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Abstract: The COVID-19 pandemic has had a significant impact on hospitals and healthcare systems 

around the world. The cost of business disruption combined with lingering COVID-19 costs has 

placed many public hospitals on a course to insolvency. To quickly return to financial stability, hos-

pitals should implement efficiency measure. An average technical efficiency (ATE) model made up 

of data envelopment analysis (DEA) and stochastic frontier analysis (SFA) for assessing efficiency 

in public hospitals during and after the COVID-19 pandemic is offered. The DEA method is a non-

parametric method that requires no information other than the input and output quantities. SFA is 

a parametric method that considers stochastic noise in data and allows statistical testing of hypoth-

eses about production structure and degree of inefficiency. The rationale for using these two com-

peting approaches is to balance each method's strengths, weaknesses and introduce a novel inte-

grated approach. To show the applicability and efficacy of the proposed hybrid VRS-CRS-SFA 

(VCS) model, a case study is presented. 

Keywords: COVID-19; artificial intelligence; data envelopment analysis;  

parametric and non-parametric models; public hospitals; average technical efficiency 

 

1. Introduction 

A disaster-resilient society relies heavily on healthcare infrastructure, such as hospi-

tals, and it is important that these facilities stay operational at all times [1,2]. However, 

the COVID-19 pandemic serves as a strong reminder that we live in an ever-changing 

environment, and still built environments are vulnerable to disasters [3]. Effective re-

sponses to the pandemic have necessitated several deviations from traditional norms for 

health care delivery organisations. As a result of the COVID-19 pandemic, there have been 

several unique and severe financial loss concerns. There is an opportunity for health care 

executives to better prepare and alter their organisations for a future of unpredictability 

in the middle of these difficulties. Managing and controlling healthcare costs are always 

categorised among the challenging tasks for governments worldwide [4]. They also take 

care of delivering high-quality services and work efficiency simultaneously [5,6]. There-

fore, decision-making and optimisation methods are widely used by decision-makers to 
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cope with these and many other challenging conditions [7–11]. A plus point is that to eval-

uate the health sector’s effectiveness to support their healthcare units’ source utilisation, 

payers and purchasers may start using frontier productivity evaluation techniques. DEA 

and SFA are two of the most commonly used techniques for evaluating frontier produc-

tivity and efficiency, using quite distinct methodologies [12–14]. Notably, “non-statistical 

methods like DEA have some advantages and disadvantages. Assuming no statistical 

noise is among the drawbacks of this approach, being non-parametric and demanding 

limited conventions about the fundamental technology is advantageous. Alternatively, 

the disadvantage of SFA models is that they require strong assumptions about the form 

of the frontier but have the attraction of allowing for statistical noise” [15]. Unlikely, along 

with the SFA approach, various research types of the DEA analysis measure and evaluate 

the effectiveness of several sectors [16–19], which consists of the health sector [20–23]. 

Where the assumptions of neo-classical production theory are questionable and the eval-

uation error is unlikely to pose a significant threat, DEA is considered. SFA, on the other 

hand, should have the benefit of coping with significant measurement error and provid-

ing a near match to the properties of the underlying production technology. Gong and 

Sickles [24] demonstrate that “the more practical form becomes serious, the higher DEA’s 

demand (concerning SFA) becomes convincing”. The hospital industry and healthcare op-

erations are exceptional examples of the application, where the amount of efficiency has 

proliferated over the past few years. Hospital units’ assessments have to date been carried 

out via DEA-based procedures. Nowadays, parametric, and non-parametric approaches 

have been applied to measure healthcare operations services' efficiency performance anal-

ysis. The necessity for using competing techniques for frontier evaluation and effective-

ness measurement has been emphasised by [25,26]. Therefore, the pair-wise comparison 

set is growing slowly once the newly emerged methods for the effectiveness evaluation 

appear, addressing and specifying the traditional approaches’ drawbacks. Thus, there is 

substantial interest in reconciling SFA and DEA in the efficiency analysis literature [27]. 

Finally, the following are some of the study's major contributions. 

This research assesses several efficiencies to provide insight into the hospital's effi-

ciency based on an innovative integrated or hybrid optimisation model over the first six 

months of the growing COVID-19 pandemic. This comparison is critical for public hospi-

tal practitioners who seek to analyse efficiency at the proper stage of its evolution. 

i. Following the optimisation mentioned above, the statistical evaluation and compar-

ison of three suggested models are applied, and the most efficient model is intro-

duced. This statistical evaluation shows the positive and negative correlation be-

tween profit risk and efficiency. 

ii. Considering multiple inputs and outputs based on the translog function, the VRS-

CRS model is one of the current study's novelties, which has not been studied in the 

previous research. The previous related papers merely consider CRS or VRS.  

iii. Another novel aspect of the current study is the use of error-free unreplicated linear 

functional relationship (ULFR) to remove missing data and to present the least and 

the most efficient hospitals. 

iv. The superior model and hospital are introduced after employing the novel combined 

optimisation approach. As a result, the findings of this study can assist decision-mak-

ers in eliminating irrelevant data and conducting more effective processes. 

The following are the remaining sections of this study: Section 2 is a review of the 

literature. Section 3 presents the material and methods with seven parts of dataset de-

scription, research methodology, the non-parametric model, the parametric model, the 

proposed hybrid VCS model, the profit-risk evaluator (linear regression), and finally, the 

ULFR model. Section 4 provides the results and discussion. Section 5 contains the conclu-

sion and future works on the practical implications. 
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2. Literature Review 

Much effort has been devoted in recent years to develop and use approaches for im-

proving hospital services [28]. Despite the significant potential for Operations Research 

(OR) to aid health decision-makers, as proven by multiple successful OR applications in 

other domains, there is a considerable research gap in utilising OR methodologies in as-

sessing hospitals during emergency circumstances. Operation Research is a branch of 

study that use sophisticated analytical techniques to comprehend complicated systems 

and make appropriate decisions [29–31]. OR assists firms and organisations in a variety 

of methods, including simulation approaches [32–34], mathematical optimisation [35,36], 

and decision analysis [37,38]. OR, with its focus on boosting efficiency [39,40], cost-effec-

tiveness [41,42], and decision making [43,44], is especially useful for analysing complex 

health sectors challenges. 

DEA is one method that has been used widely by researchers in different research 

areas [45]. More recent studies [46–50] propose that SFA and DEA techniques, like other 

methods, can analyse the effect of dynamic environmental impacts on hospitals' cost-effi-

ciency. Additionally, Chirikos and Sear [51] for hospitals in the United States (US) and 

[15] as well as [52] for hospitals in the United Kingdom (UK) compared SFA and DEA, 

where both types of research found divergent estimations among the results from the two 

techniques. Finish hospitals’ cost-efficiency was examined by Linna [53] and realised that 

the results generated by SFA and DEA are similar. After that, [54–57] agreed with the 

previous scenario. The rest of the combined improved approaches, such as quantile re-

gression or COLS, can seemingly have more credible estimates, which shows beneficial 

alternative methods in efficiency research. A plus point is that the researchers believe that 

utilising both DEA and SFA methods is necessary for various studies. 

In a general view, scientists commonly utilised the DEA in the financial sector [58–

62] and other sectors [20,63–67]. Moreover, in many studies, the researchers employed 

techniques to estimate hospital efficiencies, such as SFA and DEA. These frontier ap-

proaches primarily utilise an efficient approach to recognise the hospital sections' effec-

tiveness related to healthcare units' reference set. SFA, as a parametric method hypothe-

sising a practical form. Also, it utilises data to evaluate that function's parameters econo-

metrically using the whole decision-making units (DMUs) set. DEA is a non-parametric 

method utilising math programming for efficiency recognition. These two techniques do 

not have standard theoretical views [68,69]. On the other hand, DEA estimates the effi-

ciency of a non-parametric measurement from the uncertain frontier [70]. According to 

Katharaki [5], both DEA and SFA approaches provide divergent efficiency estimates for 

numerous criteria such as statistical inputs and outputs definition, data availability, and 

noise. Nonetheless, variant modelling methods have both disadvantages and advantages. 

The selection of the most proper estimation technique must rely on the type of organisa-

tion type under examination, and the available data quality, as [71,72] indicated. The lit-

erature provides various suggestions regarding handling the environmental variable, as 

Jacobs et al. [73] noted. Katharaki [5] figured out researchers and the combination of tech-

niques for measuring the efficiency and present environmental variables to make the de-

cision-making properly. SFA required collecting the input variables depicted by total costs 

indicating that the cost efficiency is evaluated. In an ideal way, by increasing the patient 

health status, the health output should be examined. However, because this is not techni-

cally possible, intermediate outputs of various types are used as a replacement in almost 

all the hospital's efficiency studies. 

One of the most common SFA applications is the Cobb–Douglas functional or trans-

log formula, typically applying one input or output, accompanied by current environmen-

tal aspects that are examined distinctly. The advantage of DEA is that compound produc-

tion environments can be arranged with multiple inputs and outputs. SFA can distinguish 

among efficient units, but DEA has a limited ability to do this. Both techniques can distin-

guish among inefficient hospitals [52]. Regarding the paragraphs mentioned above and 

the research scope, the selection of multi-inputs and multi-outputs was adopted for the 
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SFA translog formula, which has been applied in [74]. They applied these two approaches 

to evaluate the efficiency of the US 1,471 hospitals and showed the Baumol effect once 

hospitals' effectiveness declined with the trend of the labour costs soar gradually. As an 

example of other integrated methods, Keshtkar et al. [75] suggested a hybrid simulation 

technique that enables decision-makers to investigate the patient boarding problem. By 

combining ’System Dynamic’ with ’Discrete Event Simulation,’ the operator may address 

patient flow difficulties at both the macro and micro levels. The simulation is combined 

with ’Design of Experiment (DOE)’ and ’DEA’ to efficiently measure the administration's 

operational influence.  

3. Materials and Methods 

3.1. Dataset Description 

This research used a standard data set to assess hospital efficiency over a six-month 

period, from February to July 2020, corresponding to the first six months of the emerging 

COVID-19 pandemic. The data is derived from several sources, including the Middle East 

Ministry of Health (the Department of Health care). The information comes from 59 public 

hospitals and includes physician, personnel, and bed records. Similar to prior publications 

on assessing hospitals' technical efficiency, the number of hospital beds as a proxy meas-

ure of capital is used. The number of corresponding full-time doctors and full-time match-

ing nurses determines the inputs. In terms of outputs, hospitals are recognised to deliver 

a variety of services, necessitating a multi-output method. However, due to data availa-

bility, we limit our analysis to activities of inpatients and outpatients. Figure 1 depicts the 

general structure of the proposed model, as well as the input and output variables used 

to develop these studies. There are two output variables and four input variables. All var-

iables are statistical variables. 

 

Figure 1. DEA model. 

Different completions of these variables have been used to develop various parts of 

the model and are described in the corresponding sections. Table 1 presents a descriptive 

analysis of the data. 

Table 1. Statistical analyse of dataset. 

Stat: February–July 

2020 
Description Mean SD 

X The total number of physicians 449 131 

N The total number of other personnel 1062 300 

M The total number of beds 574 168 

E The total operating costs 
62,549.6

51 

29,769.9

1 
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Y 
The total number of inpatient admis-

sions 
7144 35,799 

F The total number of outpatient visits 49,574 175,240 

3.2. Research Methodology 

Hospital efficiency using a new hybrid framework that combines the non-parametric 

DEA model and the parametric SFA model in this study are assessed. 

3.3. The Non-Parametric Model 

Once an input vector 0X


and an output vector 0Y


 are generated in advanced man-

ufacturing technology processes, the output 0Y


 can be generated from 0X


 when 

1  . A set of production possibilities consisting of input-output pairs ( , )X Y
 

 is usu-

ally defined to guarantee that convexity and feasibility requirements are satisfied. In a 

BCC-CCR approach to this problem (see [71,72] among others), n DMUs are considered, 

and each of them is assumed to produce s outputs using m inputs. The following is the 

production possibility set: 

 1 1 1
( , ) : 1 0

n n n

BCC CCR i i i i i ii i i
T X Y X X Y Y      

         
     

 (1)

where ( , )X Y
 

 is a vector of dimension m s , with 
1,...,( )j j mX x 


 and 

1,...,( )r r sY y 


, 
1,...,( )i ji j mX x 


 is the input vector of the ith DMU, 

1,...,( )i ri r sY y 


 is 

the output vector of the ith DMU, and i  is the weight associated with the ith DMU. The 

inequalities describing the set are to be read component wise. Thus, in the input-oriented 

( IO IOBCC -CCR ) approach, the key aim is to obtain a virtual unit pDMU  such that the 

input 
pX


 is less than or equal to 
pX


 and the output is at least 
pY


. Therefore: 

��� � (2)

s.t. 

(��⃗�, ��⃗�) ∈ �������� (3)

Based on the definition of  ��������  for a BCCIO-CCRIO  model, Equation (3) be-

comes [71,72]: 

��� � (4)

�. �. 

� ��

�

���
��� ≤ ����           "� = 1, … … . , �               (5)

� ��

�

���
��� ≥ ���               " � = 1, … … . , �             (6)

� ��

�

���
≥ 1                                                                   (7)

�� ≥ 0                                      "� = 1, … , �          (8)

Based on the statistical variables that we could defined using the data set, we formu-

lated the following primal and dual BCCIO-CCRIO  models. The proposed primal 

BCCIO-CCRIO model is as follows: 
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��� ɸ � �����

�

���
+ � �����

�

���
  (9)

�. �. 

� ��� �

�

���
+ � ����� + � ����� + � �����

�

���
 ≥ 1

�

���
   

�

���
 (10)

� �����

�

���
+ � �����

�

���
− � �����

�

���
− � �����

�

���
 (11)

− � ����� − � �����

�

���

�

���
+ � ≤ 0     "� = 1, … , � (12)

�. �. (13)

The proposed dual IO IOBCC -CCR  model is as follows: 

��� �    (14)

�. �.                    

� ��

�

���
���

≤ �����             "� = 1, . . , � (15)

� ��

�

���
��� ≤ �����             "� = 1, … , � (16)

� ��

�

���
��� ≤ �����           "ℎ = 1, … , � (17)

� ��

�

���
��� ≤ �����                 "� = 1, … , � (18)

� ��

�

���
��� ≥ ���                     "� = 1, … , � (19)

� ��

�

���
��� ≥ ���                     "� = 1, … , � (20)

� ��

�

���
≥ 1 (21)

�� ≥ 0         "� = 1, … , � (22)

�� ���� (23)

The dimensionless parameters that appear in the primal  BCCIO-CCRIO model and 

in its dual are described in Table 2. Most of these parameters are completions of the input 

and output variables introduced in Figure 1 and Table 1. For the sake of completeness, the 

indices used to identify these completions are listed in Table 2 and Table 3 together with 

their meaning. The DMUs are the hospitals.  

Table 2. Explanation of the parameters for primal and dual BCC�� − CCR��. 

Dimensionless 

Parameter 
Description 

�� 
Non-negative individual value (dual variables categorise the benchmarks for inefficient 

parts) for the ���  DMU 

��� ���  completion of the input variable X (total number of physicians) for the ���  DMU  

���  
���  completion of the input variable N (total number of other personnel) for the ���  

DMU 

��� ℎ��  completion of the input variable M (total number of beds) for the ��� DMU 
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��� ���  completion of the input variable E (total of operating costs) for the ���  DMU 

��� 
���  completion of the output variable Y (total number of inpatient admissions) for the ���  

DMU 

��� 
���  completion of the output variable F (total number of outpatient visits) for the ��� 

DMU 

� Free of sign individual value for variable return to scale 

�� The weight designated to input ��� 

�� The weight designated to input ���  

�� The weight designated to input ���  

�� The weight designated to input ���   

�� The weight designated to output ���   

�� The weight designated to output ���  

ɸ Individual value and real primal-variable demonstrating the value of efficiency  

� Individual value and real dual-variable demonstrating the value of efficiency  

�� Free of sign dual individual value for the fixed ���  DMU 

��� 
���  completion of the dual input variable X (total number of physicians) for the fixed ���  

DMU 

��� 
���  completion of the dual input variable N (total number of other personnel) for the 

fixed ���  DMU 

��� 
ℎ��  completion of the dual input variable M (total number of beds) for the fixed ���  

DMU 

��� 
���  completion of the dual input variable E (total of operating costs) for the fixed ���  

DMU 

��� 
���  completion of the dual output variable Y (total number of inpatient admissions) for 

the fixed ���  DMU 

��� 
���  completion of the dual output variable F (total number of outpatient visits) for the 

fixed ���  DMU 

Table 3. Explanation of the parameters for primal and dual BCC�� − CCR��. 

Index Description 

� Total number of DMUs 

� Total number of completions observed for the input variable X (total number of physicians) 

� Total number of completions observed for the input variable N (total number of other personnel) 

� Total number of completions observed for the input variable M (total number of beds) 

� Total number of completions observed for the input variable E (total of operating costs)  

� 
Total number of completions observed for the output variable Y (total number of inpatient admis-

sions) 

� Total number of completions observed for the output variable F (total number of outpatient visits) 

� Index of the generic DMU, iDMU ; 1,...,i n  

� Index of the fixed ���  DMU, 
pDMU  

j Index of a completion observed for the input variable X; 1,...,j m  

� Index of a completion observed for the input variable N; 1,...,c k  

ℎ Index of a completion observed for the input variable M; 1,...,h d  

� Index of a completion observed for the input variable E; 1,...,t v  

� Index of a completion observed for the output variable Y; 1,...,r s  

� Index of a completion observed for the output variable F; 1,...,z q  

Lastly, DEA-SOLVER is used in this study to measure the technical efficiency scores 

of the proposed BCC�� − CCR�� model. 
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3.4. The Parametric Model 

The original formulation of the SFA model is based on the stochastic frontier produc-

tion function and it can be implicitly expressed in matrix form as follow: 

�� = ��� + ��, ∀� = 1, . . . , � (24)

where iI  and iO  are, respectively, the input and output vector of the ith DMU (

1,...,i n ),   is the vector of unknown parameters to be assessed, and i  is the com-

posite error term. The error term is specified as the difference i i iV U   . The vector 

iV  is defined by random effect variables that account for the aggregate effects of unob-

served factors on the production process. These factors are exogenous and cannot be con-

trolled by the DMUs. The vector iU  consists of non-negative random variables and is 

introduced to account for technical inefficiency in production. This inefficiency is com-

monly expressed in terms of output deviations from the frontier due to factors that can be 

controlled by the DMUs. Through the years, several alternative specifications of Equation 

(24) have been proposed due to the variety of research areas to which the model has been 

applied. Nevertheless, all these specifications can be considered as particular cases of the 

following more general matrix equation ([71,72]). 

( ; )i i iO f I      (25)

( ; )if I   is a specified production function. When evaluating how efficiency 

evolves over time, Equation (25) becomes as follows ([71,72]): 

( ; )it it itO f I     (26)

where itI  and itO  are, respectively, the input and output vector of the ith DMU (

1,...,i n ) for the period t ( 2, ...,t T ), ( ; )itf I   is the production function,   is the 

vector of unknown parameters to be assessed, and it it itV U    is the composite error 

term. 

When assessing hospitals’ technical efficiency, the ith DMU is identified with the ith 

hospital. The inputs and outputs of the ith hospital are completions of the variables intro-

duced in the previous parts (Figure 1 and Table 1) at different periods. Thus, there are 

four inputs and two outputs for each hospital at each period. Moreover, due to the unbal-

ance factors present at the different periods, the error term must be specified accordingly:  

it it itV U    (27)

itV  represents the statistical noise, that is, the effects of exogenous and uncontrolla-

ble factors that the hospitals cannot measure, such as measurement errors in the depend-

ent variable, labour market conflicts, trade problems, access to raw material, quality, and 

left-out illustrative variables. itU  denotes technical inefficiency, which is, the effects of 

those factors which can be monitored by the hospitals. 

The value ���  in the above Equation (27) is validated according to the following 

Equation (28), where �� represents the inefficiency level of the  ��� hospital for the pe-

riod t and � is an unknown parameter. 

���  = �� �
��(���) (28)
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Equation (29) shows how to evaluate the technical efficiency for the ��� hospital at 

the  ��� time based on the suggested SFA model. This efficiency is denoted by ����. 

����  =  ���� �^(��(���)) =   �����   (29)

Implementing a proper functional form for the production function of Equation (29) 

is a crucial task for completing the model assessment. Cobb-Douglas (CD) or Constant 

Elasticity of Substitution (CES) functions are often used in production function assess-

ments. The CD and CES functions are both production functions that fulfil quasi-concav-

ity and positive monotonicity. However, each of these functional forms place certain con-

straints on the parameters, such as exchange elasticity ([71,72]). 

Recent research—a significant part of them regarding efficiency analysis of hospitals 

and implications of health information technology—has shown that the translog function 

can be a better option in assessing companies’ production and units’ efficiency. The trans-

log function is a simplification of the CD function and represents a more flexible func-

tional form since its definition includes second-order approximations. CD and translog 

functions are linear in terms of parameters, and their values are measured via least-

squares techniques. However, the translog function has both linear and quadratic terms 

and has the advantage of being easier to use in the presence of multiple inputs and out-

puts, even if it is influenced by degrees of freedom and multicollinearity. 

Thus, given the available data and the multiple inputs and the current study’s out-

puts settings, the translog function is employed. The translog form adopted for the pro-

duction function in our study is provided by Equation (30).  

�(���; �) = �� + �� ln(���) + �� ln(���) + �� ln(���) + �� ln(���) +
1

2
�� ln(���

� )

+
1

2
�� ln(���

�) +
1

2
�� ln(���

� ) +
1

2
�� ln(���

� )  

+ �� (ln(���) × ln(���))

+ ��� (ln(���) × ln(���)) + ��� (ln(���) × ln(���))

+ ��� (ln(���) × ln(���))

+ ��� (ln(���) × ln(���)) + ��� (ln(���) × ln(���)) 

(30)

where ��� is the first input for the ��� unit for the period t,��� is the second input for the 

��� unit for the period t,��� is the third input for the ��� unit for the period t, ��� is the 

fourth input for the ���  unit for the period t, �� is the intercept or constant term, �� , 

��, �� ��� �� are the first-order results, ��, ��, �� ��� �� are the second-order direct re-

sults, ��, ���, ���, ���, ���, ��� are the second-order cross results. Using the translog form 

in Equation (30), the SFA model in Equation (26) becomes as follows. 

ln(���) = �� + �� ln(���) + �� ln(���) + �� ln(���) + �� ln(���) +
1

2
�� ln(���

� )

+
1

2
�� ln(���

�) +
1

2
�� ln(���

� ) +
1

2
�� ln(���

� )  

+ �� (ln(���) × ln(���))

+ ��� (ln(���) × ln(���)) + ��� (ln(���) × ln(���))

+ ��� (ln(���) × ln(���))

+ ��� (ln(���) × ln(���)) + ��� (ln(���) × ln(���))+(��� − ���) 

(31)

The dimensionless parameters for the parametric model, Equation (31), are described 

in Table 4. As for the non-parametric case, most of these parameters are completions of the 

input and output variables introduced in Figure 1 and Table 1.  
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Table 4. Explanation of the parameters for primal and dual SFA. 

Dimensionless 

Parameter 
Description 

��� Total number of physicians (first input) for the ���hospital for the period t  

��� Total number of other personnel (second input) for the ��� hospital for the period t  

��� Total number of beds (third input) for the ��� hospital for the period t  

��� Total operating costs (fourth input) for the ��� hospital for the period t  

��� 
Output vector (total number of inpatient admissions for the first output and total number of 

outpatient visits for the second output) for the ��� hospital for the period t 

��� Random error for the ��� hospital for the period t 

��� Non-negative random variable (or technical inefficiency) for the ��� hospital for the period t 

ln(���) Inverse of natural exponent of total number of physicians for the ��� hospital for the period t 

ln(���) 
Inverse of natural exponent of total number of other personnel for the ��� hospital for the period 

t 

ln(���) Inverse of natural exponent of total number of beds for the ��� hospital for the period t 

ln(���) Inverse of natural exponent of total operating costs for the ��� hospital for the period t 

ln(���) 

Inverse of natural exponent of the output variable (total number of inpatient admissions for the 

first output and total number of outpatient visits for the second output) for the ��� hospital for 

the period t 

�� Intercept or constant term 

�� First-order result of the inverse of natural exponent for the first input ��� 

�� First-order result of the inverse of natural exponent for the second input ��� 

�� First-order result of the inverse of natural exponent for the third input ��� 

�� First-order result of the inverse of natural exponent for the fourth input ��� 

�� Second-order direct result of the inverse of natural exponent for the first input ��� 

�� Second-order direct result of the inverse of natural exponent for the second input ��� 

�� Second-order direct result of the inverse of natural exponent for the third input ��� 

�� Second-order direct result of the inverse of natural exponent for the fourth input ��� 

�� 
Second-order cross result of the product of the inverse of natural exponents of the first and sec-

ond inputs for the ��� hospital for the period t  

��� 
Second-order cross result of the product of the inverse of natural exponents of the first and third 

inputs for the ��� hospital for the period t   

��� 
Second-order cross result of the product of the inverse of natural exponents of the first and fourth 

inputs for the ��� hospital for the period t  

��� 
Second-order cross result of the product of the inverse of natural exponents of the second and 

third inputs for the ��� hospital for the period t  

��� 
Second-order cross result of the product of the inverse of natural exponents of the second and 

fourth inputs for the ��� hospital for the period t  

��� 
Second-order cross result of the product of the inverse of natural exponents of the third and 

fourth inputs for the ��� hospital for the period t  

3.5. The Proposed VRS-CRS-SFA (VCS) Model 

The ATE model proposed in this study is a combination of the non-parametric BCC-

CCR model and the parametric SFA model introduced in sections 3.3 and 3.4, respectively. 

Therefore, the proposed ATE model is a VCS model. Thus, in the following, we will refer 

to the proposed hybrid model as the VCS model. Based on Equation (32), for measuring 

the efficiency score of the newly proposed VCS model, the average efficiency score of the 

BCC-CCR and SFA models should be considered. That is: 
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���������� ����� �� ��� =

      =
���������� ����� �� ���-��� model + ���������� ����� �� ��� 

2

 (32)

3.6. Linear Regression Assessment or Profit-Risk Evaluator 

Three linear regression forms were used to assess the positive or negative impacts of 

profit risk on the efficiency score of the BCC-CCR, SFA, and VCS models: 

��(��� − ���)� = �(�������)�
+�(�������)�

���(�������)�
+ ɛ(�������)�

 (33)

��(���)� = �(���)�
+�(���)�

���(���)�
+ ɛ(���)�

 (34)

��(���)� = �(���)�
+�(���)�

���(���)�
+ ɛ(���)�

 (35)

Equations (33)–(35) represent the ATE scores of the thi hospital implementing the 

BBC-CCR, SFA and VCS models, respectively. ���(�������)�
, ���(���)�

, and ���(���)�
 

show the average profit risk of the thi  hospital according to the BCC-CCR, SFA, and VCS 

models, correspondingly. �(�������)�
, �(���)�

, and �(���)�
 are the intercept, the constant 

term, or the slope parameter of the BCC-CCR, SFA, and VCS models, respectively. 

�(�������)�
, �(���)�

, and �(���)�
 are the orderly derivatives of the BCC-CCR, SFA and VCS 

models, correspondingly, when considering the thi  hospital. Finally, 

ɛ(�������)�
, ɛ(���)�

, and ɛ(���)�
 signify the error terms of the BCC-CCR, SFA and VCS 

models, respectively, when considering the thi  hospital. 

3.7. ULFR Model 

Assume that ���(�������)�
 , ���(���)�

, and  ���(���)�
 are linearly related 

unobservable variables associated with ��(��� − ���)� , ��(���)� , and ��(���)� , 

individually. Thus, the functional forms of the BCC-CCR, SFA, and VCS models are as 

follows, resepctively. 

�(�������)�
= ��(��� − ���)� = �(�������)⍺

+ �(�������)�
���(�������)�

 (36)

�(���)�
= ��(���)� = �(���)⍺

+ �(���)�
���(���)�

 (37)

�(���)�
= ��(���)� = �(���)⍺

+ �(���)�
���(���)�

 (38)

where �(�������)⍺
, �(���)⍺

, and �(���)⍺
 are �(�������)�

, �(���)�
, and �(���)�

. Moreover, 

the two equivalent random variables in the BCC-CCR, SFA, and VCS models are detected 

with errors �(�������)�
, �(���)�

, �(���)�
 and �(�������)�

, �(���)�
, �(���)�

 (� = 1,2, … . �), corre-

spondingly. That is: 

�
��(��� − ���)� =   ��(��� − ���)�+�(�������)�

���(�������)�
 =  ���(�������)�

+ �(�������)�
 

 (39)

�
��(���)� = ��(���)�+�(���)�

���(���)�
=  ���(���)�

+ �(���)�

 (40)

�
��(���)� =   ��(���)�+�(���)�

���(���)�
=  ���(���)�

+  �(���)�

 (41)

Equations (36)–(38)  and Equations (39)–(41) represent the ULFR  model in which 

��(��� − ���)�, ��(���)�, ��(���)�  and ���(�������)�
,  ���(���)�

, ���(���)�
 are the 

only two variables of the BCC-CCR, SFA, and VCS models, respectively, and there is only 

one relation between  ��(��� − ���)� and ���(�������)�
, between  ��(���)�  and 

���(���)�
, and between  ��(���)�  and ���(���)�

 Finally, �(�������)�
, �(���)�,�(���)�

 and 

�(�������)�
, �(���)�,�(���)�

 are random variables of the BCC-CCR, SFA, VCS models, respec-
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tively, which are mutually independent and normally distributed. To summarise our cal-

culation, VCS proposed model is considered. BCC-CCR and SFA have the same evalua-

tion, and they have not been considered in the following equations. The following condi-

tions are considered for the VCS proposed model: 

�(�(���)�
 )= �(�(���)�

, Var(�(���)�
)= σ�(���)

� , Var(�(���)�
) = σ�(���)

�  ∀� (42)

���(�(���)�
, �(���)�

) = ���(�(���)�
, �(���)�

) = 0,  � ≠ � (43)

���(�(���)�
, �(���)�

) = 0 ∀�, �      (44)

The ratio of error variance in VCS proposed model is recognised as: 

σ�(���)
�

σ�(���)

� = �                                                                (45)

Consider the following 46, 47, 48, 49, and 50 assumptions in VCS proposed model 

before introducing the Equations (51)–(54): 

��(���) ������������ =
∑ ��(���)�

�
 (46)

��(���) ������������ =
∑ ��(���)�

�
 (47)

��� = �(��(���)� − ��(���) ������������)� (48)

��� = �(��(���)� − ��(���) ������������)�  (49)

��� = �(��(���)� − ��(���) ������������)���(���)� − ��(���) ������������� (50)

Based on the Equations (46)–(50) in the proposed VCS model, the maximum possibility 

evaluator of parameters in the VCS proposed model is introduced in Equations (51)–(53): 

��(���)⍺
= ��(���) ������������- �(���)�

���(���)
����������� (51)

��(���)�
=    

����������������������
�

������
� �

�
�

����
 (52)

���(���)�
=

 ����(���)�
+ ��(���)�

(��(���)� − ��(���)⍺
)

� + ��(���)�

 (53)

In the VCS suggested model, the sum of squared distances of the detected parts from 

the close-fitting line, or the residual sum of squares (��), is stated as Equation (54): 

 ��� =
∑ ���(���)� − (��(���)⍺

+ ��(���)�
��(���)�)�

�

(� + ��(���)�

�
)

=
��� − 2��(���)�

��� + ��(���)�

�
���

(� + ��(���)�

�
)

 

(54)

Consider that the error variance ratio in the suggested VCS model is one (� = 1). For 

special cases, in which � ≠ 1, it should be reduced with the case of � = 1 by dividing 

the detected amounts of ��(CAS) by �
�

�. As a result, Equation (55) is given: 

��� =
��� − 2��(���)�

��� + ��(���)�

�
���

(1 +  ��(���)�

�
)

 (55)
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Consequently, the coefficient of determination for ULFR, considering the free value 

of in the proposed VCS model, is defined as Equation (56): 

�(���)�

� =
���

���

 (56)

In the VCS suggested model, ��� is the regression sum of squares and may be writ-

ten as the following Equation (57): 

��� = ��� − ��� = ��� − 
��� − 2��(���)�

��� + ��(���)�

�
���

�1 + ��(���)�

�
�

=
��(���)�

�
��� + 2��(���)�

��� − ��(���)�

�
���

�1 + ��(���)�

�
�

 

(57)

4. Results and Discussion 

The technical efficiency of the three suggested models is assessed in the first step. We 

followed the advice of several reliable sources, including [76–81], when putting up our 

comparisons. This method is also applicable in various sectors, such as other healthcare 

management services as well as the energy sector [82–84]. 

4.1. Technical Efficiency Assessment Based on BCC-CCR, SFA, and VCS Models 

The input-oriented approach dictates that a hospital can only be considered techni-

cally efficient if it can cut inputs while still delivering the expected outcomes. One is the 

efficiency score for staying on the best frontier line. In the first six months of the growing 

COVID-19 pandemic, the following models were evaluated for their technical efficiency: 

BCC-CCR, SFA, and novel VCS models. 

BCC-CCR model's technical efficiency ratings for 59 hospitals are shown in Figure 2. 

In the first six months of COVID-19, the ATE score for hospitals was 0.876441. Hospitals 

have an inefficiency score of 12.3559% when it comes to the use of their current resources. 

During the first six months of pandemic COVID-19, hospitals No. 5, 16, 24, 41, and 56 with 

efficiency scores of one are efficient. while Hospitals No. 51 and 22 have the lowest effi-

ciency scores of 0.598 and 0.602, respectively. 

 

Figure 2. Hospitals’ technical efficiency results using BCC-CCR. 

Figure 3 shows the SFA model’s technical efficiency ratings for 59 hospitals. The first 

six months of pandemic COVID-19 had an ATE score of 0.843475 across hospitals, accord-

ing to the data. There is a 15.6525% inefficiency in hospitals’ use of their current resources, 

according to this data. The most efficient hospital during the first six months of the pan-

demic COVID-19 was hospital No. 58, with an efficiency score of 0.988. Hospitals No. 51, 

57, and 22 have had the lowest efficiency scores of 0.571, 0.623, and 0.624, respectively. 
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Figure 3. Hospitals' technical efficiency results using SFA. 

Technical efficiency ratings for 59 hospitals are shown in Figure 4. The first six 

months of the pandemic COVID-19 had an ATE score of 0.859958, according to statistics. 

This indicates that hospitals have a 14.0042% inefficiency using the available resources. 

With an efficiency score of 0.987, hospital No. 58 was the most effective throughout the 

first six months of the pandemic COVID-19. Hospitals No. 51, 22, and 31 had the lowest 

scores of 0.584, 6.13, and 0.643 respectively.  

 

Figure 4. Hospitals' technical efficiency results using VCS. 

As can be seen in Figures 2–4, the first six months of the COVID-19 pandemic were 

the most inefficient at hospital No. 51 according to all recommended models. Using the 

available resources, it has an inefficiency score of more than 40% and efficiency scores of 

0.598, 0.571, and 0.584 for BCC-CCR, SFA, and VCS. 

4.2. ATE Evaluation for BCC-CCR, SFA, and VCS  

For 59 hospitals in the first six months of the COVID-19 pandemic, Figure 5 shows 

the ATE scores in the BCC-CCR, SFA, and VCS models. Based on the data in the sections 

above, the following relationship could be presented: 

����������(0.876441) ≥ ������(0.859958) ≥ ������(0.843475) (58)

Obviously, the ATE of the BCC-CCR (���������� ) is higher than the ATE of the 

model VCS (������) and ������ is higher than the ATE of SFA model (������). The 

BCC-CCR or DEA models cannot measure statistical noise, whereas in the SFA model, 

this is possible. In addition, the SFA allows DMUs to cross the efficiency frontier due to 

statistical noise and inefficiency scores. Finally, among the three mentioned models, the 

BCC-CCR model generates similar efficiency scores compared to the other two models. 
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Figure 5. Evaluation of ATE for BCC-CCR, SFA, VCS. 

4.3. Evaluation of Regression and ULFR 

Table 5 summarises the results of statistical analyses performed using SPSS and SAS 

on the three models under consideration. 

Table 5. Statistical assessment of the BCC-CCR, SFA, and VCS. 

Model Coefficients (��) 

Coefficient 

Determination of 

Simple Linear Re-

gression (��) 

Coefficient  

Determination of 

ULFR (��
�) 

p-Value 

BCC-

CCR 
0.4783 0.2283 0.9965 0.0156 

SFA 0.2971 0.0825 0.9941 0.1943 

VCS 0.5629 0.2991 0.9998 0.0021 

The results of the statistical evaluation with a significant 5% are presented in Ta-

ble 5. As can be seen, a p-value of less than 5% with values of 0.0156 and 0.0021 for 

the proposed BCC-CCR and VCS models during the first six months of the COVID-

19 pandemic, indicates a statistically significant relationship between profit risk and 

efficiency. Moreover, due to the low p-value, it can be said that profit risk has a posi-

tive effect on the financial performance of hospitals and provides better conditions for 

hospitals. 
In addition, hospital managers face fewer challenges in wasting large amounts of 

profit in the first six months of the COVID-19 pandemic and can make more profit. 

Alternatively, a value of 0.1943 for p-value in the SFA model indicates a weak rela-

tionship between profit risk and SFA in this study (more than 0.05). Another result is 

the low-efficiency growth of 0.2971 (��) compared to the two values of 0.4783 and 

0.5629 for the other two proposed models BCC-CCR and VCS, respectively. In fact, a 

1% increase in the profit-risk of the SFA model creates a growth inefficiency of only 

0.29%. While the efficiency growth of the proposed VCS model is twice the efficiency 

growth of the SFA model because the 1% increase in the profit-risk of the VCS model 

creates a performance of 0.56%.  
Finally, compared to the other two models, the proposed VCS model has a strong 

correlation between its coefficient and profit-risk because for the proposed VCS 

model the coefficient of determination for ULFR (��
�) and the coefficient of simple 

linear regression (��) is better and more than the other two models in the first six 

months of the COVID-19 pandemic. As a final point, these findings indicate that 

ULFR plays a more important role than linear regression because the coefficient of 

determination of ULFR (��
�) in the three proposed models (BCC-CCR, SFA, and VCS, 
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with values 0.9965, 0.9941, 0.9998, respectively) are significantly more than (BCC-CCR, 

SFA, and VCS, with values 0.2283, 0.0825, and 0.2991, correspondingly). 

4.4. VCS Assessment after ULFR Evaluation  

In this paper, fair comparisons have been followed in accordance with other com-

putational methods [45,85–88]. The efficiency value of the proposed VCS model may 

have errors (due to some irrelevant data and missing values   ) that ULFR has been ap-

plied to eliminate. Table 6 shows the results for error-free efficiency of the proposed 

VCS model before and after the application of the ULFR model and the final ranking 

of hospitals after using the error-free ULFR method. Some hospitals have higher per-

formance scores, and some hospitals have lower performance scores after implement-

ing the error-free ULFR method. 

Finally, hospital No. 58 is the most efficient hospital with an increase in efficiency 

from 0.987 to 0.999 and an increase in efficiency of 0.12%, and hospital No. 51 is the 

most inefficient hospital with a reduction in efficiency from 0.584 to 0.513 and a re-

duction efficiency of 0.71% in the first six months of the COVID-19 pandemic. 

Table 6. Efficiency assessment of the hospitals for proposed hybrid VCS model before using 

ULFR, after using ULFR and final ranking after applying ULFR. 

Hospitals Before ULFR After ULFR Ranking Hospitals Before ULFR After ULFR Ranking 

 

1 0.772 0.774 43 31 0.643 0.658 56 

3 0.951 0.965 14 33 0.995 0.998 2 

4 0.700 0.702 48 34 0.671 0.682 54 

5 0.975 0.982 8 35 0.907 0.914 28 

6 0.863 0.852 38 36 0.963 0.980 9 

7 0.681 0.692 53 37 0.728 0.694 52 

8 0.946 0.941 20 38 0.916 0.933 22 

9 0.919 0.911 29 39 0.730 0.712 45 

10 0.736 0.700 49 40 0.941 0.979 10 

11 0.918 0.924 26 41 0.962 0.955 17 

12 0.954 0.943 19 42 0.949 0.991 4 

13 0.974 0.983 7 43 0.941 0.904 30 

14 0.929 0.936 21 44 0.812 0.842 37 

15 0.687 0.665 55 45 0.683 0.699 50 

16 0.953 0.967 13 46 0.911 0.895 33 

17 0.787 0.771 44 47 0.860 0.813 39 

18 0.866 0.878 35 48 0.982 0.995 3 

19 0.945 0.964 15 49 0.890 0.888 34 

20 0.689 0.641 57 50 0.950 0.928 24 

21 0.912 0.902 31 51 0.584 0.513 59 

22 0.613 0.599 58 52 0.715 0.697 51 

23 0.953 0.987 5 53 0.947 0.962 16 

24 0.964 0.985 6 54 0.877 0.845 41 

25 0.973 0.977 11 55 0.936 0.972 12 

26 0.733 0.705 47 56 0.933 0.900 32 

27 0.885 0.873 36 57 0.702 0.710 46 

28 0.916 0.931 23 58 0.987 0.999 1 

29 0.788 0.799 42 59 0.948 0.947 18 

30 0.939 0.926 25     
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5. Conclusions and Future Works 

In this paper, by combining BCC-CCR and SFA models, a hybrid method called VCS 

is presented and then this method is evaluated and compared with SFA and BCC-CCR 

methods in the first six months of the COVID-19 pandemic. The results show that the ATE 

score of VCSs is lower than the BCC-CCR model and the ATE score of SFA is lower than 

VCS. The average efficiency score of the nonparametric model BCC-CCR scores the high-

est, but unlike the parametric SFA model, they did not measure statistical noise. The most 

reliable approach has been used to evaluate and rank the models and hospitals and the 

positive or negative correlation between profit-risk and efficiency score has been investi-

gated based on statistical analysis. Based on the ULFR coefficient and simple linear re-

gression, the VCS model has the highest positive correlation between efficiency score and 

profit-risk compared to the two proposed models. In addition, to determine the most ef-

ficient and inefficient hospital and remove noisy and lost data, the ULFR method has been 

used and after applying this method, some hospitals received higher efficiency scores and 

others received lower efficiency scores. Hospital No. 58 and 51 received the highest and 

lowest scores, respectively. Simple linear regression coefficient and ULFR coefficient were 

the highest coefficients and based on the lowest p-value among the other proposed mod-

els, the proposed VCS model is the most appropriate method. It can be concluded that 

that many deficiencies such as the number of beds, staff, doctors have affected patient care 

during the pandemic. Hospitals also raised concerns that the pandemic has aggravated 

current gaps regarding care and health consequences. In future research, the combination 

of other parametric methods such as the thick frontier approach (TFA) and deterministic 

frontier approach (DFA) and well-known non-parametric methods such as CCR-BCC in 

the DEA can be considered. Furthermore, the verified simulation model can be run to 

prove the validity and efficiency of the mentioned approaches as a potential robustness 

test. 

Author Contributions: Conceptualization, M.M.; Data curation, M.M.; Investigation, M.M., E.S., 

S.M.K., and R.Y.; Methodology, R.Y., E.S. and S.M.K.; Supervision, M.M., R.Y.; Writing—original 

draft, L.S.T. and A.B.; Visualization, M.M., A.B. and L.S.T.; Writing—review & editing, M.M., E.S., 

S.M.K. and R.Y.; All authors have read and agreed to the published version of the manuscript.  

Funding: This research received no external funding.  

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data used in the study is available with the authors and can be 

shared upon reasonable requests. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Aghapour, A.H.; Yazdani, M.; Jolai, F.; Mojtahedi, M. Capacity planning and reconfiguration for disaster-resilient 

health infrastructure. J. Build. Eng. 2019, 26, 100853. 

2. Yazdani, M.; Mojtahedi, M.; Loosemore, M.; Sanderson, D.; Dixit, V. Hospital evacuation modelling: A critical 

literature review on current knowledge and research gaps. Int. J. Disaster Risk Reduct. 2021, 66, 102627. 

3. Wei, W.; Mojtahedi, M.; Yazdani, M.; Kabirifar, K. The Alignment of Australia’s National Construction Code and 

the Sendai Framework for Disaster Risk Reduction in Achieving Resilient Buildings and Communities. Buildings 

2021, 11, 429. 

4. Porter, M.E.; Kaplan, R.S.; Frigo, M.L. Managing healthcare costs and value. Strateg. Financ. 2017, 98, 24. 

5. Katharaki, M. Approaching the management of hospital units with an operation research technique: The case of 32 

Greek obstetric and gynaecology public units. Health Policy 2008, 85, 19–31. 

6. Apornak, A.; Raissi, S.; Keramati, A.; Khalili-Damghani, K. Optimizing human resource cost of an emergency 

hospital using multi-objective Bat algorithm. Int. J. Healthc. Manag. 2020, 14, 1–7. 



Bioengineering 2022, 9, 7 18 of 21 
 

7. Khalili, S.M.; Babagolzadeh, M.; Yazdani, M.; Saberi, M.; Chang, E. A bi-objective model for relief supply location 

in post-disaster management. In Proceedings of the 2016 International Conference on Intelligent Networking and 

Collaborative Systems (INCoS), Ostrave, Czech Republic, 7–9 September 2016; pp. 428–434. 

8. Yazdani, M.; Jolai, F. A genetic algorithm with modified crossover operator for a two-agent scheduling problem. J. 

Syst. Manag. 2015, 1, 743–752. 

9. Yazdani, M.; Ghodsi, R. Invasive weed optimization algorithm for minimizing total weighted earliness and 

tardiness penalties on a single machine under aging effect. Int. Robot. Autom. J. 2017, 2, 1–5. 

10. Ghafourian, K.; Kabirifar, K.; Mahdiyar, A.; Yazdani, M.; Ismail, S.; Tam, V.W. A Synthesis of Express Analytic 

Hierarchy Process (EAHP) and Partial Least Squares-Structural Equations Modeling (PLS-SEM) for Sustainable 

Construction and Demolition Waste Management Assessment: The Case of Malaysia. Recycling 2021, 6, 73. 

11. Yazdani, M.; Jolai, F.; Taleghani, M.; Yazdani, R. A modified imperialist competitive algorithm for a two-agent 

single-machine scheduling under periodic maintenance consideration. Int. J. Oper. Res. 2018, 32, 127–155. 

12. Kohl, S.; Schoenfelder, J.; Fügener, A.; Brunner, J.O. Correction to: The use of Data Envelopment Analysis (DEA) 

in healthcare with a focus on hospitals. Health Care Manag. Sci. 2020, 23, 170, https://doi.10.1007/s10729-018-9443-9. 

13. Yang, C.-C. Measuring health indicators and allocating health resources: A DEA-based approach. Health Care 

Manag. Sci. 2017, 20, 365–378, https://doi.10.1007/s10729-016-9358-2. 

14. Ferrier, G.D.; Rosko, M.D.; Valdmanis, V.G. Analysis of uncompensated hospital care using a DEA model of output 

congestion. Health Care Manag. Sci. 2006, 9, 181–188, https://doi.10.1007/s10729-006-7665-8. 

15. Jacobs, R. Alternative methods to examine hospital efficiency: Data envelopment analysis and stochastic frontier 

analysis. Health Care Manag. Sci. 2001, 4, 103–115. 

16. Azadeh, A.; Ghaderi, S.F.; Mirjalili, M.; Moghaddam, M. A DEA approach for ranking and optimisation of technical 

and management efficiency of a large bank based on financial indicators. Int. J. Oper. Res. 2010, 9, 160–187. 

17. Azadeh, A.; Javanmardi, L.; Saberi, M. The impact of decision-making units features on efficiency by integration 

of data envelopment analysis, artificial neural network, fuzzy C-means and analysis of variance. Int. J. Oper. Res. 

2010, 7, 387–411. 

18. Emrouznejad, A.; Thanassoulis, E. Measurement of productivity index with dynamic DEA. Int. J. Oper. Res. 2010, 

8, 247–260. 

19. Pannu, H.; Dinesh Kumar, U.; Farooquie, J.A. Efficiency and productivity analysis of Indian pharmaceutical 

industry using data envelopment analysis. Int. J. Oper. Res. 2011, 10, 121–136. 

20. Agarwal, S.; Yadav, S.P.; Singh, S. A new slack DEA model to estimate the impact of slacks on the efficiencies. Int. 

J. Oper. Res. 2011, 12, 241–256. 

21. Dharmapala, P.S. Adding value in healthcare service by improving operational efficiency using data envelopment 

analysis. Int. J. Oper. Res. 2009, 5, 73–88. 

22. Ramanathan, R.; Ramanathan, U. A performance measurement framework combining DEA and balanced 

scorecard for the UK health sector. Int. J. Oper. Res. 2011, 12, 257–278. 

23. Mariani, M.M.; Visani, F. Embedding eWOM into efficiency DEA modelling: An application to the hospitality 

sector. Int. J. Hosp. Manag. 2019, 80, 1–12. 

24. Gong, B.-H.; Sickles, R.C. Finite sample evidence on the performance of stochastic frontiers and data envelopment 

analysis using panel data. J. Econom. 1992, 51, 259–284. 

25. Mortimer, D. A Systematic Review of Direct DEA vs. SFA/DFA Comparisons. Avaliable online: 

https://core.ac.uk/download/pdf/36962976.pdf (accessed on 29 November 2021) 

26. Mortimer, D.S. Methods for the Measurement of Hospital Efficiency: A Comparison of Frontier Estimation Techniques in a 

Sample of Victorian Public Hospitals; Monash University: West Heidelberg, Australia, 2001. 

27. Mutter, R.L.; Rosko, M.D.; Greene, W.H.; Wilson, P.W. Translating Frontiers into Practice: Taking the Next Steps toward 

Improving Hospital Efficiency; SAGE Publications: Los Angeles, CA, USA, 2011. 

28. Mirmozaffari, M.; Shadkam, E.; Khalili, S.M.; Yazdani, M. Developing a Novel Integrated Generalised Data 

Envelopment Analysis (DEA) to Evaluate Hospitals Providing Stroke Care Services. Bioengineering 2021, 8, 207. 

29. Yazdani, M.; Kabirifar, K.; Frimpong, B.E.; Shariati, M.; Mirmozaffari, M.; Boskabadi, A. Improving construction 

and demolition waste collection service in an urban area using a simheuristic approach: A case study in Sydney, 

Australia. J. Clean. Prod. 2021, 280, 124138. 

30. Yazdani, M.; Aleti, A.; Khalili, S.M.; Jolai, F. Optimizing the sum of maximum earliness and tardiness of the job 

shop scheduling problem. Comput. Ind. Eng. 2017, 107, 12–24. 

31. Yazdani, M.; Khalili, S.M.; Jolai, F. A parallel machine scheduling problem with two-agent and tool change 

activities: An efficient hybrid metaheuristic algorithm. Int. J. Comput. Integr. Manuf. 2016, 29, 1075–1088. 



Bioengineering 2022, 9, 7 19 of 21 
 

32. Yazdani, M.; Mojtahedi, M.; Loosemore, M. Enhancing evacuation response to extreme weather disasters using 

public transportation systems: A novel simheuristic approach. J. Comput. Des. Eng. 2020, 7, 195–210. 

33. Morasaei, A.; Ghabussi, A.; Aghlmand, S.; Yazdani, M.; Baharom, S.; Assilzadeh, H. Simulation of steel—Concrete 

composite floor system behavior at elevated temperatures via multi-hybrid metaheuristic framework. Eng. Comput. 

2021, https://doi.org/10.1007/s00366-020-01228-z. 

34. Yazdani, M.; Kabirifar, K.; Fathollahi-Fard, A.M.; Mojtahedi, M. Production scheduling of off-site prefabricated 

construction components considering sequence dependent due dates. Environ. Sci. Pollut. Res. 2021, 

https://doi.org/10.1007/s11356-021-16285-0. 

35. Yazdani, M.; Khalili, S.M.; Babagolzadeh, M.; Jolai, F. A single-machine scheduling problem with multiple 

unavailability constraints: A mathematical model and an enhanced variable neighborhood search approach. J. 

Comput. Des. Eng. 2017, 4, 46–59. 

36. Babagolzadeh, M.; Shrestha, A.; Abbasi, B.; Zhang, Y.; Woodhead, A.; Zhang, A. Sustainable cold supply chain 

management under demand uncertainty and carbon tax regulation. Transp. Res. Part D Transp. Environ. 2020, 80, 

102245, https://doi.org/10.1016/j.trd.2020.102245. 

37. Chen, Y.; Yazdani, M.; Mojtahedi, M.; Newton, S. The impact on neighbourhood residential property valuations of 

a newly proposed public transport project: The Sydney Northwest Metro case study. Transp. Res. Interdiscip. 

Perspect. 2019, 3, 100070. 

38. Yazdani, M.; Babagolzadeh, M.; Kazemitash, N.; Saberi, M. Reliability estimation using an integrated support 

vector regression—Variable neighborhood search model. J. Ind. Inf. Integr. 2019, 15, 103–110. 

39. Mohammadi, M.; Gheibi, M.; Fathollahi-Fard, A.M.; Eftekhari, M.; Kian, Z.; Tian, G. A hybrid computational 

intelligence approach for bioremediation of amoxicillin based on fungus activities from soil resources and aflatoxin 

B1 controls. J. Environ. Manag. 2021, 299, 113594. 

40. Sohani, A.; Naderi, S.; Torabi, F. Comprehensive comparative evaluation of different possible optimization 

scenarios for a polymer electrolyte membrane fuel cell. Energy Convers. Manag. 2019, 191, 247–260, 

https://doi.org/10.1016/j.enconman.2019.04.005. 

41. Babagolzadeh, M.; Pirayesh, M.; Shrestha, A. Optimal delivery and replenishment policies for perishable products 

considering lost sale cost: An efficient hybrid algorithm. Int. J. Ind. Syst. Eng. 2021, 37, 306–333. 

42. Naderi, S.; Banifateme, M.; Pourali, O.; Behbahaninia, A.; MacGill, I.; Pignatta, G. Accurate capacity factor 

calculation of waste-to-energy power plants based on availability analysis and design/off-design performance. J. 

Clean. Prod. 2020, 275, 123167, https://doi.org/10.1016/j.jclepro.2020.123167. 

43. Gheibi, M.; Eftekhari, M.; Tabrizi, M.; Fathollahi-Fard, A.; Tian, G. Mechanistic evaluation of cationic dyes 

adsorption onto low-cost calcinated aerated autoclaved concrete wastes. Int. J. Environ. Sci. Technol. 2021, 1–16. 

44. Wang, W.; Tian, G.; Zhang, T.; Jabarullah, N.H.; Li, F.; Fathollahi-Fard, A.M.; Wang, D.; Li, Z. Scheme selection of 

design for disassembly (DFD) based on sustainability: A novel hybrid of interval 2-tuple linguistic intuitionistic 

fuzzy numbers and regret theory. J. Clean. Prod. 2021, 281, 124724. 

45. Mirmozaffari, M.; Yazdani, M.; Boskabadi, A.; Ahady Dolatsara, H.; Kabirifar, K.; Amiri Golilarz, N. A novel 

machine learning approach combined with optimization models for eco-efficiency evaluation. Appl. Sci. 2020, 10, 

5210. 

46. Kontodimopoulos, N.; Papathanasiou, N.D.; Flokou, A.; Tountas, Y.; Niakas, D. The impact of non-discretionary 

factors on DEA and SFA technical efficiency differences. J. Med. Syst. 2011, 35, 981–989. 

47. Lampe, H.W.; Hilgers, D. Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA. Eur. J. 

Oper. Res. 2015, 240, 1–21. 

48. Veen, S. Comparative Efficiency Analysis from the Perspective of the Dutch Health Care Insurer. Determining the 

Usefulness of Efficiency Measures for Contracting Primary Care Organizations. Master’s Thesis, The Erasmus 

University, Rotterdam, The Netherlands, 2012. 

49. Nedelea, I.C.; Fannin, J.M. Efficiency Analysis of Rural Hospitals Parametric and semi-parametric approaches. In 

Annual Meeting, Birmingham, AL, USA, 2–7 February 2012. 

50. Ippoliti, R.; Falavigna, G. Efficiency of the medical care industry: Evidence from the Italian regional system. Eur. J. 

Oper. Res. 2012, 217, 643–652. 

51. Chirikos, T.N.; Sear, A.M. Measuring hospital efficiency: A comparison of two approaches. Health Serv. Res. 2000, 

34, 1389–1408. 

52. Noorizadeh, A.; Mahdiloo, M.; Saen, R.F. A new approach for considering a dual-role factor in data envelopment 

analysis. Int. J. Oper. Res. 2012, 14, 135–155. 

53. Linna, M. Measuring hospital cost efficiency with panel data models. Health Econ. 1998, 7, 415–427. 



Bioengineering 2022, 9, 7 20 of 21 
 

54. Assaf, A.; Matawie, K.M. Cost efficiency modeling in health care foodservice operations. Int. J. Hosp. Manag. 2008, 

27, 604–613. 

55. Desai, A.; Ratick, S.J.; Schinnar, A.P. Data envelopment analysis with stochastic variations in data. Socio-Econo. Plan. 

Sci. 2005, 39, 147–164. 

56. Lee, R.H.; Bott, M.J.; Gajewski, B.; Taunton, R.L. Modeling efficiency at the process level: An examination of the 

care planning process in nursing homes. Health Serv. Res. 2009, 44, 15–32. 

57. Smith, P.C.; Street, A. Measuring the efficiency of public services: The limits of analysis. J. R. Stat. Soc. Series A (Stat. 

Soc.) 2005, 168, 401–417. 

58. Ahmadzade, M.; Fazli, S.; Khosroanjom, D.; Mavi, R.K. Utilising data envelopment analysis for selecting stock and 

benchmark firms in Tehran stock exchange. Int. J. Oper. Res. 2011, 12, 446–463. 

59. Cooper, W.; Ruefli, T.W.; Deng, H.; Wu, J.; Zhang, Z. Are state-owned banks less efficient? A long-vs. short-run 

data envelopment analysis of Chinese banks. Int. J. Oper. Res. 2008, 3, 533–556. 

60. Dharmapala, P.S.; Edirisuriya, P. A classification method for banks’ profitability using revised Thompson–Thrall 

profit ratios in DEA and cluster analysis with an application to South Asian banks. Int. J. Oper. Res. 2012, 15, 147–

169. 

61. Ho, C.-T.B. Performance measurement using data envelopment analysis and financial statement analysis. Int. J. 

Oper. Res. 2007, 2, 26–38. 

62. Boďa, M.; Zimková, E. A DEA model for measuring financial intermediation. Econ. Chang. Restruct. 2020, 52, 339–

370. 

63. Azadi, M.; Saen, R.F. Developing a new chance-constrained DEA model for suppliers selection in the presence of 

undesirable outputs. Int. J. Oper. Res. 2012, 13, 44–66. 

64. Mulwa, R.; Emrouznejad, A.; Muhammad, L. Economic efficiency of smallholder maize producers in Western 

Kenya: A DEA meta-frontier analysis. Int. J. Oper. Res. 2009, 4, 250–267. 

65. Raut, R.D.; Bhasin, H.V.; Kamble, S.S. Supplier selection using integrated multi-criteria decision-making 

methodology. Int. J. Oper. Res. 2012, 13, 359–394. 

66. Omrani, H.; Amini, M.; Alizadeh, A. An integrated group best-worst method—Data envelopment analysis 

approach for evaluating road safety: A case of Iran. Measurement 2020, 152, 107330. 

67. Peykani, P.; Mohammadi, E.; Saen, R.F.; Sadjadi, S.J.; Rostamy-Malkhalifeh, M. Data envelopment analysis and 

robust optimization: A review. Expert Syst. 2020, 37, e12534. 

68. De Witte, K.; Marques, R.C. Incorporating heterogeneity in non-parametric models: A methodological comparison. 

Int. J. Oper. Res. 2010, 9, 188–204. 

69. Newhouse, J.P. Frontier estimation: How useful a tool for health economics? J. Health Econ. 1994, 13, 317–322. 

70. Simar, L.; Wilson, P.W. Estimation and inference in two-stage, semi-parametric models of production processes. J. 

Econ. 2007, 136, 31–64. 

71. Hollingsworth, B. The measurement of efficiency and productivity of health care delivery. Health Econ. 2008, 17, 

1107–1128. 

72. Hollingsworth, B.; Parkin, D. Efficiency and productivity change in the English National Health Service: Can data 

envelopment analysis provide a robust and useful measure? J. Health Serv. Res. Policy 2003, 8, 230–236. 

73. Jacobs, R.; Smith, P.C.; Street, A. Measuring Efficiency in Health Care: Analytic Techniques and Health Policy; Cambridge 

University Press: Cambridge, UK, 2006. 

74. Choi, J.H.; Fortsch, S.M.; Park, I.; Jung, I. Efficiency of US hospitals between 2001 and 2011. Manag. Decis. Econ. 

2017, 38, 1071–1081. 

75. Keshtkar, L.; Rashwan, W.; Abo-Hamad, W.; Arisha, A. A hybrid system Dynamics-Discrete Event Simulation and 

Data Envelopment Analysis to investigate boarding patients in acute hospitals. Oper. Res. Health Care 2020, 26, 

100266. 

76. Zhang, X.; Wang, J.; Wang, T.; Jiang, R.; Xu, J.; Zhao, L. Robust Feature Learning for Adversarial Defense via 

Hierarchical Feature Alignment. Inf. Sci. 2020, 560, 256–270, https://doi.org/10.1016/j.ins.2020.12.042.  

77. Zhang, X.; Wang, T.; Luo, W.; Huang, P. Multi-level Fusion and Attention-guided CNN for Image Dehazing. IEEE 

Trans. Circuits Syst. Video Technol. 2020, 31, 4160–4173, https://doi.10.1109/TCSVT.2020.3046625. 

78. Zhang, X.; Fan, M.; Wang, D.; Zhou, P.; Tao, D. Top-k Feature Selection Framework Using Robust 0-1 Integer 

Programming. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 3005–3019. 

79. Zhang, X.; Wang, D.; Zhou, Z.; Ma, Y. Robust low-rank tensor recovery with rectification and alignment. IEEE 

Trans. Pattern Anal. Mach. Intell. 2019, 43, 238–255. 



Bioengineering 2022, 9, 7 21 of 21 
 

80. Zhang, X.; Jiang, R.; Wang, T.; Wang, J. Recursive Neural Network for Video Deblurring. IEEE Trans. Circuits Syst. 

Video Technol. 2020, 31, 3025–3036. 

81. Zhang, X.; Wang, T.; Wang, J.; Tang, G.; Zhao, L. Pyramid Channel-based Feature Attention Network for image 

dehazing. Comput. Vis. Image Underst. 2020, 197–198, 103003, https://doi.org/10.1016/j.cviu.2020.103003. 

82. Ghadami, N.; Gheibi, M.; Kian, Z.; Faramarz, M.G.; Naghedi, R.; Eftekhari, M.; Fathollahi-Fard, A.M.; Dulebenets, 

M.A.; Tian, G. Implementation of solar energy in smart cities using an integration of artificial neural network, 

photovoltaic system and classical Delphi methods. Sustain. Cities Soc. 2021, 74, 103149, 

https://doi.org/10.1016/j.scs.2021.103149. 

83. Shahsavar, M.M.; Akrami, M.; Gheibi, M.; Kavianpour, B.; Fathollahi-Fard, A.M.; Behzadian, K. Constructing a 

smart framework for supplying the biogas energy in green buildings using an integration of response surface 

methodology, artificial intelligence and petri net modelling. Energy Convers. Manag. 2021, 248, 114794. 

84. Sohani, A.; Naderi, S.; Torabi, F.; Sayyaadi, H.; Golizadeh Akhlaghi, Y.; Zhao, X.; Talukdar, K.; Said, Z. Application 

based multi-objective performance optimization of a proton exchange membrane fuel cell. J. Clean. Prod. 2020, 252, 

119567, https://doi.org/10.1016/j.jclepro.2019.119567. 

85. Mirmozaffari, M.; Shadkam, E.; Khalili, S.M.; Kabirifar, K.; Yazdani, R.; Gashteroodkhani, T.A. A novel artificial 

intelligent approach: Comparison of machine learning tools and algorithms based on optimization DEA Malmquist 

productivity index for eco-efficiency evaluation. Int. J. Energy Sect. Manag. 2021, 15, 523–550 

86. Mirmozaffari, M.; Alinezhad, A. Ranking of Heart Hospitals Using cross-efficiency and two-stage DEA. In 

Proceedings of the 2017 7th International Conference on Computer and Knowledge Engineering (ICCKE), Online, 

26–27 October; pp. 217–222. 

87. Mirmozaffari, M.; Yazdani, R.; Shadkam, E.; Tavassoli, L.S.; Massah, R. VCS and CVS: New combined parametric 

and non-parametric operation research models. Sustain. Oper. Comput. 2021, 2, 36–56. 

88. Mirmozaffari, M.; Alinezhad, A. Window analysis using two-stage DEA in heart hospitals. In Proceedings of the 

10th International Conference on Innovations in Science, Engineering, Computers and Technology (ISECT-2017),  

Dubai, United Arab Emirates, 17–19 Ocotober 2017; pp. 44–51. 
 

 

 

 


