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Abstract: The purpose of this study was to perform a comparative biochemical analysis between
conventional spectrophotometry and Raman spectroscopy, techniques used for diagnoses, on the
urine of healthy (CT) and diabetic and hypertensive patients (DM&HBP). Urine from 40 subjects
(20 in the CT group and 20 in the DM&HBP group) was examined in a dispersive Raman spectrometer
(an 830 nm excitation and a 350 mW power). The mean Raman spectra between both groups showed
a significant difference in peaks of glucose; exploratory analysis by principal component analysis
(PCA) identified spectral differences between the groups, with higher peaks of glucose and proteins
in the DM&HBP group. A partial least squares (PLS) regression model estimated by the Raman data
indicated the concentrations of urea, creatinine, glucose, phosphate, and total protein; creatinine
and glucose were the biomarkers that presented the best correlation coefficient (r) between the two
techniques analyzed (r = 0.68 and r = 0.98, respectively), both with eight latent variables (LVs) and
a root mean square error of cross-validation (RMSecv) of 3.6 and 5.1 mmol/L (41 and 92 mg/dL),
respectively. Discriminant analysis (PLS-DA) using the entire Raman spectra was able to differentiate
the samples of the groups in the study, with a higher accuracy (81.5%) compared to the linear
discriminant analysis (LDA) models using the concentration values of the spectrometric analysis
(60.0%) and the concentrations predicted by the PLS regression (69.8%). Results indicated that spectral
models based on PLS applied to Raman spectra may be used to distinguish subjects with diabetes
and blood hypertension from healthy ones in urinalysis aimed at population screening.

Keywords: Raman spectroscopy; urinalysis; diagnosis; diabetes; hypertension; biochemical analysis;
quantification; discriminant analysis

1. Introduction

Urine is a body fluid consisting of approximately 95% water and approximately 5% of
urea, creatinine, uric acid, phosphate, and other compounds [1]. It is widely used for the
diagnosis of a range of health conditions in an individual or group. Urea and creatinine are
the major components of human urine, and changes in urea concentration in blood, serum,
or urine may indicate pathologies such as renal failure, hyperpyrexia, leukemia, diarrheal
diseases, diabetes, and hyperthyroidism [2]. Creatinine is the end product of muscle
metabolism, commonly used to test renal filtration function [3]. The glomerular filtration
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rate (GFR) is used in clinical practice as a standard measure for evaluating renal function
and is an important indicator for the detection, assessment, and treatment of chronic kidney
disease [4]. According to Montero et al. [5], proteinuria is one of the most common clinical
manifestations of diabetic nephropathy and is closely related to the transdifferentiation of
mesenchymal cells.

Glucose concentrations in blood are used to diagnose diabetes mellitus (DM). High
blood glucose can damage blood vessels in the kidneys. However, the exact cause is
unknown; the incorrect control of blood sugar and blood pressure is known to increase the
risk of kidney damage [6]. High levels of glucose can be found in urine when it is excreted
from the blood and result in glycosuria. Glycosuria is positive in patients with normal
renal function when its serum concentration is above 10 mmol/L, and this value is even
higher in patients with diabetic nephropathy [7].

Type 2 diabetes and hypertension are common comorbidities. Hypertension is twice
as frequent in patients with diabetes compared with those who do not have diabetes [8].
Hypertension is the most important modifiable risk factor for all causes of morbidity and
mortality worldwide and is associated with an increased risk of cardiovascular disease [9].
The nephrons are the functional units of the kidney that filter the blood and are supplied
with a dense network of blood vessels, and high volumes of blood flow through them. With
time, high blood pressure can cause arteries around the kidneys to constrict and narrow,
and these damaged arteries are not able to deliver enough blood to the kidney tissue [6].

According to data from the International Diabetes Federation, the global prevalence
of DM in adults was estimated at 8.8% in 2015 and might increase to 10.4% in 2040.
DM can lead to various health complications, including cardiovascular diseases, renal
dysfunction, vision problems, and even amputation [10]. Therefore, primary prevention is
extremely important to reduce DM prevalence and its consequences. HBP is an important
and well-established modifiable risk factor for cardiovascular, peripheral arterial, and
renal diseases [8]. Although HBP is common in patients with type 2 DM, its role in the
development of DM is uncertain. Several longitudinal studies have shown that individuals
with HBP or even pre-HBP have a higher risk of developing DM than normotensive
individuals [11].

Raman spectroscopy is an optical spectroscopic technique used to determine the vibra-
tional modes of molecules based on the inelastic scattering process. Raman spectroscopy
can be used to identify biochemical samples in vivo, non-invasively, and in real time. More-
over, it can be used in vitro to examine the biochemical compounds present in biological
fluids, without using chemicals and reagents. The benefits of Raman spectroscopy, when
compared with traditional biochemical techniques, rely on the possibilities of detecting
selected biomolecules without the need for reagents (reduced costs), detecting and quan-
tifying several biochemicals at a time due to the multivariate nature of a single Raman
signal (rapidness), which may reduce possible analytical errors [12], since the molecules
associated with some diseases have very specific spectral properties and are easily detected
through Raman scattering [13].

Raman spectroscopy has been used for serum analysis and diagnosis of different
diseases such as endometriosis, Huntington’s disease, COVID-19, and cirrhosis [14–17].
The application of Raman spectroscopy for urine analysis has been previously studied to
assist in early diagnosis by identifying biomarkers of nutritional supplementation, uri-
nary tract infections, and other diseases, including chronic kidney disease and bladder
cancer [18–24], the greatest advantage of Raman spectroscopy being the rapid analysis of
individual samples. In short, Raman spectroscopy has been used to detect and quantify the
main components in urine such as urea, creatinine, glucose, and phosphate [18,19,21,22].
Phosphate is the most abundant intracellular anion within the body and is an important
component that is present in multiple physiological processes that affect different organ sys-
tems [25]. Elevated serum phosphate levels are generally found in patients with moderate
to severe chronic kidney disease [26].
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In the present study, we evaluated the main biomarkers present in the urine of healthy
volunteers (control-CT group), as well as diabetic (DM) and hypertensive blood pressure
(HBP) patients (DM&HBP group) without impaired renal functions, to compare the Raman
spectroscopy with the conventional biochemistry method (spectrophotometry being the
gold standard) used for classification and diagnosis, since these patients are at risk of
developing kidney disease. We performed exploratory analysis by principal component
analysis (PCA) to describe the spectral differences between the groups and to correlate these
differences with the changes in urine composition due to DM&HBP. A multivariate model
based on partial least squares (PLS) regression was developed to predict the concentrations
of the biomarkers compared to the standard method and to classify the spectra into the
clinical groups studied. An innovation of the present study is the evaluation of five
biomarkers in the urine: urea, creatinine, glucose, phosphate, and total protein; previous
studies only evaluated urea, creatinine, and glucose [18,19]. De Souza et al. [18] and
Bispo et al. [19] employed a classification model based on the quadratic discriminant
analysis (QDA) applied to the Raman/PCA to classify spectra in one of the four groups
based on clinical observations (control, DM + HBP without complications, DM + HBP
with complications, and dialysis). In the proposed model, the classification accuracy
obtained for the DM&HBP group (without complications) was 32%. In order to improve
the classification obtained in these previous studies, considering that in most cases these
patients with DM&HBP are asymptomatic, we employed PLS discriminant analysis applied
to Raman spectra in urine to classify subjects with DM&HBP from healthy (control) ones.
In addition, another innovative feature of this study was to perform classification using
the concentrations of the biomarkers from a conventional spectrophotometry assay and
the concentrations estimated by the PLS model applied to the Raman spectra used for
diagnosis (populational screening).

2. Materials and Methods

Figure 1 shows the diagram of the experimental setup, the number of eligible samples
assessed, the total spectra included in and excluded from the study, and the data processing
and analysis employed as detailed in the following sub-sections.
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2.1. Urine Sample Collection and Biochemical Chemometric Assay

This study was approved by the Research Ethics Committee of Universidade An-
hembi Morumbi (No. 2.717.746-C.A.A.E. 91318518.9.0000.5492), in accordance with the
national guidelines and regulatory standards for research with human beings (Resolu-
tion No. 466/2012). A total of 40 patients (24 women and 16 men; age mean ± SD:
50 ± 16 years) were recruited and separated as follows: 20 healthy volunteers (normo-
glycemic and normotensive) in a control group (CT) and 20 individuals in a group of
diabetics and hypertensive patients (DM&HBP) who did not have clinical and biochemical
indicators of renal damage (Figure 1). The same procedure was used to collect the urine
samples from the CT and the DM&HBP groups. Anamnesis was performed in both groups,
and urine samples were collected in a sterile flask. Volunteers and patients were instructed
to collect midstream (Type 1) urine during spontaneous urination, with prior hygiene of
the genitals; that is, the first stream should be discarded, and the next midstream collected.

Samples of urine from the CT and DM&HBP groups were obtained from a health care
unit of the Municipal Health Department in the city of Santarém, PA, Brazil. The subjects
from CT and DM&HBP groups were fasting at the moment of sample collection, and the
urine samples were placed in 2.0 mL cryogenic tubes and kept at −80 ◦C until spectral
analysis. The transport of urine samples was carried out in an appropriate thermal box.
The inclusion and exclusion criteria were the same for both groups. Subjects with a GFR
within the reference values according to age and gender were included. Subjects who were
presenting symptoms or clinical manifestations of urinary infection, who were not fasting
before collection, or who reported symptoms of cardiovascular instability such as angina,
palpitations, and hemodynamic decompensation were excluded.

After collection, the urine samples were submitted to biochemical chemometric anal-
ysis using an automated analytical spectrophotometric equipment (model Atellica CH
930 Analyzer, Siemens Healthcare Diagnósticos S.A., São Paulo, SP, Brazil, Table S1), and
the values of urea, creatinine, glucose, and phosphate were obtained with specific kits
(Atellica-ref. 11097593 for urea, ref. 11097533 for creatinine, ref. 11097592 for glucose and
ref. 11097611 for phosphate). The measurement of total protein was conducted with a
commercial kit (model Sensiprot, Labtest Diagnóstica S.A., Lagoa Santa, MG, Brazil) and
the absorbance of the endpoint reaction was considered at 600 nm. Table S2 presents the
calibration routine for the standard curves of the spectrophotometry assay and the linearity
of the curves. The spectrophotometry experiments were conducted at a temperature of
20 ◦C (±1 ◦C) and a relative humidity of 60% (±10%), while Raman experiments were
conducted at a temperature of 22 ◦C (±1 ◦C), and a relative humidity of 60% (±10%).

According to the instructions present in the analytical spectrophotometer kits, some
urine compounds such as hemoglobin, conjugated and unconjugated bilirubin, and lipemia
can interfere with the biochemical analysis, depending on the compound assayed. Interfer-
ing substances, tested according to the EP07-A2 guideline [27] and specific guidelines of
the kit manufacturer (Atellica), are expected to have ≤10% interference in the assays. The
total protein kit used has an interference of 5% in the assay.

Statistical analysis was performed to compare the concentrations of the biomarkers
in the CT and DM&HBP groups using a Student’s t-test (p < 0.05, Instat software v. 3.05,
GraphPad Software Inc., San Diego, CA, USA) preceded by a normality test (Kolmogorov–
Smirnov, p < 0.1).

2.2. Raman Spectroscopy

Spectra collection was performed in a dispersive Raman spectrometer (model Dimen-
sion P-1, Lambda Solutions Inc., Waltham, MA, USA). The equipment uses an 830 nm
multimode diode laser with an output power of about 400 mW. A fiber optic cable (Raman
probe) (model Vector Probe, Lambda Solutions Inc.) was used to provide radiation to the
sample and collect the signal; the use of a Raman probe allows repeatable excitation and
signal collection geometry. The measured laser power at the probe tip was 350 mW with a
beam waist of about 170 µm. The Raman experiments were conducted at a temperature
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of 23 ◦C (±1 ◦C) and a relative humidity of 60% (±10%). Urine samples were placed in
an aluminum sample holder, approximately 80 µL in volume, with 4 mm diameter holes.
The Raman probe was placed at 10 mm from the sample holder. The Raman signal was
collected with a 5 s integration time. Six spectra were randomly collected from each sample,
totaling 240 spectra for the 40 samples (n = 20 for each group), and a total of 8 spectra were
excluded due to the low signal-to-noise ratio (SNR < 10). Figure 1 shows the number of
samples eligible and the number of spectra used in the study.

The Raman spectra were then pre-processed in the following order: manual removal
of cosmic rays spikes, automatic removal of the fluorescence baseline signal by fitting and
subtracting a fifth-order polynomial, and automatic normalizing by the area of the water
band at 1660 cm−1. This pre-processing was performed in a laboratory-made routine using
Matlab software (version 7.4.0, The Mathworks Inc., Natick, MA, USA). The normalized
mean Raman spectra of urine from the groups studied were plotted and compared.

2.3. Data Processing and Analysis—Exploratory Analysis and Linear Regression Models for
Quantification and Discrimination

Figure 1 also shows the diagram of data processing and analysis. PCA was employed
for exploratory analysis to identify the biochemical differences between the groups revealed
by the Raman bands. Principal component scores (Scores), which are projections of the
dataset onto the new principal components axes (the axes that maximize the variance in
the data) [28], and the principal component coefficients (loadings or PCs), which are the
projections (the intensities) of the data onto these new axes [28], were extracted and plotted.
The Scores resemble the Raman spectra, with positive and negative peaks in the positions
of the compounds present in the urine, and, together with the PCs, can show specific
chemical information and be interpreted as differences in the biochemical composition of
the groups [29]. Therefore, the spectral features presented in the Scores were correlated
to the compounds found in the urine samples, and the PCs were used to identify where
these differences occur. PCA calculation was performed using the Matlab software and the
routine princomp.m.

The Student’s t-test (p < 0.05, Instat software v.3.05) preceded by a normality test
(Kolmogorov–Smirnov, p < 0.1) was applied to the PCs to identify which one presented a
difference in the CT and DM&HBP groups related to the biochemical information presented
in the Scores.

A spectral model based on the PLS regression technique was applied to the Raman
spectra of urine to estimate the concentrations of urea, creatinine, glucose, phosphate, and
total protein using the spectrophotometric assay (gold standard) as inputs. The model
considered the spectral information from the Raman signal as independent variables
(x data) and the concentrations determined by conventional biochemical analysis (spec-
trophotometry) as dependent variables (y data) or the real concentration. Leave-one-out
cross-validation was used, where n-1 samples were used in the PLS regression model, and
the concentrations of a left-out sample were predicted using a certain number of latent
variables (LVs). The model’s performance was evaluated by the root means square error of
cross-validation (RMSEcv) and Pearson’s correlation coefficient (r), where the best model is
the one that gives the minimum RMSEcv and maximum r as LVs are added to the model.

Discriminant models based on linear discriminant analysis (LDA) and PLS regression
(PLS-DA) were used to classify the subjects into CT and DM&HBP groups. In all cases, the
dependent variables (y data) were group classes or categories, “1” being samples within
the reference values (CT) of the compounds and “2” being the samples out of the reference
values (DM&HBP). The independent variables (x data) considered in each model were
(a) the concentrations of creatinine, urea, glucose, phosphate, and total protein obtained by
spectrophotometric analysis, modeled by LDA, (b) the concentrations of the compounds
assayed by Raman spectroscopy, also modeled by LDA, and (c) the entire Raman spectra
dataset, modeled by PLS-DA. In PLS-DA models, the performance is commonly evaluated
by the overall accuracy (the number of correct classifications divided by the number of
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cases) [30], where the best model is the one that gives the highest accuracy as LVs are added
to the model.

The Chemoface software [31] was used to perform PCA, PLS, and PLS-DA. The steps to
perform PCA, PLS regression, and PLS-DA can be found elsewhere, e.g., in Chemoface—User
Guide (http://www.ufla.br/chemoface) (accessed on 18 August 2022).

3. Results and Discussion
3.1. Raman Spectra

Table 1 shows the mean values of the concentrations of urea, creatinine, glucose,
phosphate, and total protein in the urine of the two groups analyzed, CT and DM&HBP,
assayed by spectrophotometry (gold standard). The comparative analysis between the CT
and DM&HBP groups showed no statistically significant difference between groups in each
of the five biomarkers analyzed (p > 0.05).

In Table 1, it is clear that both groups presented urea, creatinine, and phosphate
within the reference values (RVs), which was expected because the subjects included in the
study did not have clinically diagnosed renal dysfunction. The concentration of glucose
in the CT group was within the RVs. However, 25% of the volunteers in the DM&HBP
group had glucose levels above the RVs. The high glucose levels in some individuals may
be due to the lack of correct control drug therapy, where patients might not have been
taking their prescribed medications correctly. Chronic hyperglycemia is associated with a
significantly higher risk of developing diabetes-related microvascular and macrovascular
complications. The early detection of DM through screening increases the likelihood of
identifying asymptomatic individuals and enables adequate treatment to reduce diabetes
and its complications [32]. The concentration of total protein was above the RVs in 45%
of the subjects in the CT group, while it was above the recommended values in the urine
of 35% of the subjects in the DM&HBP group. Proteinuria is a major marker of chronic
kidney disease, and Raman spectroscopy has been proposed as an alternative method for
diagnosing this health condition [33].

Table 1. Concentration of the main biomarkers of urine from the CT and DM&HBP groups determined
using a spectrophotometry assay. Reference values from Wu [34] are converted to SI (mol/L).

Urinary
Biomarker Reference Values

CT
Mean

Concentration ± SD

CT
Total Amount of
Samples/No. of

Samples Above RVs

DM&HBP
Mean

Concentration ± SD

DM&HBP
Total Amount of
Samples/No. of

Samples Above RVs

Urea 51.6–549 mmol/L (M)
46.9–580 mmol/L (W) 271 ± 89 mmol/L 20/0 249 ± 68 mmol/L 20/0

Creatinine 2.12–34.6 mmol/L (M)
1.4–28.9 mmol/L (W) 12.5 ± 5.5 mmol/L 20/0 9.3 ± 4.0 mmol/L 20/0

Glucose <0.83 mmol/L 0.23 ± 0.04 mmol/L 20/0 17.3 ± 38.7 mmol/L 20/5
Phosphate 1.6–61 mmol/L (M)

2.3–48 mmol/L (W) 23.4 ± 14.1 20/0 17.2 ± 9.9 20/0
Total protein 1–15 mg/dL 14.7 ± 5.5 mg/dL 20/9 15.6 ± 7.2 mg/dL 20/7

RV: reference value; M: men; W: women.

Figure 2 shows the mean Raman spectra of the CT and DM&HBP groups in the
400–1800 cm−1 spectral range as well as the difference spectrum (DM&HBP-CT). The
spectra are mostly dominated by Raman peaks corresponding to urea, creatinine, glucose
(particularly for the DM&HBP group), phosphate, and proteins (also for the DM&HBP
group). The urea peaks were at 516 (overlap with glucose), 587, 1002, and 1157 cm−1; the
creatinine peaks were at 678, 846, and 910 cm−1 (overlap with glucose); the phosphate
peaks were at 880, 979, and 1080 cm−1, the glucose peaks were at 446, 516 (overlap with
urea), 910 (overlap with creatinine), 1080 (overlap with phosphate), and 1127 cm−1; protein
peaks were between 1250–1700 cm−1. The overlap of some Raman bands (for instance, the
516 cm−1 peak) occurs due to similarities in the energy vibrations of carbon single bonding
in such organic compounds, particularly, the C–C, C–N, and C–O modes (C–C–O bending
for glucose [35] and N–C–N and N–C–O bending for urea [36]). The main difference

http://www.ufla.br/chemoface
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between both groups was the presence of glucose peaks (446, 516, 1080, and 1127 cm−1).
These Raman peaks have been previously described [19,21,32,35–39].
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Figure 2. Mean Raman spectra of the CT and DM&HBP groups and difference spectrum (DM&HBP-
CT). The assignments of the main peaks are detailed in the text. Spectra are offset for clarity. GLU:
glucose; URE: urea; CRE: creatinine; PHO: phosphate; PRO: total protein.

3.2. Exploratory Analysis

Exploratory analysis using PCA was used to reveal differences in the Raman features
of the CT and DM&HBP groups. High spectral variations were found to be in the first
six principal components (>98% of spectral variance), and the six principal component
variables (PCs and Scores) are plotted in Figure 3. Score1 shows the general spectral
characteristics of compounds found in urine: creatinine (678 cm−1), phosphate (979 cm−1),
and urea (1002 and 1157 cm−1), PC1 shows that there is no statistically significant difference
between the groups (p > 0.05). Score2 shows positive and negative characteristic spectral
features, the positive ones being assigned to phosphate (979 cm−1) and urea (1003 cm−1)
and the negative ones being assigned to glucose (516, 850, 908, 1061, 1125, 1360, and
1459 cm−1). PC2 shows that there is no statistically significant difference between the
groups (p > 0.05) despite the presence of higher glucose features in the DM&HBP group
(negative PC2 and negative glucose features in Score2), suggesting that some subjects may
not have a proper glucose control. Score3 shows negative spectral features assigned to
glucose (515, 1062, 1123, 1371, and 1463 cm−1) and urea (1004 cm−1). PC3 shows that there
is a statistically significant difference between the groups (p < 0.05), where the CT group
had lower amounts of glucose and urea (seen by the positive PC3 values and negative
Score3 features), the glycosuria being a clinical characteristic expected in subjects of the
DM&HBP group without proper control. Score4 evidences negative spectral features
assigned to proteins (suggested features of albumin) at 853, 895, 943, 1000, 1342, 1449, and
1659 cm−1 [12]. PC4 shows a statistically significant difference between the groups (p < 0.05),
with a lower intensity for the DM&HBP group (negative protein features and positive PC4);
this may suggest proteinuria in some subjects. Score5 shows positive spectral characteristics
of proteins (622, 941, 1000, and 1443 cm−1) and negative features of proteins (788, 868, 888,
1370, 1408, 1428, and 1635 cm−1). PC5 shows a statistically significant difference between
the groups (p < 0.05), and the negative features appearing in the DM&HBP group (negative
PC5) suggest that proteinuria is occurring in this group. Score6 shows positive spectral
features of proteins/amino acids (489, 630, 678, 791, 843, 943, 983, 1060, 1136, 1216, 1364,
1390, 1419, and 1606 cm−1) and a negative feature assigned to amino acids (1006 cm−1).
PC6 shows no statistically significant difference between the groups (p > 0.05). The presence
of proteins and amino acid features in Score6 without a significant difference between the
groups suggests a complex composition of urine independently on the group.
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Figure 3. Plot of the first six principal component variables (Scores and PCs) extracted from the
Raman dataset. The biochemical assignments seen in the Scores were based on the positions of the
Raman bands compared to the literature. PC3, PC4, and PC5 show statistically significant differences
between the groups (t-test, p < 0.05 *).
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Figure 4 presents correlations between the real and estimated concentrations of the
different biomarkers. The data revealed that creatinine and glucose were the biomarkers
that presented the highest r between the two techniques analyzed (r = 0.68 and 0.98,
respectively), both with 8 LVs, and RMSEcv = 3.6 and 5.1 mmol/L, respectively.
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Figure 4. Correlation between the estimated concentrations of urea, creatinine, glucose, phosphate,
and total protein in urine determined using spectral models based on PLS regression with leave-one-
out cross-validation versus the concentrations determined by the spectrophotometry.

Table 2 presents the results of the discrimination model based on LDA to classify
subjects into CT and DM&HBP groups using the concentrations of creatinine, urea, glucose,
phosphate, and total protein obtained by spectrophotometric analysis. The LDA classi-
fication using the concentration values predicted by PLS and the PLS-DA classification
based on the Raman spectra dataset considering 7 LVs, where all spectral information is
considered, are presented. The highest accuracy of 81.5% was obtained by the PLS-DA
model using the entire Raman spectra dataset, with a sensitivity of 81.5% and a specificity
of 81.4%, overcoming the accuracy of 60.0% of the LDA using the concentrations of the
spectrophotometric analysis.
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Table 2. Confusion table with the results of the discriminant models used to classify subjects into
CT and DM&HBP groups using LDA applied to the concentrations of the biomarkers obtained by
spectrophotometric analysis and concentrations predicted by PLS regression. The classification by
PLS-DA using the entire Raman spectra dataset is also presented.

Classification According to the Clinical Criteria Classification Using Spectrophotometric Analysis
Control DM&HBP

Control (n = 20) 13 7
DM&HBP (n = 20) 9 11

Sensitivity 55.0%
Specificity 65.0%
Accuracy 60.0%

Classification According to the Clinical Criteria Classification Using the Concentration Values Predicted by PLS
Control DM&HBP

Control (n = 113) 85 28
DM&HBP (n = 119) 42 77

Sensitivity 64.7%
Specificity 75.2%
Accuracy 69.8%

Classification According to the Clinical Criteria Classification Using Raman Spectra by PLS (7 LVs)
Control DM&HBP

Control (n = 113) 92 21
DM&HBP (n = 119) 22 97

Sensitivity 81.5%
Specificity 81.4%
Accuracy 81.5%

The recruitment of volunteers followed the same criteria for both groups. In the CT
group. Although the volunteers had proteinuria, the GFR remained within the normal
range (inclusion criteria), thus indicating that the individuals did not have renal damage.
Healthy individuals may present increased proteinuria after physical activity once CTs
are no longer sedentary. Post-exercise proteinuria is commonly seen after physical activ-
ity [40]. According to the manufacturer’s technical instruction of the total protein kit, some
components, such as inorganic phosphate, calcium, magnesium, creatinine, glucose, and
urea, may interfere in the analysis, thus causing positive interferences of lower than 5%.
On the other hand, uric acid, sodium citrate, sodium oxalate, and ascorbate cause negative
interferences of lower than 5%.

McMurdy and Berger [20] reported the first use of Raman spectroscopy to measure
creatinine concentrations in unaltered urine samples from a multi-patient population
with a cross-validation error of 4.9 mg/dL (0.43 mmol/mL) compared with the error of
the chemical method of 1.1 mg/dL (0.1 mmol/L). Bispo et al. [19] identified potential
biomarkers in the urine of diabetic and hypertensive patients related to kidney disease. The
quadratic discriminant analysis (QDA) revealed spectral characteristics of urea, creatinine,
and glucose in the spectra of urine. A reduction in urea and creatinine concentrations
was observed as the renal disease progressed, while urine and glucose increased as the
prognosis worsened when compared with the control group. The QDA model presented
an overall classification rate of 70%. Thus, the Raman spectroscopy associated with PCA
and QDA was shown to be a valuable tool for identifying biomarkers in human urine,
classifying urine samples according to disease status, and thus diagnosing renal diseases.

Saatkamp et al. [21] modeled the intensity of the Raman peaks of urea at 1006 cm−1 and
of creatinine at 681 cm−1 versus the standard biochemical assay for predicting the concen-
trations of urea and creatinine in midstream (type 1) urine obtained from healthy patients
using PLS, showing correlation coefficient values of r = 0.90 and r = 0.91 and prediction
errors RMSEcv = 312 mg/dL (51.9 mmol/mL) and = 25.2 mg/dL (2.23 µmol/L) for urea and
creatinine, respectively. These models were applied to quantify these metabolites in patients
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with and without renal damage due to DM&HBP, showing that urea and creatinine were sig-
nificantly lower in subjects with DM&HBP, with 808 ± 866 mg/dL (135 ± 144 mmol/L) for
urea and 28 ± 81 mg/dL (2.48 ± 7.2 mmol/L) for creatinine, compared to healthy subjects,
with 1626 ± 686 mg/dL (271 ± 114 mmol/L) and 136 ± 63 mg/dL (12.0 ± 5.6 mmol/L) for
urea and creatinine, respectively. Recently, Carswell, Robertson, and Senger [41] performed
a preliminary study of fresh urine mixed with whole blood and performed evaluations
using Raman spectroscopy and chemometrics (PCA and PLS); the amounts of macro- and
microhematuria (blood in urine) were correlated with the amount of blood added to the
urine, with correlation coefficients as high as 0.91 for high hematuria levels (0–20% v/v)
using PLS. The prediction accuracy for detecting microhematuria (0–1% v/v) was 91%
using PCA.

It is important to emphasize that, in practice, the analysis of biomarkers using spec-
trophotometry is carried out individually, using different measures and reagent kits for
each analysis, and the methodology varies according to the commercial kit used. As for the
analysis using Raman spectroscopy, it is possible to identify and quantify different urine
components in a single analysis. A recent study by Hu et al. [24] showed that biomark-
ers can be efficiently detected by Raman spectroscopy if the urine sample readings are
performed in both supernatant and sediment fractions.

In the present study, the classification of the spectra into the CT and DM&HBP groups
using the whole Raman spectra dataset (where all the spectral information is considered)
was performed, and the accuracy of the classification was 81.5%. The patients included
in the DM&HBP group did not present complications resulting from these two diseases;
in most cases, they are asymptomatic. In general, such patients seek medical care or
adhere to treatment when they already have symptoms or lesions in the target organs. As
this group is a borderline kidney disease, clinical follow-up with a sensitive diagnosis is
essential to reduce progression and damage to organs such as the kidney and the circulatory
system. It should be noted that discrimination using the biomarkers commonly used in
the conventional biochemical analysis showed an accuracy of only 60.0%, indicating the
need for new analytical methods to be studied and inserted into the medical practice. In
this way, divergent clinical and laboratory classification would be minimized, to ensure the
most appropriate therapy for each case.

The results suggest that Raman spectroscopy may be a technique of choice for moni-
toring patients who may develop complications resulting from diabetes and hypertension.
Raman spectroscopy could be a viable option to replace traditional methods in the monitor-
ing of patients who may develop complications resulting from these afflictions, with the
advantage that the quantitative analysis of the five variables can be obtained from a single
sample, thus reducing the time of the exam. In the near future, a method based on Raman
spectroscopy for quantifying urine components could become an alternative to the existing
methods for urinalysis or even replace them. This benefit would encourage patients with
altered results detected in a Raman assay to seek more specific exams with lower error
rates.

4. Conclusions

The exploratory analysis by PCA applied to the Raman spectra of urine from control
(CT) compared to diabetic and hypertensive (DM&HBP) subjects showed that there were
qualitative differences in the biochemical composition of urine, with marked peaks in
glucose and total protein. The PLS regression model was able to estimate the concentration
of urea, creatinine, glucose, phosphate, and total protein; creatinine and glucose were the
biomarkers that presented the best correlation coefficient (r) between the two techniques
analyzed (r = 0.68 and r = 0.98, respectively), both with 8 LVs and an RMSecv of 3.6 and
5.1 mmol/L (41 and 92 mg/dL), respectively. Discriminant analysis by PLS-DA using the
entire spectra dataset was able to differentiate the samples of the groups in the study, with an
accuracy (81.5%) higher compared to the LDA model (60.0%) using the concentration values
of the spectrometric analysis. In clinical practice, Raman spectroscopy may have advantages
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over traditional biochemical techniques, as it can be used for urinalysis; moreover, it is
possible to obtain several assays from a single sample spectrum, opening a window for the
prediction of clinical complications resulting from diabetes and hypertension that may lead
to the development of kidney disease in patients without clinical signs of complications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bioengineering9100500/s1. Table S1. Main technical specifications
and details of the automated spectrophotometric equipment used (Atellica CH 930 Analyzer). Table S2.
Analyte Limit of Detection (LOD) and linearity of chemistry assays in the urine according to the
manufacturer of the kit.
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