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Abstract: Background: In recent years, the length of hospital stay (LOS) following endarterectomy
has decreased significantly from 4 days to 1 day. LOS is influenced by several common complications
and factors that can adversely affect the patient’s health and may vary from one healthcare facility
to another. The aim of this work is to develop a forecasting model of the LOS value to investigate
the main factors affecting LOS in order to save healthcare cost and improve management. Methods:
We used different regression and machine learning models to predict the LOS value based on the
clinical and organizational data of patients undergoing endarterectomy. Data were obtained from
the discharge forms of the “San Giovanni di Dio e Ruggi d’Aragona” University Hospital (Salerno,
Italy). R2 goodness of fit and the results in terms of accuracy, precision, recall and F1-score were used
to compare the performance of various algorithms. Results: Before implementing the models, the
preliminary correlation study showed that LOS was more dependent on the type of endarterectomy
performed. Among the regression algorithms, the best was the multiple linear regression model with
an R2 value of 0.854, while among the classification algorithms for LOS divided into classes, the best
was decision tree, with an accuracy of 80%. The best performance was obtained in the third class,
which identifies patients with prolonged LOS, with a precision of 95%. Among the independent
variables, the most influential on LOS was type of endarterectomy, followed by diabetes and kidney
disorders. Conclusion: The resulting forecast model demonstrates its effectiveness in predicting the
value of LOS that could be used to improve the endarterectomy surgery planning.

Keywords: length of stay; endarterectomy; machine learning

1. Introduction

In recent years, public healthcare spending in Italy has increased significantly, reaching
EUR 117 billion in 2019 [1]. For this reason, healthcare facilities have reduced hospital
costs, which to date account for one-third of healthcare costs. Today, cost-effectiveness
indicators play a significant role in the management and organization of care programs [2].
For process optimization, several techniques already popular in other settings have been
implemented in healthcare sector [3–6]. Patient length of stay (LOS) is a significant factor
contributing to healthcare costs; in fact, a short LOS is directly related to reduced costs [7].

The literature reports that the evaluation of LOS through advanced analytical tech-
niques and artificial intelligence algorithms is the subject of numerous studies [8–12].
History has verified that some populations with high-grade carotid stenosis are at high
risk of subsequent stroke [13]. Currently, vascular surgeons are aware of the influence
of surgical planning on resource and cost due to the growing focus on the efficiency of
medical procedures [14].

Different listed research studies [15–18] have validated the ability of endarterectomy to
prevent stroke in both symptomatic and asymptomatic patients. As its efficacy in stroke prevention
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has been demonstrated, the number of such procedures could increase dramatically [19], where
a standardized procedure concerns the removal of the accumulation of atheromatous plaque
from the walls of an artery to reduce the long-term risk of stroke [16]. However, economic
evaluations of this procedure, particularly of the postoperative phase, have not yet been fully
addressed [20,21] and require further investigation into the factors that influence LOS after
endarterectomy surgery [22]. In fact, a postoperative LOS of 2–4 days or more is generally
associated with particular complications caused by the patient’s health condition; although the
obvious drawback is that a 1-day LOS is often not achieved. Patients with complications cause
financial loss to healthcare facilities due to the longer post-operative time and the greater healthcare
expenditure [23]. Understanding the regulatory and control variables that influence the duration
of postoperative LOS can be a strategy to facilitate the reduction of healthcare costs, although they
vary according to the patient’s age, sex and comorbidities [21]. Identifying the factors that cause
prolonged LOS is essential to improve the patient’s condition and reduce healthcare costs [22,24,25].
Several studies report advanced processing of cardiac data for diagnostic purposes [26–31] or
to support the monitoring process [32,33]. The aim of the present work is to determine the
factors associated with prolonged hospitalization following endarterectomy, using the clinical
and organizational data collected at the “San Giovanni di Dio e Ruggi d’Aragona” University
Hospital. In this study, we design a machine learning (ML)-based model for predicting LOS
with the purpose of optimizing the LOS of patients undergoing endarterectomy. In addition, we
evaluate and compare the effectiveness of different ML models in terms of different measures
(e.g., R2, accuracy, precision, F-measure) to validate or reject the results obtained in our previous
work [34], which focused on a subset of ML models for a limited number of years and variables
without implementing any optimization process or studying the impact that selected independent
variables have on LOS. With this study, it is possible to both understand the risk factors for
prolonged LOS and build models that can predict these cases.

2. Materials and Methods

The Complex Operative Unit (C.O.U.) of Cardiology of the “San Giovanni di Dio e
Ruggi D’Aragona” University Hospital made it possible to carry out this study by providing
the requested data. Specifically, the dataset was extracted from the hospital’s information
system and contains 2243 records regarding patients who underwent endarterectomy
surgery (ICD-9 codes equal to 38.1x) from 2010 to 2020. The information collected for
each patient was: gender, age, main and secondary diagnoses, year of discharge, date of
admission, date of discharge and date of surgical treatment. The dataset was prepared
to make it compatible with the processing of ML algorithms. Subsequent regression and
classification analysis was performed by considering the following as variables:

• Gender (male/female);
• Age;
• Hypertension (yes/no);
• Diabetes (yes/no);
• Previous heart attack (yes/no);
• Embolism (yes/no);
• Hyperlipidaemia (yes/no);
• Respiratory system disorders (yes/no);
• Obesity (yes/no);
• Kidney disorders (yes/no);
• Cardiomyopathy (yes/no);
• Rhythm abnormalities (yes/no);
• Anemia (yes/no);
• Personal history of allergies (yes/no);
• Pre-operative LOS;
• Type of endarterectomy (Indicates on which vessels the endarterectomy was per-

formed: 1, vessels of the head and neck; 2, upper limb vessels; 3, aorta; and 4, lower
limb vessels).
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With this information, the regression and classification algorithms were applied to
predict the total LOS. Figure 1 shows the distribution of the dichotomous variables, where
1/Yes indicates that comorbidity is present between the patient’s primary and secondary
diagnoses while 0/No indicates that the patient has no such disorder.
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Figure 1. Distribution of dichotomous features in the dataset. For each comorbidity considered, the
graph shows, out of the total number of subjects included in the study, the portion of patients with
that comorbidity in blue, and the portion of patients without that comorbidity in orange.

For the variable year of discharge, the number of discharges for each year is shown
in Table 1.

Table 1. Discharge distribution of patients undergoing endarterectomy included in the study by year.

Year of
Discharge 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

N◦ of discharges 60 286 252 222 246 222 215 196 185 208 151

From the data shown in Table 1, it can be seen that with the exception of the year
2010, where the low number of cases was due to the initial adoption of the software,
the lowest number of discharges occurred in 2020 due to the spread of the COVID-19
pandemic. Finally, the distribution according to the variable type of endarterectomy is
shown in Table 2.

Table 2. Distribution of the number of discharges for endarterectomy patients included in the study
according to the type of endarterectomy.

Type of endarterectomy 1 2 3 4

N◦ of discharges 2097 4 3 139

Table 2 shows that the most performed procedure was the procedure involving the
head and neck vessels, followed by the procedure involving the lower limbs.

For continuous variables, the box plots are shown in Figure 2.
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Figure 2. Box plots for continuous variables. The graph shows, for the continuous variables included
in the study (age, pre-operative LOS and LOS), the median of the data (the middle line in the box),
the mean of the distribution (the x in the box) the 25th and 75th quantiles (the bottom and top of the
box), the interquartile range (IQR) (length of the box), the expected 1.5-fold variation in the data from
IQR from the top and bottom (the lines extending from the box) and the outliers. The table below
briefly shows the value of mean and standard deviation of the distribution of each variable.

Google Colaboratory (Colab) Cloud Platform was used to implement regression and
ML algorithms.

2.1. Regression and Machine Learning Algorithms

The purpose of this section is to study different regression and classification models to
predict LOS value. Gender, age, hypertension, diabetes, previous heart attack, embolism,
hyperlipidaemia, respiratory system disorders, obesity, kidney disorders, cardiomyopathy,
rhythm abnormalities, anemia, allergies, pre-operative LOS and type of endarterectomy
were used as input variables for the algorithms to predict the subjects’ LOS. Random forest
(RF), multilayer perceptron (MLP), naïve Bayes (NB), support vector machine (SVM) and
decision tree (DT) were the five different classification methods used. In particular, we
chose these models because they are the most widely used in ML benchmark designs [35].
Next, the regression algorithms were implemented. In addition to multiple linear regression
(MLR), random forest (RF) and decision tree (DT) were also used as regression algorithms.

The choice of these methods was motivated primarily by the desire to improve code
quality and the performance of learning operations on the dataset. The classifiers used
were all from the scikit-learn library, which is a ML library. Data mining methods available
with significantly different architectures were chosen that allowed for a tuning operation of
the parameters of the classifiers.

The dataset was randomly divided into two sections to assess the goodness of models
and the accuracy value achieved, with the training data collecting 80% of the total data
and the test data collecting the remaining 20%. The training phase was performed on the
training dataset, while the testing phase was performed on the test set. Each model assigned
a value to each input sample based on the pattern learned during the training phase.

2.2. Parameter Optimization and Cross-Validation for Classification Algorithms

The careful adjustment of parameters was made according to the individual properties
of each classifier and the goodness of fit of the resulting model was evaluated. Based on its
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characteristics, each algorithm had appropriate parameters to be set. The infrastructure
provided by scikit-learn was used to improve hyperparameters of the algorithms.

GridSearchCV was supported to determine the best model or parameters for a specific
task. In particular, the estimator and the param_grid consisting of the name of the specific
hyperparameter for that estimator, and the range of values within which it should be varied,
were given as the input. Table 3 shows the arbitrarily selected values for each algorithm.

Table 3. Selected values of each hyperparameter for the chosen ML algorithms.

Algorithms Hyperparameters

SVM ‘kernel’: (‘linear’, ‘rbf’), ‘C’: [1, 10, 100], cv = 10

RF ‘n_estimators’: [5, 10, 15, 20], ‘max_depth’: [2, 5, 7, 9], cv = 10

DT ‘max_depth’: range(3, 20), cv = 10

MLP
‘hidden_layer_sizes’: [(50, 50, 50), (50, 100, 50), (100,)], ‘activation’: [‘tanh’,

‘relu’], ‘solver’: [‘sgd’, ‘adam’], ‘alpha’: [0.0001, 0.05],’ learning_rate’:
[‘constant’,’adaptive’], cv = 10

NB ‘var_smoothing’: np.logspace(0, −9, num = 100), cv = 10

The exact distribution of the dataset between training and test data could influence the
accuracy value reached by each classifier. The value recorded may have been determined
by chance and thus is not indicative of the model’s level of quality. To ensure that the
accuracy value was not erratic, but rather the accuracy value reached by the classifier,
ten-fold cross-validation was used.

To begin, a single data pair (training, test) was constructed, divided into two parts
using a training ratio parameter, and the classifier was applied. The dataset was then
separated into ten folds using the CrossValidator tool, which were used as independent
datasets for training and testing (cv = 10 partitions of data equal in size to 10 instances of
learning, using 9 for training and 1 for testing). CrossValidator calculates the average evalu-
ation metric for the models built by fitting the estimator to the 10 pairs of separate datasets
(training, test) to evaluate a particular set of parameters. CrossValidator finally refits the
estimator using the best set of parameters and the entire dataset to obtain the best output.

2.3. Voting Technique

Each classifier has a higher level of accuracy in discriminating LOS than the others.
Therefore, once the five classifiers had issued their predictions, a voting classifier (VC)
used them to determine the majority class to assign to the tuple. For best results, the VC
employed an ensemble technique based on majority policy. Once the predictions of the five
classifiers have been gathered, the VC must use them to determine the majority class to
assign to the tuple. Indeed, the VC made a prediction relating to the option that received
more than half of the votes, assigning each sample the value expected by at least three of
the classifiers.

There are two different types of VCs. Hard VCs classify input data according to
the mode of all predictions by various classifiers, while soft VCs rank them according to
probability. For the hard type, in determining the majority vote, it is possible to use constant
weights or to assign different weights to the various classifiers. One way to determine these
weights is to use the target metric, which in this case was accuracy.

3. Results

Before implementing the algorithms, a correlation study was carried out to investigate
the relationship between the dependent and independent variables included in the dataset.
Using the Python Data Analysis Library “Pandas,” Pearson’s correlation was implemented
to calculate the pairwise correlation of columns, excluding NA/null values, of all variables
presented. The result is shown in Figure 3.
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Among the variables, with the exception of pre-operative LOS included in LOS by
definition, it was the type of endarterectomy that had the highest correlation with LOS. The
highest correlation coefficient of 0.63 was recorded between cardiomyopathy and previous
heart attack.

The purpose of this paper is to identify the regression and classification algorithm to
predict total LOS by achieving better results. First, regression models were implemented.
Table 4 shows the performance of each model.

Table 4. Results of regression analysis. R-squared, R-squared adjusted and root mean square error
(RMSE) are reported for each model.

MLR RF DT

R-squared 0.845 0.782 0.584

R-squared adjusted 0.840 0.775 0.571

RMSE 2.217 2.628 3.630

Among the algorithms, the best was the MLR model, with an R2 value greater than
0.8. Table 5 shows the parameters of the MLR model obtained using IBM SPSS Statistical
Software v. 27.
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Table 5. MLR parameters: regression coefficients, t-test and p-value.

Unstandardized Coefficients Standardized
Coefficients t p−Value *

B Std. Error Beta

Intercept 17.663 38,936 − 0.454 0.650
Age 0.007 0.007 0.012 1.030 0.303

Gender 0.063 0.116 0.006 0.539 0.590

Pre−operative LOS 1.013 0.015 0.781 66.633 0.000

Hypertension −0.003 0.113 0.000 −0.029 0.977

Diabetes 0.348 0.117 0.034 2981 0.003

Previous heart attack 0.069 0.184 0.006 0.377 0.707

Embolism 0.214 0.407 0.007 0.527 0.598

Hyperlipidaemia −0.095 0.113 −0.010 −0.847 0.397

Respiratory system disorders 0.071 0.117 0.007 0.607 0.544

Obesity −0.023 0.364 −0.001 −0.062 0.950

Kidney disorders 0.515 0.188 0.031 2.745 0.006

Cardiomyopathy −0.119 0.151 −0.012 −0.789 0.430

Rhythm abnormalities −0.231 0.218 −0.012 −1.062 0.288

Anemia −0.189 0.426 −0.005 −0.444 0.657

Allergies −0.060 0.241 −0.003 −0.250 0.803

Year of discharge −0.008 0.019 −0.005 −0.403 0.687

Type of endarterectomy 1.146 0.094 0.174 12.152 0.000

* p-value is statistically significant as p≤ 0.05.

Among the coefficients, the highest positive value was associated with the type of
endarterectomy, followed by diabetes and kidney disorders. Finally, Figure 4 shows the
difference, in graphical form, between the prediction (in red) and the actual value (in blue).
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Next, the classification algorithms were implemented. To do this, the initially continu-
ous LOS variable was divided into three groups as below:
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• Group 0: LOS ≤ 5;
• Group 1: 5 < LOS ≤ 7;
• Group 2: LOS > 7.

These values were derived in order to divide the dataset equally and facilitate the
classification process. The baseline characteristics of the three groups are shown in Table 6.

Table 6. Baseline characteristics of the three groups identified.

Variables

LOS
p-Value *Group 0

N = 652
Group 1
N = 805

Group 2
N = 786

Age 71.8 ± 7.9 72.1 ± 8.0 71.8 ± 8.8 0.754

Gender

0 414 523 536
0.152

1 238 282 250

Pre-operative LOS 1.2 ± 0.6 2.8 ± 0.9 7.1 ± 0.2 0.000

Hypertension

0 414 498 443
0.013

1 238 307 343

Diabetes

0 455 553 504
0.046

1 197 252 282

Previous heart attack

0 554 658 632
0.334

1 108 147 154

Embolism

0 645 797 739
0.000

1 7 8 47

Hyperlipidaemia

0 329 430 464
0.004

1 323 375 322

Respiratory system disorders

0 431 526 505
0.758

1 221 279 281

Obesity

0 631 789 772
0.151

1 21 16 14

Kidney disorders

0 602 731 700
0.103

1 50 74 86



Bioengineering 2022, 9, 546 9 of 16

Table 6. Cont.

Variables
LOS p-Value *

Group 0
N = 652

Group 1
N = 805

Group 2
N = 786

Cardiomyopathy

0 440 545 506
0.302

1 212 260 280

Rhythm
abnormalities

0 614 758 718
0.041

1 38 47 68

Anemia

0 638 792 776
0.429

1 14 13 10

Allergies

0 617 758 745
0.852

1 35 47 41

Year of discharge

2010 10 27 23

0.179

2011 87 103 96

2012 72 106 74

2013 59 83 81

2014 60 84 102

2015 74 72 76

2016 59 78 78

2017 63 67 66

2018 55 59 71

2019 58 81 69

2020 55 46 50

Type of
endarterectomy

1 643 789 665

0.000
2 3 1 0

3 0 0 3

4 6 15 118
* p-value is statistically significant as p ≤ 0.05.

The table shows that Group 2 was consisted of patients with diabetes, embolism and
rhythm alteration, and most of those undergoing endarterectomy on lower extremity vessels.

We then proceeded to implement the classification algorithms. The accuracy of each
algorithm is after cross-validation. In ML, accuracy is defined as the ratio of correct
predictions to the number of data in the test set. These values, with the addition of the
optimal parameters, are shown in Table 7.
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Table 7. Accuracy and best parameters of the selected ML algorithms.

Algorithms Accuracy Best Parameters

RF 0.77 ‘max_depth’: 9, n_estimators’: 15

MLP 0.78
‘activation’: ‘tanh’, ‘alpha’: 0.05,

‘hidden_layer_sizes’: (100), ‘learning_rate’:
‘constant’, ‘solver’: ‘adam’

NB 0.73 ‘var_smoothing’: 0.001

SVM 0.79 ‘C’: 10, ‘kernel’: ‘linear’

DT 0.80 ‘max_depth’: 5

VC 0.79 ‘voting technique’: hard, ‘weights’: None

Among the algorithms, the best performance was obtained with DT. Table 8 shows the
complete metrics of this algorithm.

Table 8. Evaluation metrics (precision, recall and F1-score) for each class with the best algorithm DT.

Algorithms Class Precision Recall F1-Score

DT

0 0.78 0.82 0.80

1 0.71 0.79 0.75

2 0.95 0.78 0.86

Precision is the ratio of correct predictions to total predictions for a given class, while
recall (sensitivity) is the fraction between correct predictions for a given class and the
total of cases in which it occurs. Accuracy reached a value maximum of 80%, while the
highest value of precision was 95% in the third class. This high performance of the last class
proves to be a strategic note because it allows us to derive more information on the most
critical conditions characterized by prolonged LOS. The ROC curves for DT are reported
in Figure 5.
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The macro-average ROC curve area was equal to 0.85. Lastly, feature importance
permutation was implemented to assess which independent variables most influenced the
model. This procedure effectively breaks the link that exists between one of the independent
variables and the dependent variable in order to identify how much the model depends on
that particular feature. The importance of a feature was determined by evaluating how a
model’s reference score (such as accuracy) changes using a corrupted version of the data
on that specific variable. Figure 6 shows the importance ranking for DT.
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Figure 6. Result of permutation feature importance.

As expected, pre-operative LOS was the variable that significantly affected total LOS,
followed by type of endarterectomy and year of discharge. Combining the estimators
together, using a ‘hard’ voting technique, an accuracy of 79% was obtained. Through a
majority vote, a slightly lower accuracy was produced than the vote obtained from DT
alone, which can be attributed to the fact that more classifiers misclassify the same instance
than DT. Using the weights determined based on the level of accuracy, the model improves
from a value of 0.795 to 0.797 approaching the expected value.

Having identified DT with the best classifier, it is possible to create a form on Google
Colab with which healthcare personnel can enter input parameters and obtain the predicted
total LOS. Figure 7 shows an example of a real case with a total LOS of 4 days.
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4. Discussion

Endarterectomy is a high-efficiency surgical treatment for stroke prevention that is
becoming increasingly popular. Inpatient costs, on the other hand, are rising at a similar
rate. Because LOS is such an important factor in the cost of endarterectomy, predicting
this metric for patients can be a useful tool to prioritize quality improvement efforts and
prepare sufficient resources.

In this study, the data of 2243 patients who underwent endarterectomy were collected
at the Complex Operative Unit (C.O.U.) of Cardiology of the “San Giovanni di Dio e Ruggi
D’Aragona” University Hospital of Salerno (Italy). Three different regression models and
five different classification algorithms were performed to predict LOS considering different
inputs, i.e., gender, age, hypertension, diabetes, previous heart attack, embolism, occlusion
or stenosis, atherosclerosis, hyperlipidaemia, respiratory system disorders, obesity, kidney
disorders, cardiomyopathy, rhythm abnormalities, anemia, allergies, pre-operative LOS,
type of endarterectomy, and then compered their evaluation metrics.

Compared with the short paper, which analysed a subset of this dataset with a reduced
number of variables, RF was not confirmed as the best algorithm, achieving generally lower
accuracy performance [34]. The use of ML to predict total in-hospital LOS for medical
patients has been assessed by several studies with different methodologies and results [36].
Examining the variables that influence LOS, Rodd et al. [26] show that diabetes mellitus
is also a predictive factor in their study. In contrast to our study, Hernandez et al. [22]
show how female sex is associated with prolonged LOS, but both highlight how there is no
relationship with factors such as myocardial infarction or atrial fibrillation. Scala et al. [37],
on the other hand, demonstrate how preoperative hospital stay is a strong predictor, partly
because it is included in total LOS by definition. The type of endarterectomy, as evidenced
by our study, also significantly influences LOS. Pollard et al. [38] mainly show the impact
that a preliminary outpatient evaluation can have on preoperative LOS, but they also show
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the substantial differences between the lower extremity and carotid procedures. Finally,
renal diseases, especially chronic renal failure, have been the subject of several studies.
Sidawy et al. [39] highlight the importance, for these patients, of careful preoperative
screening for possible cardiologic or pulmonary complications that could significantly
affect LOS.

In the field of cardiology, several studies have been conducted to investigate the im-
pact of patients’ clinical and demographic variables on LOS [40]. For example, Daghistani
et al. [41] developed an application very similar to that discussed in this study, including
several cardiology procedures in a smaller number of years of observation and analysis
models. Other studies, however, are limited to the use of statistical analysis [19] or ex-
clusively regression models [42] although on a larger number of clinical variables using
medical records as a source. In addition, the use of alternative methods, such as carotid
artery stenting (CAS), not considered here, is analysed. CAS is a less invasive procedure
conducted under local anesthesia, less affected by the comorbidities of the patient, who
is usually discharged the next day [43]. Randomized studies have shown that CAS has
a slightly higher cost, however is acceptable by cost-effectiveness standards, and is asso-
ciated with a higher risk of periprocedural stroke or death than endoarterectomy. This
additional risk is related to an increase in nondisabling strokes occurring in people older
than 70 years [44,45].

The strength of this study is that it is a large-scale analysis involving a considerable
number of years of observation and variables, being able to compare the results of different
ML algorithms. The high performance of classification models on the class with prolonged
LOS demonstrates the benefits that a healthcare facility can gain from this type of imple-
mentation. The clinical implications are related not only to a field implementation of the
models that could lead to more agile healthcare programming and planning, but also for
a more in-depth study of the procedure under investigation. Identifying which variables
most influence LOS could help healthcare management to identify possible risk factors or
for the identification of protocols to be adopted on specific categories of patients.

The limitations of this work, as already anticipated, are mainly related to the source
of the data. It was not possible to include clinical factors or to characterize in detail the
degree of complexity of the diseases considered. In addition, the impact on the total LOS
of any other procedures delivered during the same hospitalization and the effects caused
by the COVID-19 pandemic were not considered. Finally, it should be pointed out that
although our results are in line with what can be found in the literature, the fact that it is
a single-center study limits the generalization of results, which could depend on factors
related to the organization of the hospital and the surgeons performing the procedure.

5. Conclusions

Hospitals are significantly reducing costs, while public health spending in Italy has
increased significantly. The length of stay (LOS) is a major factor in calculating public
expenditure. In recent years, LOS after endarterectomy has increased significantly, causing
an increase in public spending. For this reason, the present study was conducted to predict
LOS using different machine learning algorithms. By comparing these algorithms, the one
that can most accurately predict LOS can be identified.

Future directions include expanded data collection to increase the number of pre-
dictors and the overall dataset size in order to achieve a more accurate and efficient
prediction model.
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