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Abstract: Antrodia cinnamomea is a precious and popular edible and medicinal mushroom. It has
attracted increasing attention due to its various and excellent bioactivities, such as hepatoprotection,
hypoglycemic, antioxidant, antitumor, anticancer, anti-inflammatory, immunomodulation, and gut
microbiota regulation properties. To elucidate its bioactivities and develop novel functional foods
or medicines, numerous studies have focused on the isolation and identification of the bioactive
compounds of A. cinnamomea. In this review, the recent advances in bioactivity, isolation, purification,
and identification methods of active compounds from A. cinnamomea were summarized. The present
work is beneficial to the further isolation and discovery of new active compounds from A. cinnamomea.

Keywords: Antrodia cinnamomea; bioactive; compound; isolation; purification

1. Introduction

Antrodia cinnamomea (syn. Antrodia camphorate) is a precious edible and medicinal mush-
room; it belongs to phylum Basidiomycetes, family Polyporaceae, and genus Antrodia [1,2].
This fungus grows only on the inner cavity of a native tree called Cinnamomum kanehi-
rai Hayata at an extremely slow pace and has been known as “ruby in the forest” [3,4].
A. cinnamomea has been historically used to treat food and drug intoxication [5].
A. cinnamomea exhibits various physiological and pharmacological properties, such as
anticancer, antitumor, antioxidant, anti-inflammatory, hypoglycemic, hepatoprotective,
immunomodulation, and gut microbiota regulation activities [6–9]. It has also attracted
increasing research attention for the development of novel medicine due to its therapeutic
action, particularly its prospective application as a chemoprophylaxis agent [1].

However, the wild fruiting bodies of A. cinnamomea are extremely expensive and in
short supply because of host scarcity and slow growth. Accordingly, artificial cultivation
techniques, such as cutting wood culture, solid-state fermentation, submerged fermenta-
tion, and dish culture, have been developed to supplement the expanding demand for
A. cinnamomea. However, obtaining adequate amounts of excellent-quality A. cinnamomea
through artificial culture has been greatly challenging [10,11]. Several differences exist
between the type and content of the fruiting bodies and cultured mycelia of A. cinnamomea.
Accordingly, numerous studies have demonstrated various methods for bridging such a
disparity in bioactive metabolites between fruiting bodies and cultured mycelia [10,12].

With further in-depth studies, the research on A. cinnamomea is no longer limited
to crude extracts. Various single substances, including polysaccharides, triterpenoids,
ubiquinone derivatives, and maleic and succinic acid derivatives, have been isolated
from fruiting bodies and cultured mycelia of A. cinnamomea. Currently, numerous kinds
of isolation methods are used for the metabolites from A. cinnamomea. However, the
standardization of product quality and purity is lacking. Numerous active substances
remain undiscovered due to the limitations of isolation and purification methods. In this
review, we summarized the recent findings on the active compounds of A. cinnamomea, their
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physiological and pharmacological properties, and methods of isolation and purification of
active compounds.

2. Isolation and Purification of Bioactive Compounds from A. cinnamomea

More than 200 compounds have been isolated and identified in A. cinnamomea, and
they include polysaccharides, triterpenoids, ubiquinone derivatives, maleic and succinic
acid derivatives, benzene derivatives, and glycoprotein. The chemical structures of the
main bioactive components from A. cinnamomea are showed in Figure 1. However, a
number of compounds with significant biological activity in A. cinnamomea still have not
been found [13,14]. The following section summarizes the separation and purification
methods of various active substances from A. cinnamomea.
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2.1. Polysaccharides

Polysaccharides are the predominant active constituents of A. cinnamomea, and they
have great development potential and research value. These polysaccharides reportedly
possess immunomodulatory, anti-inflammatory, anti-angiogenic, and anticancer activi-
ties [15,16]. Furthermore, polysaccharides are potential natural medications for the treat-
ment of Parkinson’s disease [17,18].

The bioactive polysaccharides from A. cinnamomea are primarily obtained by sub-
merged fermentation, and numerous studies have been performed to isolate additional
varieties of polysaccharides due to their biological and application value. Polysaccharide
separation is a complex procedure. The first step involves obtaining crude polysaccharides
using water extraction and ethanol precipitation with an ethanol concentration of 70–80%.
After crude extraction, several impurities, especially proteins, remain. The common meth-
ods of protein removal include the Sevag [19], trichloroacetic acid [20], and enzymatic
methods [21]. The enzymatic method is also suitable for the removal of nucleic acid impu-
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rities. The treatment of protease K, DNase I, and RNase can conveniently and efficiently
remove proteins and nucleic acids [21]. Crude polysaccharides often contain dark impuri-
ties that require decolorization, typically with 10% H2O2 [22], through the use of oxidants to
destroy the chromogenic groups of pigments. Other impurities, such as monosaccharides,
oligosaccharides, inorganic salts, and low-molecular-weight nonpolar substances, can be
removed using dialysis. After impurity removal and decolorization, partially purified
polysaccharides need further separation to yield the major pure polysaccharides.

Column chromatography is currently the most common technology for polysaccha-
ride purification due to its high purification efficiency and simple operation. Ion-exchange
column chromatography and gel column chromatography are the best known methods for
the purification of polysaccharides from A. cinnamomea. For bulky polysaccharide solutions,
ion-exchange column chromatography is often utilized initially. This method may be
used to concentrate and preliminarily purify polysaccharide solutions, and certain polysac-
charides can be purified as homogenous fractions. Diethylaminoethyl (DEAE)-cellulose,
DEAE-Sephadex, and DEAE-Sepharose are the most often used anion exchangers [23],
with DEAE-cellulose being the primary choice for the purification of polysaccharides from
A. cinnamomea. Gel column chromatography is used to separate polysaccharides based on
the size and shape of polysaccharide molecules. Anion-exchange column chromatography
is generally used to undertake preliminary purification of the resulting crude polysaccha-
rides, followed by gel column chromatography for further purification. Sephadex G-100
is a commonly used gel to purify polysaccharides from A. cinnamomea. Size-exclusion
chromatography (SEC) is suitable for separating polysaccharides using aqueous solution
as mobile phase and for the separation of water-soluble samples. Gel filtration chromatog-
raphy (GFC) is also suitable for the separation of polysaccharides, and it uses different
concentrations of salt and buffer solutions as eluents to separate and purify polysaccharides.
However, GFC is unsuitable for mucopolysaccharide separation.

A. cinnamomea contains a mixture of polysaccharides composed of various monosac-
charides [18]. Researchers have isolated numerous polysaccharides with different monosac-
charide compositions and combinations that affect active functions. Perera et al. [21]
reported presence of galactomannan (ACP) in A. cinnamomea mycelia for the first time.
They observed that the compound is composed of 75% mannose and 25% galactose. ACP
improves the phagocytosis and bactericidal activity of J774A.1 murine macrophages against
Escherichia coli [21]. Further investigation revealed that ACP has immunostimulatory action
via protein kinase C-α and mitogen-activated protein kinase phosphorylation in mouse
peritoneal macrophages and human dendritic cells [24]. ACP2 is a galactoglucan derived
from A. cinnamomea mycelia and mostly comprises glucose, galactose, and 6-deoxyglucose
at a molar ratio of 5:2:1, and it reduces lipopolysaccharide-induced hepatocyte inflamma-
tion. The uniqueness of ACP2 is attributed to the 6-deoxyglucose in its sugar chain, which
has seldom been documented in earlier works [25]. A purified polysaccharide that accounts
for 40.96% of crude polysaccharides termed ACPS-1 is composed primarily of mannose,
xylose, arabinose, fucose, and rhamnose at a molar ratio of 31.27:1.77:1.44:1.34:1.00, showing
a strong in vitro inhibitory activity against various mouse and human cancer cell lines [19].

When polysaccharides are sulfated, their bioactivities reportedly increase. Compared
with polysaccharides, sulfated polysaccharides have stronger biological activity for in-
hibiting cancer cells, inflammation, and angiogenesis [26–28]. Several studies revealed
that the sodium sulfate-, ammonium sulfate-, and zinc sulfate-feeding of A. cinnamomea
can increase the content of sulfated polysaccharides [29,30]. Sulfated polysaccharides are
extracted differently from polysaccharides by utilizing the Albano and Mourao method
with several modifications [31]. The lyophilized mycelia (1 g) is extracted with 40 mL of
0.1 M sodium acetate (pH 5.5) containing 5 mM of cysteine, 100 mg of papain, and 5 mM of
ethylenediaminetetraacetic acid (EDTA) at 60 ◦C for 24 h. After obtaining crude sulfated
polysaccharides, a purification method similar to that for polysaccharides is performed.
The preparation procedures of polysaccharides from A. cinnamomea in recent publications
are listed in Table 1.
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Table 1. Preparation procedures of polysaccharides from A. cinnamomea in recent publications.

Polysaccharides
Component Sources Extraction Method Isolation and Purification

Method Reference

ACP Mycelia Extracted with
cold water

GFC HW65F column (Tosoh Bioscience,
90 cmH × 1.6 cm D); flow rate, 0.4 mL/min [21]

ACP1 Mycelia Extracted twice with
hot water

DEAE-52 column (300 × 26 mm2) and Sephadex
G-100 chromatography (1.0 × 80 cm)

[22]

ACP2 Mycelia Extracted with boiling
water for 3 h

DEAE-52 column (300 × 26 mm2) and Sephadex
G-100 chromatography (1.0 × 80 cm2)

[25,32]

ACW0 Mycelia

Extracted with
boiling water

four times (4 h for
each extraction)

DEAE Sepharose Fast Flow and Sephacryl
S-100HR systems [15]

ACPS Mycelia
Extracted twice in
double-distilled

water at 95 ◦C for 4 h

DEAE-52 cellulose anion-exchange column
(2.6 cm × 35 cm) [20]

ACPS-1 Mycelia Extracted with boiled
water for 3 h

DEAE-52 cellulose (2.6 × 20 cm2) and Sephadex
G-100 column chromatography (1.1 × 100 cm2)

[19]

Na10_SPS-F3 Mycelia

0.1 M sodium acetate
(pH 5.5) containing

5 mM cysteine,
100 mg papain,

and 5 mM EDTA at
60 ◦C for 24 h

GFC (103 × 1.5 cm2 Fractogel BioSeccolumn) [33]

Note: GFC, gel filtration chromatography; DEAE, dicthylaminoethyl.

2.2. Triterpenoids

The triterpenoids isolated from A. cinnamomea primarily include the ergostane and
landostane types [34]. About 75 ergostane and 28 landostane have been reported in previous
research [35]. Lanostanes are produced in fruiting bodies and cultured mycelia, whereas
ergostanes are produced only in fruiting bodies [36]. The majority of triterpenoids have
significant therapeutic potential. The latest research showed that triterpenoid-enriched
extracts from cultured mycelia also attenuate alcohol-induced chronic liver injury [37].
Antcins include a group of ergostane-type triterpenoids in A. cinnamomea.

These natural substances are novel peroxisome proliferator-activated receptor α acti-
vators and may be potential chemicals for the improvement of current antidyslipidemic
medicines [38]. Nearly 20 antcins have been separated to date [39]. Antcins A, B, C, H,
and K are abundant in A. cinnamomea. Only antcin A has anti-inflammatory properties,
which it exerts through imitating glucocorticoids. The extra carbonyl or hydroxyl group
added to C-7 of the molecule distinguishes antcin A from the other four antcins [39].
The most abundant landostane-type triterpenoids are eburicoic acid, sulfurenic acid, and
dehydrosulphurenic acid. All of them show a significant antidiabetic activity [40–42].

Triterpenoids have considerable physiological activity. Thus, the research on their
separation and purification techniques is a great concern. Organic solvents are exten-
sively applied to extract crude triterpenoids from A. cinnamomea, with the principle based
on the polarity of each component differing between the fruiting bodies and cultured
mycelia. The organic solvent-extraction method is beneficial to removing high-polarity
substances and retaining low-polarity triterpenoids. In the selection of organic solvents,
numerous researchers have used methanol and ethanol to obtain crude triterpenoid extract.
A. cinnamomea includes a complex array of tetracyclic triterpenoids with extremely simi-
lar structures but varied number, position, or stereochemistry of hydroxyl groups, thus
resulting in their difficult separation [43]. Most ergostanes are highly soluble in aqueous
methanol, but lanostanes can be dissolved only in pure methanol due to their low polarity.
Consequently, several researchers extracted ergostanes using 50% methanol and subse-
quently extracted the lanostane-enriched extract with 100% methanol. This straightforward
method effectively separates the two forms of triterpenoids [43]. Triterpenoids are further
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isolated and purified by a traditional method called multistage solvent extraction. Its princi-
ple is similar to that of organic solvent extraction, except that multistage solvent extraction
is repeatedly extracted using several organic reagents with different partition coefficients
to extract purer substances as much as possible. However, obtaining pure compounds
by multistage solvent extraction is difficult and causes solvent wastage, environmental
pollution, and solvent residues in products. At present, multistage solvent extraction is
generally used as an auxiliary method and combined with macroporous resin column
chromatography, silica-gel column chromatography, and other techniques. Given its ease of
use, low cost, and repeatability, macroporous resin column chromatography is extensively
used to extract and purify natural materials. It may also be used to enhance a wide range of
compounds [44]. AB-8 resins are preferred for triterpenoid purification because of the simi-
lar polarity of triterpenoids to that of AB-8 macroporous resin with a weak polarity, which
enables its easy elution. Silica-gel column chromatography is suitable for the purification of
triterpenoids. Different eluents are used for elution in the process to achieve separation and
fractionation. Common solvent systems are the dichloromethane-methanol solvent system
and chloroform-methanol solvent system, and triterpenoids can be separated by repeated
silica gel column chromatography [45,46]. The preparation procedures of riterpenoids from
A. cinnamomea in recent publications are summarized in Table 2. Ergostanes are tetracyclic
triterpenoids that often exist as 25R/S epimeric pairs, making chromatographic separation
challenging. Seven pairs of 25R/S-ergostanes were separated from A. cinnamomea using
analytical supercritical-fluid chromatography (SFC) [47]. SFC is an effective approach
for chiral and achiral separation. Its quick column equilibration and easy mobile phase
removal make it appealing for preparative scale separation. SFC is commonly used to
separate chiral combinations of pharmaceutical and natural compounds, such as triter-
penoids, steroids, and bile acids [47]. In the separation and purification of triterpenoids,
not only a single method is usually used but also multiple methods that supplement each
other. A total of 60 triterpenoids, including 18 novel ones (antcamphins M–X), were iso-
lated from dish cultured A. cinnamomea in accordance with the following methods. Dried
dish-cultured samples of A. cinnamomea were extracted with 95% ethanol. Then, the extract
was repeatedly subjected to AB-8 macroporous resin, silica gel, ODS C18, and Sephadex
LH-20 column chromatography and further purified by semipreparative reversed-phase
high-performance liquid chromatography (HPLC) [45]. The yield was the highest amount
of triterpenoids isolated from A. cinnamomea at one point. However, the production of each
triterpenoid is low. Triterpenoids are potential therapeutic agents in the medical industry;
thus, the triterpenoid yield and extraction efficiency need improvement [38].

Table 2. Preparation procedures of triterpenoids from A. cinnamomea in recent publications.

Triterpenoids
Component Sources Extraction

Method
Isolation and Purification

Method Reference

Antcin A Fruiting bodies Extracted with MeOH at room
temperature for 7 days

Silica gel column and
semi-preparative HPLC [48]

Antcin K Fruiting bodies Extracted with ethyl acetate
for 3 days Silica gel column and HPLC [49]

Methylantcinate A Fruiting bodies
Extracted with n-hexane,

chloroform, and methanol
under reflux

Silica gel column
chromatography and

thin-layer chromatography
[50]

Sulphurenic acid Mycelia

Extracted with methanol at room
temperature for 4 days and then

partitioned (three times) with
ethyl acetate

Silica gel and HPLC [42]

Dehydroeburicoic Acid Mycelia Extracted thrice with methanol
at room temperature (4 days× 3) Silica gel and HPLC [40]

Eburicoic acid Mycelia Extracted thrice with methanol
at room temperature (4 days× 3) Silica gel and HPLC [41]
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2.3. Ubiquinone Derivatives

Ubiquinone derivatives are important bioactive chemicals in A. cinnamomea, and they
have significant anticancer and anti-inflammatory potential. To date, 13 kinds of ubiquinone
derivatives, including antroquinonol, antroquinonol B, antroquinonol C, antroquinonol
D, antroquinonol L, antroquinonol M, antroquinonol Z, antrocamol LT1, antrocamol LT2,
antrocamol LT3, 4-acetyantroquinonol B, 4-acetylantrocamol LT3, and antrocinnamone,
have been isolated from A. cinnamomea [51,52].

Antroquinonol is the first identified ubiquinone compound from the solid-state fer-
mentation cultured mycelia of A. cinnamomea [53]. It was extracted with n-hexane and
showed various bioactivities, such as anticancer, immunosuppressive, and diet-induced-
obesity amelioration [53–55]. Silica-gel column chromatography (eluted sequentially with
mixtures of n-hexane and ethyl acetate in a stepwise gradient mode) and gel column chro-
matography (an open column of Sephadex LH-20 with 95% ethanol as eluent) are used to
purify antroquinonol [56]. However, almost no antroquinonol is obtained under liquid-
state fermentation conditions [57]. When ubiquinone 0 is used as a precursor in liquid-state
fermentation, antroquinonol production can be successfully induced [58]. Given the low
content of antroquinonol in A. cinnamomea, the preparative isolation of antroquinonol
remains a difficult process. The typical separation method is based on the repeated elution
by silica-gel column chromatography, which is time consuming and tiresome. Meanwhile,
valuable samples are always permanently adsorbed onto the silica gel, resulting in their
wastage. Furthermore, the excessive use of organic solvents is harmful to the environment.
However, as a liquid–liquid partition chromatography, high-speed countercurrent chro-
matography (HSCCC) may use a liquid stationary phase without a solid support, thereby
avoiding irreversible adsorption and benefiting complete sample recovery [59,60]. HSCCC
has been successfully used to separate the antitumor compound antroquinonol from the
solid-state cultured mycelia of A. cinnamomea, and the purity of the isolated antroquinonol
was 97.12%. This method can avoid irreversible stationary-phase adsorption and tedious
and time-consuming separation steps [61].

4-Acetylantroquinonol B is isolated because of its excellent antiproliferative activity
against HepG2 cells. Following mycelial ethanol extraction, silica-gel chromatography, and
HPLC purification, 4-acetylantroquinonol B with a molecular weight of 462.6 g/mol has
been discovered [62,63]. Three novel ubiquinone compounds from A. cinnamomea mycelia,
including antrocamol LT1, antrocamol LT2, and antrocamol LT3, have been identified.
After 95% ethanol extraction and CH2Cl2 separation, these ubiquinone derivatives have
been obtained by multiple silica-gel chromatography under different conditions. They
all exhibited selective cytotoxicities against five human cancer cell lines (CT26, A549,
HepG2, PC3, and DU-145) with half maximal inhibitory concentration values ranging
within 0.01–1.79 µM [64]. A further study revealed the presence of antrocinnamone and
4-acetylantrocamol LT3 in the cultured mycelia of A. cinnamomea for the first time. These
new ubiquinone derivatives showed a relative toxicity against three human cancer cell lines.
Compared with a previous study, the CH2Cl2-soluble fraction was subjected to column
chromatography and HPLC separation [65]. In the following research, the 20 g of the
CH2Cl2-soluble fraction was subjected to chromatography over silica gel and successively
eluted with n-C6H14–CH2Cl2 (1:4), CH2Cl2, and CH2Cl2–MeOH (95:5) to generate five
fractions. The third fraction was applied to silica gel column chromatography, eluted
with CH2Cl2–acetone (95:5) to yield 324.0 mg of 4-acetylantrocamol LT3 [66]. The main
preparation procedures of ubiquinone derivatives from A. cinnamomea are listed in Table 3.

The purification methods of ubiquinone derivatives from A. cinnamomea also primarily
include preparative liquid chromatography and semi-preparative liquid chromatogra-
phy [66,67]. They are fast and effective tools for the analysis and separation of ubiquinone
derivatives from A. cinnamomea. Compared with other methods, such as SFC, the equip-
ment of liquid chromatography and semi-preparative liquid chromatography are simpler
and less costly, and no energy is required to cool or heat carbon dioxide [68].
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Table 3. Preparation procedures of ubiquinone derivatives from A. cinnamomea in recent publications.

Ubiquinone Derivatives
Component Sources Extraction

Method
Isolation and

Purification Method Reference

Antroquinonol Mycelia (solid-state)
Extracted three time with

n-hexane by stirring at
room temperature for 6 h

Silica-gel gravity column
(230–400 mesh, 5 × 45 cm2) and

Sephadex LH-20 (5 × 70 cm2)
[56]

4-Acetylantroquinonol B Mycelia Extracted with
ethyl acetate

HPLC and silica gel
column (4.6 × 250 mm2) [62]

Antrocinnamone Mycelia Extracted with
95% alcohol

Column chromatography
and HPLC [65]

4-Acetylantrocamol LT3 Mycelia Extracted with
95% alcohol

Column chromatography
and HPLC [65,66]

2.4. Maleic and Succinic Acid Derivatives

The maleic and succinic acid derivatives found in A. cinnamomea are natural products
with the best hepatoprotective activity after silymarin [69]. Antrodins A–E are the crucial
maleic and succinic acid derivatives of A. cinnamomea, and they exert substantial cytotoxic
effects on Lewis lung carcinoma (LLC) tumor cell lines [70]. Studies have revealed that
maleic acid derivatives exert a protective effect on liver injury. Antrodin A can increase the
antioxidant and anti-inflammatory capabilities of the liver, making it a promising candidate
chemical for acute alcoholic liver damage [71]. Antrodin B inhibits transforming growth
factor (TGF)-1-induced cell proliferation, migration, and extracellular matrix (ECM) buildup
in vitro, resulting in anti-hepatofibrotic action [72]. Antrodin C suppresses hepatic stellate
cell activation, migration, and ECM production LLC partially through the inhibition of the
platelet-derived growth factor and TGF-β1 signaling pathways, which are the two most
potent stimuli of liver fibrosis [73]. Antrodin C also inhibits breast cancer cell migration
and invasion by suppressing the Smad2/3 and β-catenin signaling pathways [74]. Apart
from antrodins, maleimide, and maleic anhydride derivatives (antrocinnamomins A–D)
show good inhibitory effects on nitric oxide generation [75].

In 2004, five maleic and succinic acid derivatives were isolated for the first time from
cultured mycelia of A. cinnamomea [70]. CHCl3 was used to extract the powdered mycelia
for 3 h under reflux. For further separation, CHCl3 extract was chromatographed on a
silica gel and eluted with n-hexane-acetone (19:1–14:6) and CHCl3–MeOH (1:1) to yield
nine fractions. They were then chromatographed on normal and reversed-phase silica
gel to obtain five new maleic and succinic acid derivatives. Two maleic and succinic
acid derivatives were a mixed in one fraction and subsequently separated by preparative
HPLC [column: Tosoh TSK-gel ODS-80TM (21.5 × 300 mm2), mobile phase: CH3OH–H2O
containing 0.1% trifluoroacetic acid (70:30)] [70].

Later studies have confirmed five maleic and succinic acid derivatives, which were
named antrodins A–E [76]. Researchers have optimized their separation procedures due to
their significant bioactivity. Given that chloroform is poisonous, antrodins are extracted
with methanol or ethanol rather than chloroform. Dried and crushed cultured mycelia of A.
cinnamomea is extracted with 95% ethanol and then condensed at decreased pressure. The
residues are suspended in water before being partitioned with n-hexane and ethyl acetate.
Antrodin C is isolated from the ethyl acetate fraction by subsequent chromatography on
silica gel and Sephadex LH-20 columns [77]. The semipreparative HPLC may increase
the purity of antrodin C. A semipreparative HPLC column (Waters XBridge C18 column,
Φ19 × 250 mm2, 5 µm) is used to separate crude antrodin C. The mobile phase comprises
distilled water H2O (0.5% acetic acid) and acetonitrile (34851, Sigma–Aldrich) (10 mL/min)
to obtain antrodin C with a purity exceeding 95% [73]. The mixture of antrodins A and B is
separated with a semipreparative HPLC column (XBridge C18 column, 19 mm × 150 mm,
5 µm; Waters, Milford, MA, USA). For the acquisition of antrodins A and B, the mobile
phase is composed of H2O (0.5% acetic acid) and acetonitrile at a flow rate of 7.2 mL/min,
and their content is only 0.004% and 0.001%, respectively [72]. The preparation procedures
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of maleic and succinic acid derivatives from A. cinnamomea in recent publications are
summarized in Table 4.

Table 4. Preparation procedures of maleic and succinic acid derivatives from A. cinnamomea in
recent publications.

Maleic and Succinic
Acid Derivatives Sources Extraction

Method
Isolation and

Purification Method Reference

Antrodin A Mycelia

Extracted with absolute ethanol at a
ratio of 1:100 (g/mL), the ethanol

extract was then extracted twice with
ethyl acetate: water = 1:1

Silica gel column
chromatography in a Reveleris

PREP purification system
[71]

Antrodin C Mycelia
Extracted in methanol and then

partitioned with n-hexane chloroform
and ethyl acetate

Silica gel column and
semipreparative HPLC [73]

Antrodin B Mycelia extracted with methanol for 24 h at
room temperature.

Silica gel column and
semipreparative HPLC [72]

2.5. Benzene Derivatives

Several benzenoid compounds from A. cinnamomea possess potent anti-inflammatory
properties. 4,7-Dimethoxy-5-methyl-1,3-benzodioxole (DMB) is a representative benzenoid
compound and was first discovered in the crude methanol extract of A. cinnamomea fruiting
bodies and cultured mycelia. Previous research has revealed that DMB exerts a significant
anti-inflammatory properties by inhibiting superoxide production in human neutrophils.
Furthermore, DMB therapy reduces dendritic cell-mediated Th2 allergic responses [78].
Antrolone, another benzenoid compound from A. cinnamomea mycelia, has an excellent
anti-inflammatory effect, indicating its possible use in the development of novel anti-
inflammatory drugs [79]. Coenzyme Q0 (2,3-dimethoxy-5-methyl-1,4-benzoquinone) is
another important benzenoid compound of A. cinnamomea, and it possesses antitumor and
anti-inflammatory activities [80–82].

At present, a limited number of studies have been conducted on the isolation and
purification of benzenoid compounds. Shie et al. [83] reported a method for the isolation
of DMB from the cultured mycelia of A. cinnamomea. Briefly, freeze-dried and powdered
mycelia are extracted with methanol and then filtered. The filtrate is concentrated by
evaporation under decreased pressure to produce the methanol extract. The extract is
suspended in distilled water, and the aqueous solution is partitioned with n-hexane, ethyl
acetate, and n-butanol in sequence. The ethyl acetate layer is evaporated to dryness, and
the residue is chromatographed on a silica gel with n-hexane:ethyl acetate (7:1) to elute a
crude fraction containing DMB. For the acquisition of pure DMB, this fraction is purified
using a Sephadex LH-20 column with methanol as the eluent [83]. The DMB concentration
is so low that just 4.79 g can be extracted from 5 kg of freeze-dried mycelia [83]. In addition,
in accordance with Yen’s research [79], antrolone is extracted with 95% ethanol to yield
the crude extract. The crude extract is dissolved in water and partitioned thrice with
chloroform after condensation under a low pressure. To further purify antrolone, scientists
subject the chloroform fraction to silica-gel column chromatography and medium-pressure
liquid chromatography [79]. The preparation procedures of DBM and antrolone from
A. cinnamomea in recent publications are summarized in Table 5.
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Table 5. Preparation procedures of benzene derivatives from A. cinnamomea in recent publications.

Benzene
Derivatives Sources Extraction

Method
Isolation and

Purification Method Reference

DMB Mycelia Extracted with
methanol

Silica gel column and Sephadex
LH-20 column [83]

Antrolone Mycelia Extracted with
95% ethanol

silica gel column
chromatography and medium

pressure liquid chromatography
[79]

2.6. Gycoproteins

According to reports, minimal variations in dextran glycosidic linkages, high-order
structure, molecular weight, solubility, protein and lipid side chains, and/or high-order
aggregates can result in significant differences in bioactivity [84,85]. Chiu et al. [86] first
isolated a unique protein-bound polysaccharide with a molecular weight of 442 kDa from
the submerged fermentation mycelium of A. cinnamomea. This polysaccharide is identified
as an antrodan with a complex union of α- and β-glucans, which have (1 → 4)-linked
α-Glcp and (1 → 3)-linked β-Glcp linkages to the carbohydrate chains though the as-
paragine connection with protein sites. Antrodan at low dosages (40 mg/kg) may be
a potential hepatoprotective agent. However, increased doses of antrodan may cause
certain unpleasant responses [87]. Antrodan is also useful in lung-cancer treatment and
exerts antimetastatic effects [88,89]. Furthermore, when combined with cisplatin, antrodan
substantially alleviates cisplatin-induced renal impairment. Antrodan has also been suc-
cessfully used to treat non-alcoholic fatty liver disease through the AMP-activated protein
kinase/Sirt1/peroxisome proliferator-activated receptor-γ/sterol receptor element-binding
protein 1c pathway [90].

Glycoprotein is a binding protein and a complex polysaccharide. Thus, it has certain
properties of proteins and polysaccharides. Most glycoproteins are soluble in water, dilute
salt, and dilute alkali solution. Therefore, the extraction method of proteins or polysaccha-
rides can be used based on its properties. A glycoprotein named antrodan was isolated
from cultured mycelia of A. cinnamomea [86]. The researchers initially isolated polysaccha-
ride AC-2 by alkali extraction with subsequent acid precipitation. Then, the free sugars
and amino acids were dialyzed for three days with deionized water (DDW). The antro-
dan extracts were placed onto a Sepharose CL-6B column (3.0 × 82 cm2) and eluted with
DDW at pH 11.0 (adjusted using 1 M NaOH) to separate polysaccharides at a flow rate of
0.5 mL/min. The target was collected with a fraction collector. High-performance SEC
yielded the product at roughly 10% with an average molecular weight of 442 kD. The
protein content of antrodan was 71.0%, which was evidently larger than the carbohy-
drate quantity (14.1%); thus, this antrodan was classified as a glycoprotein [86]. The main
preparation procedures of glycoprotein from A. cinnamomea are listed in Table 6.

Table 6. Preparation procedures of glycoprotein from A. cinnamomea in recent publications.

Glycoprotein Sources Extraction
Method

Isolation and
Purification Method Reference

Antrodan Mycelia
lkali extraction with

subsequent acid
precipitation.

Sepharose CL-6B column
(3.0 × 82 cm2) and SEC [86,87]

3. Identification and Quantification of Bioactive Compounds from A. cinnamomea

Aside from isolation and purification, the identification of particular bioactive com-
pounds of A. cinnamomea is critical. This knowledge is essential for understanding the
biological activities of these metabolites and discovering new A. cinnamomea bioactive
compounds. Typically, the characterization and quantification of natural products can
use various detection techniques, including nuclear magnetic resonance (NMR), infrared
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spectra, and mass spectrometry (MS) detection. NMR has steadily developed and has
become an essential technology for chemical identification and structural characterization.
This technique enables the acquisition of data from extremely mass-limited samples and the
investigation of very complex materials [91]. 1H-NMR and 13C-NMR analyses were used
to identify compounds from solid-state cultured mycelia of A. cinnamomea [92]. Finally, a
quinone, four phenolic acid derivatives, three ubiquinone derivatives, two alkaloids, and a
triterpenoid has been identified. These compounds exhibit potent neuroprotective activities
against 6-hydroxydopamine-induced toxicity in PC12 cells [92]. NMR can also be used to
determine the amounts of various components in a mixture quickly and precisely. This
method, known as quantitative NMR (qNMR), has found novel uses in biological and phar-
macological research. qNMR is a primary ratio method compared with other instrumental
analytical methods because the resulting peak areas are proportionate to the number of
matching nuclei. Consequently, qNMR has been selected for the quantitative analysis of
a benzenoid-rich fraction containing three primary benzenoids of A. cinnamomea due to
its superiority to other standard chromatographic techniques in detecting the amounts of
specific herbal mixture elements [93].

Fingerprint analysis is used for the thorough assessment of the quality of herbal
medicines and their associated products. Recently, the HPLC fingerprinting approach
supplemented by ultraviolet (UV) and photodiode array (PDA) has been widely utilized
for herbal-quality testing. However, UV and PDA detectors present several problems in
the isolation of target analytes from interfering impurities. Thus, these techniques involve
time-consuming sample preparation and long HPLC run times. To resolve these issues, sci-
entists use the more sensitive liquid chromatography–tandem MS (HPLC-MS/MS), which
can offer better overall information, such as molecular weight, retention time, and analyte
collision fragments. Accordingly, a validated HPLC-MS/MS method for the quick and
precise measurement of compounds from A. cinnamomea was established [94]. The method
can be used to simultaneously measure seven characteristic chemicals, including antcin A,
antcin B, antcin C, antcin H, antcin K, dehydroeburicoic acid, and DMB [94]. Triterpenoids
are a significant bioactive component of A. cinnamomea, and different cultivation techniques
exhibit significant variations. Qiao et al. [43] reported the contents of 10 ergostane-type
and 8 landostane-type triterpenoids of A. cinnamomea samples derived from cutting wood
culture, solid-state fermentation, submerged fermentation, and dish culture. It was de-
termined by ultra-high performance liquid chromatography/ultraviolet (UPLC/UV) or
supercritical fluid chromatography coupled with mass spectrometry (SFC/MS, for 25R/S-
antcin A) within 16 min. The result showed that the 18 kinds of triterpenoids accounted for
118.2 ± 28.2, 89.4 ± 30.8, and 116.5 ± 1.1 mg·g−1 in wood-cultured fruiting bodies, wood-
cultured mycelia, and dish-cultured, respectively. However, no triterpenoids were detected
in the solid support cultivation or submerged fermentation samples in this research [43].
The development of products derived from A. cinnamomea benefits from the precise and
rapid measurement of signature compounds in various samples using this method. Ultra-
performance liquid chromatography quadrupole time-of-flight MS (UPLC/Q-TOF/MS)
has been used to characterize and quantify mixture compounds. For the first time, the
UPLC/Q-TOF/MS method was used to identify the extracts from A. cinnamomea and led to
the discovery of 139 chemical compounds, including 102 terpenoids, 8 benzenoids, 2 purine
nucleosides, and 27 other classes [95]. The development of this method has significant
implications for the exploration of A. cinnamomea products.

4. Summary and Future Perspectives

Pharmacologically active natural compounds have achieved extraordinary appeal in
recent decades, and certain bioactive molecules have historically made significant contribu-
tions to medication development. A. cinnamomea as a burgeoning medicinal fungus has
multiple significant biological activity and pharmacological functions. Researchers have
isolated and purified various bioactive compounds from its fruiting bodies and cultured
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mycelia. Despite recent advances, critical concerns regarding the fundamental research and
use of A. cinnamomea remain unresolved.

First, obtaining active substances from A. cinnamomea by conventional solvent extrac-
tion has a number of drawbacks, particularly solvent wastage and low extraction efficiency.
The extensive use of organic solvents is bound to cause pollution and harm people’s health.
Thus, the identification of novel solvents to replace traditional organic solvents is nec-
essary. Alternative solvents aim to provide an extraction method that is environment
friendly and of high quality [96]. Researchers still lack a process for the systematic identifi-
cation of characteristic metabolites of fruiting bodies and artificially cultured mycelia of
A. cinnamomea. The current patterns in isolation, purification, and identification of charac-
teristic metabolites are the bottlenecks in the development of high-quality A. cinnamomea
products. Optimizing such isolation and purification methods is necessary to improve the
product quality.

Second, the low content of A. cinnamomea active constituents inhibits their development
in the field of medicine. Apart from improving the efficiency of isolation and purification,
the yield of bioactive compounds should be increased. Moreover, waste is inevitable in
the extraction of active substances. China produces about hundreds of metric tons of
A. cinnamomea extraction waste every year [97]. Interestingly, this waste as feed supplement
in the aquaculture industry increases the feed efficiency of zebrafish remarkably and
reduces symptoms of inflammatory diseases in fish [97]. The reuse of extraction waste
realizes the recycling of A. cinnamomea resources and reduces environmental pollution,
thereby providing an accurate research idea to further study the use of extraction residue
and improve its utilization value and paving the way for green sustainable development in
the future.

Finally, the mechanisms underlying the effects of certain active compounds from
A. cinnamomea remain unclear. One of the main reasons for this dilemma is that researchers
usually use extracts or mixtures rather than pure compounds to test the effect, which
causes difficulty in pinpointing compounds with specific roles. The combined effects of
natural bioactive substances include synergistic, antagonistic, and independent effects.
Antagonistic effect means the inactive compounds contained in these mixes may cause
harmful side effects. Thus, the isolation and identification of pure bioactive compounds
from A. cinnamomea are beneficial to revealing the mechanism underlying the effects of its
compounds. Moreover, defining the related mechanisms can improve the use of functional
compounds from A. cinnamomea in drug development and clinical applications.
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