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Abstract: The use of extracorporeal oxygenation and CO2 removal has gained clinical validity and
popularity in recent years. These systems are composed of a pump to drive blood flow through the
circuit and a hollow fiber membrane bundle through which gas exchange is achieved. Mathematical
modeling of device design is utilized by researchers to improve device hemocompatibility and
efficiency. A previously published mathematical model to predict CO2 removal in hollow fiber
membrane bundles was modified to include an empirical representation of the Haldane effect. The
predictive capabilities of both models were compared to experimental data gathered from a fiber
bundle of 7.9 cm in length and 4.4 cm in diameter. The CO2 removal rate predictions of the model
including the Haldane effect reduced the percent error between experimental data and mathematical
predictions by up to 16%. Improving the predictive capabilities of computational fluid dynamics
for the design of hollow fiber membrane bundles reduces the monetary and manpower expenses
involved in designing and testing such devices.

Keywords: hollow fiber membrane bundle; oxygenator; extracorporeal oxygenation; extracorporeal
CO2 removal; Haldane effect; artificial lung

1. Introduction

Chronic lower respiratory disease remains the fourth largest cause of death in the
United States [1]. Extracorporeal membrane oxygenation (ECMO) or extracorporeal CO2
removal (ECCO2R) therapy is used to bridge acute lung failure patients to recovery or
chronic lung failure patients to transplant. As these therapies have become increasingly
clinically accepted and utilized, in part due to the COVID-19 pandemic, research into
developing more compact, efficient, and hemocompatible devices has grown. The gas
exchanging circuit component of ECMO or ECCO2R therapy is a structure composed of
microporous hollow fiber membranes (HFM) woven into sheets and folded into bundle
structures (HFM bundle); blood flows through the bundle around the fibers while a sweep
gas, usually pure O2, flows through the fiber lumens. The juxtaposition of pure oxygen gas
and venous blood creates a concentration gradient, causing O2 to diffuse from the sweep
gas across the membrane and into the blood, and CO2 to diffuse across the membrane from
the blood to the sweep gas. The efficiency of HFM bundles can be refined by iteratively
modifying bundle characteristics, performing in vitro testing, and comparing experimental
results. This trial-and-error method is costly in terms of money, materials, and manpower.
Computational fluid dynamics streamlines the process by providing numerical insight
into the fluid dynamics of each prototype. The most promising prototype can then be
chosen and tested rather than multiple prototypes being tested and compared on the
benchtop. This reduces the total time and manpower required to select the best performing
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prototype therefore reducing the overall cost of the research and development stage of
HFM bundle design.

Mockros and Leonard [2] developed one such CFD model for use with compact cross-
flow tubular oxygenators made of polypropylene. The model that predicts oxygenation
rates in blood based on a dimensionless mass transfer correlation between Sherwood,
Schmidt, and Reynold’s numbers. The correlation includes two empirical constants that
were determined experimentally in water. To relate the mass transfer correlation developed
in water to blood, the differences in oxygen storage within the two fluids had to be
considered. Water carries oxygen only in a dissolved form that follows Henry’s law. Blood
carries oxygen dissolved in the plasma as well as bound to hemoglobin in the form of
oxyhemoglobin. An effective diffusivity was included in the Schmidt number to account
for the convection of oxyhemoglobin. The effect of oxyhemoglobin on the solubility of
oxygen in the blood was accounted for using the slope of the oxygen-dissociation curve
in the Sherwood and Schmidt numbers. This curve represents the change in total blood
oxygen content which occurs with changing oxygen partial pressure [3].

Svitek and Federspiel [4] took this process one step further by creating a dimensionless
mass transfer correlation for both oxygen and carbon dioxide that collapsed onto one
curve. This was done by utilizing the oxygenation relationships defined by Mockros and
Leonard and developing additional diffusivity and solubility relationships to account for
the differences in CO2 storage between water and blood. Carbon dioxide is also only
carried by water in a dissolved form that follows Henry’s law while CO2 is stored in the
blood in three ways: as bicarbonate (70%), bound to hemoglobin (23%), and dissolved in
plasma (7%) [5]. Effective diffusivity in the Schmidt number accounts for the convection of
carbon dioxide carried as bicarbonate and as protonated hemoglobin. Within the Sherwood
number, facilitated diffusivity accounts for the diffusion of bicarbonate in addition to CO2
dissolved in the plasma. This facilitated diffusivity is not required for the oxygenation
model as oxyhemoglobin only exists within an RBC and is therefore only carried by
convection. The effect of protonated hemoglobin and bicarbonate on the solubility of CO2
into the blood was accounted for using the slope of the CO2 dissociation curve in both the
Sherwood and Schmidt numbers. This curve represents the change in total blood carbon
dioxide content which occurs with changing carbon dioxide partial pressure.

The description of the solubility of O2 and CO2 by empirical correlations for the
oxygen- and CO2-dissociation curves are limitations of their respective models. In physio-
logical gas exchange, several factors cause shifts in each respective dissociation curve. For
the oxygen-dissociation curve, a decrease in pH or an increase in PCO2, blood temperature,
and/or 2,3 DPG causes the curve to shift to the right [6]. The total blood hemoglobin
concentration, Hb, also adjusts the location of the curve. The interaction between PCO2
and the oxygen-dissociation curve is known as the Bohr effect [7]. For the CO2-dissociation
curve an increase in hemoglobin saturation, pH, Hb, and blood temperature results in a
rightward shift. The interaction between oxygen concentration and the CO2 dissociation
curve is known as the Haldane effect [8]. The Bohr and Haldane effects are not accounted
for in the previous mathematical models as the dissociation curves used in the solubility
calculations are only represented as univariate functions of the gaseous partial pressure.
The Haldane effect is quantitatively more important to the transportation of CO2 than the
Bohr effect is in promoting the transport of O2 [5]. Unbound hemoglobin is more basic
than oxyhemoglobin and has a higher buffering capacity for hydrogen ions [9]. This results
in increased removal of hydrogen ions from the RBC cytosol and favors the conversion of
carbonic acid into protons and bicarbonate. Blood therefore has a larger overall storage
capacity for CO2 compared to O2. As hemoglobin becomes saturated with O2 in the lungs,
the abundant and rapid dissociation of protonated hemoglobin and carbaminohemoglobin
results in a relatively large partial pressure gradient to drive molecular exchange. The
reverse reaction is not as rapid, as H+ is a weaker acid than oxyhemoglobin, and the smaller
reserve of O2 molecules in blood results in a smaller partial pressure gradient to drive
mass transport. In this study we included the Haldane effect in the modeling of CO2
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transfer and demonstrated a significant improvement in the ability to predict CO2 transfer
in polymethylpentene HFM bundles.

2. Materials and Methods

The following analyses applies to a cylindrical axial fiber bundle with blood flow
down the axis of the cylinder. A similar analysis can be done for annular fiber bundles with
radial blood flow [4].

2.1. Steady State Mass Balance of Carbon Dioxide

The steady state mass balance for CO2 along the length of the bundle is:

Qb
dCCO2

dz
= −A(av)kCO2

(
PCO2,b − PCO2, g

)
, (1)

where Qb represents the blood flow rate, CCO2 represents the total concentration of CO2
in blood, A is the area of the bundle perpendicular to blood flow (i.e., frontal area), av
is the surface area to volume ratio of the bundle, kCO2 is the mass transport coefficient of
CO2, PCO2,b is the partial pressure of CO2 in the blood, and PCO2, g is the partial pressure of
CO2 in the sweep gas. PCO2, g is typically low compared to PCO2,b, therefore the average of
PCO2,g between gas flow inlet and outlet can be used [4].

The total concentration of CO2 in the blood is represented as a mathematical fit of the
CO2 dissociation curve in the form [10]:

CCO2 = qPt
CO2,b, (2)

where q and t are regression parameters dependent on the oxygen content of the blood.
The regression parameters are derived below under the section subheading Incorporating
the Haldane effect.

Substituting Equation (2) into Equation (1) results in an equation of the form:

Qbqt
(

Pt−1
CO2,b

)dPCO2,b

dz
= −A(av)kCO2

(
PCO2,b − PCO2,g

)
, (3)

The mass transport coefficient, kCO2 , is a constant that relates mass transfer rate, mass
transfer area, and the difference in a partial pressure gradient that drives the movement of
CO2 from the sweep gas to the blood. The mass transport coefficient of CO2 in the blood
can be determined from an analogous heat transfer correlation for flow perpendicular to a
bundle of tubes in the form [11]:

Sh = aRebSc
1
3 , (4)

The Sherwood number, Sh, relates the ratio of convective mass transfer to the rate of
diffusive mass transport [12]. The Reynolds number, Re, is a ratio of inertial to viscous
forces, and the Schmidt number, Sc, is the ratio of momentum to mass diffusivity [12]. The
coefficients a and b are dependent on the geometry of the HFM bundle [4] and can be found
in Table 1.

Table 1. Physical Constants for O2 and CO2.

Parameter Description Value

PCO2,b(z = 0)
Value of PCO2 in the blood
entering the HFM bundle 45 mmHg [13]

SO2,b(z = 0)
Initial value of SO2 in the blood entering

the HFM bundle 65% [13]

PCO2,g Average value of PCO2 in the sweep gas 4 mmHg [4]

PO2,g Average value of PO2 in the sweep gas 700 mmHg [4,14]
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Table 1. Cont.

Parameter Description Value

Hb Hemoglobin of blood 12 g (dL blood)−1 [13]

pH pH of blood entering the HFM bundle 7.4 [5]

P50
PO2 at 50% Hb saturation for adult bovine

blood 29 mmHg [15]

n Hill parameter for adult bovine blood 2.85 [15]

γ Kinematic viscosity of blood 0.023 cm2s−1 [4]

αCO2 Solubility of CO2 in blood
6.62 × 10−4

(mL CO2) (mmHg)
(mL blood)−1 [4]

αO2 Solubility of O2 in blood
3 × 10−2

(mL O2) (mmHg)
(mL blood)−1 [4,14]

DCO2 Diffusivity of CO2 in blood 7.39 × 10−6 cm2s−1 [4]

DHCO−
3

Diffusivity of bicarbonate in blood 4.62 × 10−6 cm2s−1 [4]

DO2 Diffusivity of O2 in blood 1.8 × 10−5 cm2s−1 [4,14]

CT Binding capacity of hemoglobin 1.34 mL O2 (g Hb)−1 [5,16,17]

Qb Blood flowrate 0–600 (mL blood) min−1 [18]

a Measured coefficient for Equations (4),
(12), and (18) 0.54 [4]

b Measured coefficient for Equations (4),
(12), and (18) 0.42 [4]

The Reynold’s number describing flow conditions of a fluid within a packed bed takes
the general form [11]:

Re =
V0

γψa
, (5)

where V0 is the superficial velocity through the HFM bundle and γ is the fluid viscosity.
Superficial velocity is a hypothetical fluid flow that is calculated by dividing the volumetric
flow rate of fluid through the bundle by the cross-sectional area of the HFM bundle. The
characteristic length, 1/ψa, considers a correction factor for the geometry of the packing
the bed, ψ = 0.91, and the surface area of the fibers per unit volume of the bundle:

a =
6(1 − E)

dp
, (6)

where E is the bundle porosity and dp is the particle diameter [11]. For cylindrical particles,
the HFM fibers, the particle diameter is expressed as:

dp = 0.567
√

A f , (7)

where A f is the total surface area of the gas exchanging portion of the hollow fiber mem-
branes [11].

The Sherwood number describing the flux of a gas into a fluid takes the general form:

Sh =
kL
αD

, (8)

where k is the mass transport coefficient of the gaseous species, L is the characteristic length
of the system, α is the solubility of the gas in the fluid, and D is the diffusivity of the gas
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into the fluid. For the flux of CO2 into blood, the mass transport coefficient is unknown and
equal to kCO2 , the characteristic length is the outer diameter of a single fiber, d f , and the
solubility of CO2 into blood is known and represented as αCO2 . The diffusivity, D, must
consider the diffusion of CO2 dissolved in the plasma and the diffusion of CO2 stored as
bicarbonate. This value will be referred to as the facilitated diffusivity and is represented
mathematically by [4,19]:

D f = DCO2 +
DHCO3

αCO2

δCHCO3

δPCO2,b
, (9)

where DCO2 is the diffusivity of CO2 in blood, DHCO3 is the diffusivity of bicarbonate in
blood, αCO2 is the solubility of CO2 in blood, and dCHCO3 /dPCO2,b is the change in bicarbon-
ate ion concentration with respect to partial pressure of CO2 in the blood. dCHCO3 /dPCO2,b
is the slope of the CO2 dissociation curve, Equation (2), as the majority of carbon dioxide in
the blood is stored as bicarbonate [4].

The Schmidt number takes the dimensionless form:

Sc =
νb
D

, (10)

where νb is the kinematic viscosity of blood. The diffusivity, D, must account for the
convection of CO2 stored as carbaminohemoglobin and bicarbonate. This value will be
referred to as the effective diffusivity, De f f , CO2 , and is represented mathematically by [4]:

De f f ,CO2 =
D f

1 + 1
αCO2

δCHCO3
δPCO2,b

, (11)

Substituting Equation (5) through (11) into the dimensionless correlation of Equation (4)
and rearranging to solve for the mass transport coefficient results in the mathematical
equation:

kCO2 =
αCO2 D f aRebSc1/3

d f
, (12)

Blood oxygen saturation is solved for using a steady state mass balance on the HFM
bundle with oxygen as the species of interest.

2.2. Steady State Mass Balance of Oxygen

The steady state mass balance for O2 along the length of the bundle is:

Qb
dCO2

dz
= A(av)kO2

(
PO2,b − PO2, g

)
, (13)

where CO2 represents the total concentration of O2 in blood, kO2 is the mass transport
coefficient of O2, PO2,b is the partial pressure of oxygen in the blood, and PO2, g is the partial
pressure of O2 in the sweep gas. PO2, g is ideally high compared to PO2,b, therefore the
average of PO2,g can be used [4].

The total concentration of O2 in blood is a combination of oxygen dissolved in the
plasma and bound to hemoglobin. This can mathematically be represented as:

CO2 = αO2 PO2,b + CT HbSO2, (14)

where αO2 is the solubility of O2 in blood, CT is the oxygen binding capacity of hemoglobin,
Hb is the total hemoglobin level in the blood, and SO2 is the percent of hemoglobin present
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in the form of oxyhemoglobin [14,17]. Substituting the derivative of Equation (14) into
Equation (13) gives:

Qb

(
αO2 + CT Hb

dSO2

dPO2,b

)
dPO2,b

dz
= A(av)kO2

(
PO2,b − PO2,g

)
, (15)

SO2 is a function of the partial pressure of oxygen in blood, approximated well by the
Hill equation [15,20,21]:

SO2 =

( PO2,b
P50

)n

1 +
( PO2,b

P50

)n , (16)

where n and P50 are constants dependent on the age and species of animal blood being
tested and can be found in Table 1 [2].

Equation (4) can also be used to derive the mass transport coefficient of O2, however
the appropriate values for oxygen must be substituted into the general dimensionless
values of the Reynolds, Sherwood, and Schmidt numbers [4]. The Reynolds number,
Equation (5), applies for both the CO2 and O2 mass balance as it is not dependent on any
gaseous species-specific values. For the flux of O2 into blood, the mass transport coefficient
in the Sherwood number is unknown and equal to kO2 , the characteristic length remains
as d f , and the solubility of O2 in blood is known and represented as αO2 . For oxygenation
there is no facilitated diffusivity as the oxyhemoglobin is contained within the red blood
cell and is transported only by convection. Therefore, the diffusivity, D, is simply the
diffusivity of oxygen in blood, DO2 . For the Schmidt number, the viscosity remains the
same, νb, and an effective diffusivity must also be defined as the convection of the oxygen
bound to hemoglobin must be considered [4]. This is done by using the slope of the Hill
equation, Equation (16), to approximate the slope of the oxyhemoglobin dissociation curve:

De f f ,O2 =
DO2

1 + CT
αO2

δCO2
δPO2

, (17)

δCO2 /δPO2 is equivalent to the slope of Equation (14). Using Equation (5) through (8), (10),
(14), (16), and (17) the mass transport coefficient, kO2 , becomes [4]:

kO2 =
αO2 DO2 aRebSc1/3

d f
, (18)

2.3. Incorporating the Haldane Effect

As previously stated, the CO2 dissociation curve can be represented by Equation (2).
This equation is derived from a linear fit of any whole blood CO2 dissociation curve when
plotted on logarithmic coordinates. The mathematical model that does not include the
Haldane effect assumed a constant q and t value to define the CO2 dissociation curve
throughout the entirety of the bundle. While this assumption greatly simplifies the mathe-
matical calculations made within the model, it does not accurately reflect the compensatory
mechanisms blood uses to achieve efficient CO2 removal. It is within this section that an
iteratively updating CO2 dissociation curve will be included in the model to incorporate
the Haldane effect.

In 1924 Peters et al. demonstrated that between the CO2 partial pressure values of
30 mmHg and 60 mmHg the slope of the CO2 dissociation curve is linearly related to the
oxygen capacity of the blood being tested [10,22]:

CCO2

(
PCO2 = 60

)
− CCO2

(
PCO2 = 30

)
= 0.334(O2cap) + 6.3, (19)
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This can then be related to hemoglobin concentration as it is known that 1.36 mL of
oxygen combines with 1 g of hemoglobin [23]:

CCO2

(
PCO2 = 60

)
− CCO2

(
PCO2 = 30

)
= 0.4542(Hb) + 6.3, (20)

Using Equation (2) in the definition of the slope of a linear function and substituting it
for the left hand side of Equation (20) results in the mathematical equality [10]:

CCO2

(
60

PCO2,b

)t

− CCO2

(
30

PCO2,b

)t
= 0.4542(Hb) + 6.3, (21)

which can then be solved numerically if an ordered pair of (PCO2,b, CCO2) is known.
The initial value condition of PCO2,b is obtained from a blood gas analyzer or set of

target venous conditions. In this model, pH is considered to be constant as the percent
increase from typical venous to arterial pH is 0.5% [24]. An empirical mathematical equation
relating these values was established by Visser in 1961 and further modified by McHardy
in 1967 based on a nomogram of experimental data gathered by Van Slyke and Sendroy in
1928 [25].

CCO2 = 2.226 HCO−
3

[
1 − 0.02924(Hb)

(2.244 − 0.422SO2)(8.74 − pH)

]
, (22)

where HCO−
3 is the amount of carbon dioxide present in the blood in the bicarbonate form

and SO2 is a function of PO2,b according to Equation (16). Bicarbonate serves as a buffer
to the acidic presence of CO2 in the plasma to maintain a physiologically safe blood pH.
This acid-base homeostatic mechanism can be represented by the Henderson-Hasselbach
equation in the form [26]:

HCO−
3 = 0.0301 PCO2,b

(
1 + 10pH−6.10

)
, (23)

Now with a single known value of PCO2,b, CCO2 can be calculated and Equation (21)
can be solved for the value of t. Equation (3) can be rewritten as:

q =
CCO2

Pt
CO2,b

(24)

and q can be solved for with the now-known values of CCO2 , PCO2,b, and t.
With Equations (19)–(24), the values of q and t are functions of PCO2,b and SO2 , and

change accordingly as blood traverses through the HFM bundle. With the inclusion of SO2

in the mass balance for carbon dioxide, Equations (1) and (13) become coupled first-order
differential equations that can be solved numerically. The initial values of SO2 and PCO2,b
are directly measured from the blood entering the ECCO2R device or a set of targeted
venous conditions. The physical constants for O2 and CO2 are listed in Table 1 [4,13–16,18].
The above system of first-order differential equations was solved in MATLAB R2022A
(MathWorks, Natick, MA, USA) using the Runge–Kutta fourth-order method [27].

3. Results

Experimental data from May et al. [18] are used as the experimental values in calcula-
tions of percent error. The range of blood flow rates tested in this publication are relative
for ECCO2R where CO2 removal is the goal of therapy. The characteristics of the HFM
bundle tested in that publication are listed in Table 2 [28–30]. Furthermore, presented
is the predicted CO2 removal and oxygenation rates of the experimental HFM bundle
mathematically calculated by the previous iteration of this model, where the Haldane effect
is not accounted for.
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Table 2. Characteristics of ModELAS HFM bundle.

Parameter Description Value

A Cross sectional area of ModELAS HFM bundle 16 cm2

av Surface area to volume ratio of ModELAS HFM bundle 55 cm−1

A f Active fiber surface area of ModELAS HFM bundle 6700 cm2

d f Outer diameter of a single OXPLUS™, Membrana™
PMP fiber 0.038 cm

E Porosity of ModELAS HFM bundle 0.48

The previous iteration of the mathematical model, without the Haldane effect, pro-
duced a predicted CO2 removal rate within 16% error at a blood flow rate of 240 mL min−1,
18% error at a blood flow rate of 500 mL min−1, and 30% error at a blood flow rate of
753 mL min−1. (Figure 1) The proposed mathematical model, including the Haldane effect,
predicted a CO2 removal rate within 15%, 4%, and 14% error respectively.
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The inclusion of the Haldane effect into the mathematical model melded the CO2
removal and oxygenation models as the mass balances became a paired set of first-order
differential equations. However, only the CO2 model underwent modifications to enable
the output of the oxygenation model, O2 content of the blood, to become an input variable
for the CO2 mass balance. The oxygenation model was therefore unaffected by the change
and both the code that incorporates the Haldane effect and the one that does not produce the
same values of oxygenation at the same blood flow rates (Figure 2) [18]. At 240 mL min−1

blood flow rate the models predicted an oxygenation rate within 2% error, at 500 mL min−1

the prediction was within 10% error, and at 740 mL min−1 the prediction was within
2% error.
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4. Discussion

With the acceptance and growing clinical use of ECMO and ECCO2R the need for
more compact, efficient, and user-friendly systems has become a focus for medical product
development. The performance of competing oxygenator designs can be quantitatively
compared after manufacturing and benchtop testing. Researchers have turned to the use
of computational fluid dynamics to evaluate oxygenator designs as this trial-and-error
method requires a great deal of resources and manpower. The modifications proposed in
this publication were intended to address a limitation of previously published oxygenation
and carbon dioxide removal mathematical models. The Haldane effect was mathematically
incorporated into these models via an empirical fit of the CO2 dissociation curve. This
coupled the previously univariate models into a single multivariate model. The inclusion
of the Haldane effect increased the accuracy of the CO2 removal predictions made by the
model when compared to the same mathematical model with a static CO2 dissociation
curve, i.e., without the Haldane effect. The improvement in the CO2 removal predictions is
associated with the buffering capacity of single red blood cells.

The constant curve used by the model that does not account for the Haldane effect
assumes blood is at an oxygen saturation of 100% and a Hb = 15 g (dL blood)−1. Testing
conditions for oxygenators, however, typically dictate venous oxygen saturation to be 65%
and blood hemoglobin to be 12 g (dL blood)−1 [13]. Oxyhemoglobin is a stronger acid
than both unbound hemoglobin and protonated hemoglobin. As hemoglobin becomes
oxygenated, protonated hemoglobin is forced to dissociate into unbound hemoglobin
and a proton. Carbaminohemoglobin is also forced to dissociate, displacing additional
intraerythrocytic CO2 into the plasma. Therefore, at the same total concentration of CO2 in
the blood, a system with a greater oxygen saturation will store a greater percentage of CO2
within the plasma rather than within the red blood cell, i.e., the Haldane effect. This creates
a larger partial pressure gradient to drive mass transfer between the blood and sweep gas,
effectively increasing the rate of CO2 exchange achieved by the HFM bundle.

At the same pH, partial pressure of CO2, and SO2, a system with higher hemoglobin,
15 g (dL blood)−1 will have a smaller total concentration of CO2 than a system with lower
hemoglobin, 12 g (dL blood)−1. As hemoglobin increases there is a resulting decrease in
overall space in the plasma, an increase in the pH of blood, and a decrease in bicarbonate
ions [21]. It has been shown, however, by May et al. [31] that increased hemoglobin results
in increased CO2 removal rates in identical oxygenators at the same blood flow rate, inlet
pH, inlet partial pressure of CO2, and inlet SO2. The increased CO2 removal but decreased
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overall CO2 content seems counterintuitive, however we are still seeing the Haldane effect
at work. In a system with a Hb of 15 g (dL blood)−1 at a saturation of 65%, a total of
9.8 g (dL blood)−1 of Hb are present in the form of oxyhemoglobin. In a system with a
Hb of 12 g (dL blood)−1 at a saturation of 65%, a total of 7.8 g (dL blood)−1 of Hb are
present in the form of oxyhemoglobin. The increased presence of oxyhemoglobin forces a
greater amount of protonated hemoglobin and carbaminohemoglobin to dissociate. Even
though the overall content of CO2 in the 15 g (dL blood)−1 of Hb system is smaller than the
alternative, a greater amount of it is stored within the plasma and there is a higher partial
pressure gradient present to drive CO2 exchange mass transfer. In addition, the greater
presence of oxyhemoglobin and the increased area available for the chloride shift results in
an acceleration of the dissociation of the various forms of CO2 from hemoglobin. This is
also compounded by a greater presence of Hb which provides an additional increase to
the whole blood pH. There is therefore a greater change in total CO2 content per change
in partial pressure of CO2 compared to a system with less Hb. Mathematically, the CO2
dissociation curve for a system with a higher Hb value will therefore have a greater slope
at any one partial pressure of CO2 than a system with a smaller concentration of Hb.

In this manner utilizing the model without the Haldane effect results in a CO2 dissoci-
ation curve that is right-shifted and has a greater slope than is present in the physiological
system. This ultimately results in an overestimation of the CO2 gradient that drives mass
transfer and therefore the CO2 removal capabilities of a modeled HFM bundle. The empiri-
cal equations utilized to incorporate the Haldane effect are limited in accuracy to the range
of conditions over which the physiologic data were gathered and the relationships were
established. The assumption of the CO2 dissociation curve’s linearity on logarithmic co-
ordinates (Equation (2)) has been verified between for CO2 partial pressure values of 20–80
mmHg by plotting human data gathered by Dittmer and Grebe and Henderson et al. [10].
Equation (19) was defined by Peters et al. in the 1920s, via a fit of experimental data,
between CO2 partial pressure values of 30–60 mmHg [10,22]. As values stray from these
ranges the predictive capabilities of the model may become less accurate. CO2 partial pres-
sure values experienced during the collection of the presented in vitro data ranged from
9–45 mmHg. CO2 partial pressure values that were the farthest outside of the validated
empirical range were experienced at a blood flow rate of 250 mL min−1. This correlates to
the highest experienced percent error, 16%, between code predictions and experimental
data. The code without the Haldane effect also experienced a 16% error at a blood flow
rate of 250 mL min−1, but the highest experienced percent error was 30% at a blood flow
rate of 753 mL min−1. The inclusion of the Haldane effect may therefore still provide more
accurate predictions of CO2 removal, when used outside of the validated ranges, when
compared to the code without the Haldane effect. Future work is needed to determine the
extent to which the range can be exceeded without intolerably affecting results.

Employing computational fluid dynamics to evaluate hypothetical HFM bundle ge-
ometries is only as useful as the models are accurate. By incorporating a multivariate
representation of the CO2 dissociation curve into a model that previously excluded it, our
group improved the accuracy of predictions of HFM bundle CO2 removal capabilities.
As the understanding of the mass transfer principles of hollow fiber membranes, HFM
bundles, and blood continues to grow, so does the ability of computational fluid dynamics
to reduce the monetary and manpower requirements of device design.
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