C (constant stirring at 450 rpm). The bacterial medium without the cement materials
was used as the control group. After 24 h, 10-fold serial dilutions up to 106 in BHI were
performed on each specimen. One hundred microliters of each diluted medium was added
onto a BHI agar plate, homogeneously spread and incubated at 37 ◦C for 24 h. Manual
CFU/mL (colony forming units/mL) counting was measured the E. faecalis concentration.
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2.7. Statistical Analysis

The results of pH, solubility, roughness and antibacterial activity were statistically
analyzed using the Kruskal–Wallis test along with the Tukey Test. SigmaPlot release 11.2
(Systat Software, Inc., San Jose, CA, USA) was used with a statistical significance was set at
α = 0.05.

3. Results
3.1. pH Measurements

The pH of the solution in contact with the three cements over 7 days is shown in
Figure 1. All three cements were alkaline for the solution for up to 72 h. BR and WR
demonstrated statistically higher pH than BD at all time points (3, 24, 72 and 168 h)
(p < 0.05). No significance difference was found between BR and WR (p > 0.05).
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3.2. Solubility

The mean and standard deviation of solubility (wt.%) values are presented in Figure 2.
BD was more soluble than BR and WR at 24 h (p < 0.05).
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3.3. Scanning Electron Microscope (SEM)

The crystalline structures of the three cements are shown in Figures 3 and 4. All three
cements had crystalline deposits after immersion in PBS at 37 ◦C. At each immersion period
(24, 72 and 168 h), different crystalline appearances were observed. At 24 and 72 h, WR had
elongated crystals, BD and BR had globular and cubic crystals (Figure 3).
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After 168 h, BR and BD showed cubic crystals. The cubic crystals of BR were larger
(8–10 µm) than for BD (3–6 µm). WR had globular and elongated crystal features at 168 h.
EDX analysis for the three cements after 168 h in PBS showed different percentages of Ca,
P and Si among the three materials. Other chemical elements were detected on WR (Zr)
and BR (Al) surfaces.

3.4. Roughness and Water Sorption Tests

BR demonstrated the highest hydrophilicity for a 5 µL of a drop of distilled water
compared to BD and WR. Contact angles of 15◦ and 9◦ for BD and WR, respectively, were
investigated after 10 s (Table 2). Whereas, the water sorption in the BR surface was faster
(<10 s) than the other cement surfaces. The contact angle of the drop in contact with
BR surface after 10 s was 0◦ (Figure 5). All tested cement surfaces were analyzed using
KEYENCE 7000 VHX to measure the roughness of these surfaces. In addition, rougher
surfaces were obtained for BR and BD compared with WR surfaces (p < 0.05) (Table 2 and
Figure 5).

Table 2. Contact angles of 5 µL of distilled water on the different material surfaces after 10 s of
deposition. Mean and standard deviations of the roughness (Sa) of the tested materials. Superscript
letters a, b, c and x, y, z indicate statistical significance (p < 0.05).

Test\Materials Biodentine MTA Biorep Well-Root PT Statistical
Significance

Contact angle (◦) 15.2 ± 3.5 x 0 y 8.9 ± 0.4 z p < 0.05

Roughness (Sa) 0.7 ± 0.05 a 0.9 ± 0.2 b 0.3 ± 0.02 c p < 0.05
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each material.

3.5. Antimicrobial Activity

Bacterial growth was significantly inhibited with the three cements. No significant
difference was found among them for the efficiency against E.faecalis (p > 0.05). The three
cements killed about 50% of the bacteria after 24 h, versus the control (p < 0.05) (Figure 6).
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4. Discussion

Since their introduction in the dental market, calcium silicate cement materials have
attained popularity due to their excellent physicochemical, biological and mechanical
properties and their positive outcomes in clinical applications [9,28]. Calcium silicate
cement products are the ideal dentine repair materials for various endodontic applica-
tions [2,3,17,20,29]. A number of investigations have been conducted to determine the
differences among the products as retrograde bioactive material.

Our present in vitro study comparing BR, BD and WR showed significant antibacterial
activity and formation of crystals on their surfaces after immersion in PBS. Therefore, the
null hypothesis was partially rejected.

Alkaline pH was detected with the three materials (Figure 1), but BD had a lower pH
than WR and BR (p < 0.05). The alkalinity is key to the antibacterial activity and healing
process [8,30–32]. Kharouf et al. [10] measured a high alkaline pH with MTA Biorep.
Oliveira et al. [33] measured a lower pH for BD (pH = around 6–7) after 24 h than the one
attained our study (pH = around 9–10), whilst Hassan et al. [34] measured higher pH values
(pH = around 11–12) for BD after 24 h. The differences may be related to the methods of
exposing the materials. The premixed bioceramic cement (WR) created a similar pH to the
powder–liquid BR cement.

In the present study, the solubility of the three cements did not exceed the 3% mass
after 24 h in distilled water; however, the ISO 6876 was not used. The results of the present
study agree with those of the Al-Sherbiny study [35] for BD results and with the study
of Queiroz et al. [36] for MTA Repair HP. The premixed bioceramic (WR) had a solubility
similar to that of the other two cements (Figure 2). Solubility is important because if it is
high, voids and gaps may be formed, which would be a pathway for the microorganisms
to re-infect the root canal system [8,27]. BD demonstrated lower pH values than the
other products, but the solubility of BD was higher. Weckwerth et al. [37] noted that a
higher solubility does not always correlate with higher pH. The cement may release other
components, which do not have any effect on pH changes and the liberation of these
components increases the solubility of this material.

The direct contact test was used in this in vitro study to evaluate the antibacterial
activity of the different cements. The agar contact test was not used, because in our previous
study [8], we noted that these cements infiltrate the agar plates and hide the inhibition
zones. E. faecalis was used in our experiment because this Gram-positive facultative anaer-
obe microorganism is the most predominant bacterium found in root canal infections and
failure [8,38–41]. No significant differences were found among the capacity of killing bacte-
ria of the three cements (p > 0.05). All the materials demonstrated high potential of killing
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bacteria after 24 h (kill around 50%) compared to the control group (bacterial medium).
The antibacterial activity of these cements comes from the high alkaline pH [8,10,16,42,43].

All the three cements had different crystalline features (Figures 3 and 4) after immer-
sion in PBS. Cubic crystals were observed on BR and BD samples after 7 d of immersion in
PBS (Figure 4). The crystallites of BD were more numerous and smaller than BR crystallites.
Elongated crystals were observed on WR surfaces. Yoo et al. [44] showed the importance
of biomineralization to entomb the microorganisms in dentinal tubules, since the elimi-
nation of 100% of bacteria from the root canal system is impossible [45,46]. EDX analysis
showed different chemical compositions of formed crystals onto each cement. Ca, Si and P
were detected on the surfaces of the three materials, which reflects the reactions between
calcium silicate and PBS. Zr presented onto WR and Al onto BR surface due to the initial
composition which contain Zirconium oxide and Tricalcium aluminate, respectively. Al
was not detected on WR surface which is a calcium aluminosilicate compound. Therefore,
EDX could be considered as a qualitative method and the composition of these crystals
could not be identified without X-ray diffraction analysis, which could be considered as
limitation of this in vitro study.

A contact angle test was used to determine the capacity of absorption of 5 µL drops of
distilled water. This test is an indicator of the wetting behavior of a solid material (cement)
and a liquid (water). Contact angle measurement is affected by the surface roughness [47]
and the chemical surface composition [48]. The roughnesss of WR surface was less than
that of BR and BD (p < 0.05), which could be related to the particles size of each cement.
After 10 s, the 5 µL drop was totally absorbed by the surface of BR which had the higher
roughness values compared to BD and WR (p < 0.05). Whatever the considered wetting
model (Wenzel or Cassie–Baxter) [48], the higher roughness and hydrophilic surface would
increase the adhesion, protein adsorption and the cellular attachment, and provide a
superior biocompatibility [48–50]. In contrast, a decrease in cell proliferation and growth
could be related to a critical roughness ration, where the elastic energy of the cell hinders
the insertion of the cells into surface trenches, where cells install over the tips of the rough
surfaces leading to only point-contact, which minimizes cell–surface interaction [51].

Further studies are required to investigate the cytotoxicity, the setting time, the flowa-
bility, calcium ions releasing and the filling ability of the novel premixed cement.

5. Conclusions

Within the limitations of the present study, the three calcium silicate cement products,
MTA Biorep, Biodentine and Well-Root PT, had a high antibacterial activity, formation of
phosphate crystal in PBS alkaline and had comparable solubility. The premixed format was
more convenient as a retrograde agent.
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