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Abstract: Artificial Intelligence is creating a paradigm shift in health care, with phenotyping patients 

through clustering techniques being one of the areas of interest. Objective: To develop a predictive 

model to classify heart failure (HF) patients according to their left ventricular ejection fraction 

(LVEF), by using available data from Electronic Health Records (EHR). Subjects and methods: 2854 

subjects over 25 years old with a diagnosis of HF and LVEF, measured by echocardiography, were 

selected to develop an algorithm to predict patients with reduced EF using supervised analysis. The 

performance of the developed algorithm was tested in heart failure patients from Primary Care. To 

select the most influentual variables, the LASSO algorithm setting was used, and to tackle the issue 

of one class exceeding the other one by a large amount, we used the Synthetic Minority Over-

sampling Technique (SMOTE). Finally, Random Forest (RF) and XGBoost models were constructed. 

Results: The full XGBoost model obtained the maximum accuracy, a high negative predictive value, 

and the highest positive predictive value. Gender, age, unstable angina, atrial fibrillation and acute 

myocardial infarct are the variables that most influence EF value. Applied in the EHR dataset, with 

a total of 25,594 patients with an ICD-code of HF and no regular follow-up in cardiology clinics, 

6170 (21.1%) were identified as pertaining to the reduced EF group. Conclusion: The obtained algo-

rithm was able to identify a number of HF patients with reduced ejection fraction, who could benefit 

from a protocol with a strong possibility of success. Furthermore, the methodology can be used for 

studies using data extracted from the Electronic Health Records. 

Keywords: heart failure; phenotype; left ventricular ejection fraction; primary care; artificial  

intelligence; supervised analysis 

 

1. Introduction 

Artificial intelligence (AI), an interdisciplinary science with multiple approaches, is 

a wide-ranging branch of computer science. Advancements in machine learning and deep 

learning are creating a paradigm shift in virtually every sector, including medicine, with 

phenotyping patients through clustering techniques being one of the areas of interest [1]. 

The goal of phenotyping patients is to allow for the identification of patient subgroups 

with similar presentation, prognosis and response to therapy.  

Heart failure (HF) is a major health care problem worldwide, for which left ventric-

ular ejection fraction (LVEF) has established clinically useful phenotypes for guiding 

treatment to reduce associated mortality and morbidity [2,3]. Classically, with heart fail-

ure, there are two recognized LVEF phenotypes: reduced LVEF (HFrEF) and preserved 

(HFpEF) [4,5]. However, recently, The European Society of Cardiology added a third 
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intermediate LVEF phenotype. Although ejection fraction (EF) class is an important pre-

dictor of the treatment response data available in electronic health records (EHR), there is 

frequently a lack of EF quantitative values, limiting their usefulness in clinical and health 

service research [6]. An immediate next step is to develop algorithms and strategies and 

identify their distinct phenotypes in the absence of EF measured by echocardiography. 

When looking for a proxy to identify HF phenotypes, AI methods could be useful in 

combining information that is usually collected in EHRs. Machine learning is an applica-

tion of artificial intelligence, which focuses on how computers learn from data whose 

methods and techniques are increasingly applied in medicine. Disease identification [7] 

and pathology and image diagnosis [8,9], as well as clinical research, are some of the main 

applications of machine learning in epidemiology and clinical medicine, among others 

[10]. To explore phenotypes of patients with chronic HF, prior studies have already used 

hierarchical clusters to classify HFpEF patients [11,12]. These studies are mainly focused 

on the definition of phenotypes rather than predicting the EF class by using a proxy that 

makes the decision based on available information from the EHR.  

In this current study, we developed a predictive model that classifies HF patients 

according to their LVEF by using available features such as age, gender and present dis-

eases. The goal was to overcome the performance of previous studies by using a new ap-

proach, supervised analysis, a subfield of machine learning where models can be trained 

to predict the class of the target variable with earlier knowledge of the output values from 

prior data [13].  

2. Materials and Methods 

2.1. Data Source and Study Population 

Subjects older than 25 years with a diagnosis of heart failure, ICD-9 codes (402.X1, 

404.X1,404.X3,428 and 398.91) were selected from the EHR system of a community of peo-

ple over 25 years in 2012 (Supplementary Materials, Figure S1). From this database, we 

selected a group with available LVEF values measured by echocardiography classified as 

HFrEF and HFpEF according to the EF measurement, LVEF < 40% and ≥ 40%, respectively. 

A second group of patients with an HF diagnosis in the absence of LVEF values in the 

EHR, was collected with or without regular follow-up by Cardiology Departments (Figure 

1). The variables to be tested were selected from those codified in the ICD-9. The study 

was approved by the Ethical Committee of the Hospital Clinico of Valencia in the scope 

of the BigData@Better Heart, a project founded in the IMI2 program (IMI2-FPP116074-2). 

Consent forms were obtained from the patients who took part in the echocardiography 

study and the data of the second group were documented by a process of pseudo-anony-

mization, making it impossible to use this information to identify the patients, since the 

only link between the data and the patient is a code not available to the researchers. 
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Figure 1. Full process diagram. 

2.2. Selection of Variables and Analytical Procedure 

Variables included demographic information, age and gender and ICD-9-codified 

diseases. The original dataset was split into two different partitions, corresponding to 80% 

and 20% of the original dataset. The first, a training set, was used to train the different 

models developed in the study. The second, a test set, was used to measure the perfor-

mance of the models developed with the training set. This partition was performed using 

the caret package in R. This allows us to split our data by maintaining the proportion of 

classes in both partitions. The most influential variables were considered using feature 

selection methods. 

2.3. Feature Selection 

The least absolute shrinkage and selection operator (LASSO) was used. This method 

creates a regression model, where the estimated coefficients βi for each variable suffer a 

penalization [14,15] or are set to zero. In the following equation, we can see the general 

formula of the regression model expressed in vector notation 

Y = Xβ + ε (1) 

where Y is the end-point vector (our target), X is the vector of the covariates in our model, 

β is the vector of the coefficients for these covariates, and ε is a random error. 

The estimation of β parameters is typically performed by minimizing the sum of 

squares of the residuals; this is called the Ordinary Least Squares (OLS) approach, and the 

loss function being minimized is the following: 

 𝐿𝑂𝐿𝑆(�̂�) =  ∑(

𝑛

𝑖=1

𝑦𝑖 − 𝑥′
𝑖�̂�)2 (2) 

When LASSO is used, the LASSO penalization term is added to this formula, result-

ing in the following equation: 

𝐿𝑂𝐿𝑆(�̂�) =  ∑(

𝑛

𝑖=1

𝑦𝑖 − 𝑥′
𝑖�̂�)2 +  𝜆 ∑ |�̂�𝑗|

𝑚

𝑗=1

 (3) 

Here, λ is known as the regularization penalty. Say λ is set to zero, then: 
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𝐿𝑂𝐿𝑆
′(�̂�) =  ∑(

𝑛

𝑖=1

𝑦𝑖 − 𝑥′
𝑖�̂�)2 = 𝐿𝑂𝐿𝑆(�̂�) (4) 

then, minimizing 𝐿𝑂𝐿𝑆
′(�̂�) means minimizing 𝐿𝑂𝐿𝑆(�̂�). Otherwise, if λ is set to 1, equa-

tion (3) turns into: 

𝐿𝑂𝐿𝑆
′(�̂�) =  ∑(

𝑛

𝑖=1

𝑦𝑖 − 𝑥′
𝑖�̂�)2 + ∑ |�̂�𝑗|

𝑚

𝑗=1

= 𝐿𝑂𝐿𝑆(�̂�) + ∑ |�̂�𝑗|

𝑚

𝑗=1

 (5) 

and minimizing 𝐿𝑂𝐿𝑆
′(�̂�) means minimizing ∑ |�̂�𝑗|𝑚

𝑗=1 , which makes the value coeffi-

cients much lower than in the λ = 0 case. To choose an optimum λ value, we defined a set 

of λ values, and for each λ, we estimated �̂� such that 𝐿𝑂𝐿𝑆
′(�̂�) is minimal. Then, we had 

two paired sets of λ and �̂� values. Those covariates that are not set to zero are usually 

the final ones selected. 

Additionally, when features agree, the complexity of the model is reduced. We per-

formed a LASSO algorithm, setting the EF value as the endpoint (𝑦𝑖) and introducing the 

rest of the covariables to the model (𝑥′
𝑖
). 

2.4. Imbalanced Data Distribution 

To tackle the issue of one class exceeding the other one by a large proportion, we 

used the Synthetic Minority Oversampling Technique (SMOTE) [16,17] included in the 

DMwR package. This algorithm creates new minority class examples by extrapolating be-

tween existing ones. Although matching seems to be a convenient procedure to perform 

before building any classification model, we created a predicting model using the original 

database. In order to avoid the problem of data leakage, the different techniques applied 

over the data, such as SMOTE, feature selection and hyperparameter tuning, should only 

be applied in the training set, not in the test set. 

2.5. Model Development 

We created several models based on two different machine learning algorithms, Ran-

dom Forest (RF) and XGBoost [18], to compare their overall performance. We constructed 

reduced RF and XGBoost models with four possible previous algorithm performances in 

the dataset: balanced data in combination with feature selection (LASSO) or using all of 

the variables; unbalanced data, in combination with either feature selection or all of the 

variables. Then, we defined a set of values for the model hyperparameters. A grid was 

used, where the following hyperparameters were introduced: (a) Random Forest: number 

of threes and number of candidate variables at each split; (b) XGboost: subsample ratio, 

ratio of subsample columns by tree, maximum tree depth, learning rate, regularization 

terms and partition threshold. We used k = 5 cross validation in the training set to test all 

possible combinations and find the most convenient tuning. 

2.6. Tools Used for Preparing and Running the Models 

R 4.1.0 software (R Foundation for Statistical Computing, Vienna, Austria) packages 

was used in all of the processes that follows: 

• Database partition caret package; 

• Balancing the dataset DMwR package; 

• LASSO implemented using glmnet package; 

• Train with Random Forest and XGBoost packages; 

• Plots ggplot2; 

• Performance metrics Caret, ROCR & PRROC packages. 
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2.7. Performance Measurements 

In each model, several performance measurements were calculated, optimizing sen-

sitivity and specificity measurements, but also taking Negative Predictive Value (NPV), 

Positive Predictive Value (PPV) and Accuracy into account. We made this choice because 

we aimed to isolate the HFrEF class. In this way, we could be sure that those predicted to 

be HFrEF (or Positive) would truly be HFrEF. 

When comparing between models with similar sensitivity and specificity values, we 

selected the best by focusing on the other metrics and the Precision–Recall Curve (PR 

Curve), since it gives a more informative picture of the model’s performance than the ROC 

Curve when the datasets are highly skewed [19,20]. 

A diagram showing the full process is displayed in Figure 1. 

3. Results 

3.1. Characteristics of the Study Population 

A total of 2854 subjects with HF diagnoses and LVEF measurement were included. 

Mean age was 74 years old and 47% were females. Diabetes was present in 53.4% of the 

participants and hypertension was present in 82.3% of the participants, the highest per-

centage of all the comobidities. In the complete dataset, HFrEF was present in 23.4%. A 

total of 2284 patients were used to train the models, while 570 were used to test. This 

partition maintains the proportion of HFrEF and HFpEF registers of the complete dataset. 

From the variables contained in the EHR, 13 appear to have been candidates for the mod-

els. Age and sex distribution, as well as the prevalence of the relevant variables in the 

study population, are shown in Table 1. 

Table 1. Demographics and chronic diseases tested. 

Variable  

Training Dataset Test Dataset 

HFrEF  HFpEF Total HFrEF HFpEF  Total  

n = 535 n = 1749 n = 2284 n = 133 n = 437 n = 570  

Demographics             

Male 386 (72.15) 832 (47.57) 1218 (53.33) 92 (69.17) 203 (46.45) 295 (51.75) 

Age, mean (SD) 71.85 (11.14) 75.8 (9.89) 74.88 (10.33) 69.92 (10.62) 75.6 (9.8) 74.27 (10.27) 

Comorbidities             

Atrial fibrillation 197 (36.82) 776 (44.37) 973 (42.6) 32 (24.06) 225 (51.49) 257 (45.09) 

Anemia 171 (31.96) 745 (42.6) 916 (40.11) 45 (33.83) 199 (45.54) 244 (42.81) 

Diabetes 317 (59.25) 911 (52.09) 1228 (53.77) 71 (53.38) 224 (51.26) 295 (51.75) 

Hypertension 418 (78.13) 1470 (84.05) 1888 (82.66) 93 (69.92) 368 (84.21) 461 (80.88) 

Obesity 49 (9.16) 226 (12.92) 275 (12.04) 11 (8.27) 72 (16.48) 83 (14.56) 

Pulmonary HTN 26 (4.86) 71 (4.06) 97 (4.25) 3 (2.26) 22 (5.03) 25 (4.39) 

CKD 88 (16.45) 245 (14.01) 333 (14.58) 12 (9.02) 69 (15.79) 81 (14.21) 

Valve disorders 66 (12.34) 317 (18.12) 383 (16.77) 9 (6.77) 69 (15.79) 78 (13.68) 

COPD 147 (27.48) 451 (25.79) 598 (26.18) 34 (25.56) 84 (19.22) 118 (20.7) 

Myocardial infarc-

tion 
149 (27.85) 311 (17.78) 460 (20.14) 42 (31.58) 75 (17.16) 117 (20.53) 

Angina 239 (44.67) 560 (32.02) 799 (34.98) 61 (45.86) 146 (33.41) 207 (36.32) 

Values are number (percentage); rEF reduced ejection fraction, pEF preserved ejection fraction; 

COPD chronic pulmonary disease. CKD stage 3 glomerular filtration rate < 60 mL/min/1.73 m2. 

3.2. Models Developed 

We constructed two types of models: reduced and full. To obtain reduced models, 

we defined a set of different λ values. For each λ value, the algorithm built a single model, 

adding the penalization (λ) to the coefficients. The most relevant variables are those that 

appeared in many models, which means that the associated coefficients were non-zero. 

Gender, age, unstable angina, atrial fibrillation (AF) and acute myocardial infarct (AMI) 
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were the variables that most influence EF value. In Figure 2, the x-axis represents loga-

rithmic lambda values (λ). 

 

Figure 2. The most relevant coefficients of the model based on their contribution in the EF class prediction. On the x-axis, 

Log Lambda refers to the logarithmic of the regularization parameter (λ), which controls the weight that each variable has 

in the model. 

To define the most convenient λ value, the λ that maximizes the area under the curve 

(AUC) was selected. In Figure 3, the two vertical lines indicate two optimum log(λ) values: 

the first one from the left corresponds to log (λmin), the value that maximizes the AUC 

model’s, while the second corresponds to log (λse). Afterwards, we built a model setting λ 

at λmin, and the variables whose coefficients were greater or lower than 0 were the predic-

tor variables selected for the final model. The coefficient values associated with each var-

iable: age (−0.02), gender (0.76), atrial fibrillation (−0.18), angina (0.27), hypertension 

(−0.23), valve disorders (−0.22), diabetes (0.25), anemia (−0.23), COPD (−0.03), pulmonary 

hypertension (0.19), obesity (−0.32), renal dysfunction (0.22) and myocardial infarction 

(0.14), Figure 4. These values represent the contribution of each covariate to the endpoint, 

with the highest value having the highest importance. 
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Figure 3. Using the training set, AUC values and its 95% confidence intervals for different logarithmic values of λ repre-

sented on x-axis, where λ is the regularization parameter in the model. Vertical lines correspond to Log(λmin) and Log(λse) 

which are the most optimal Log(λ) values. 

 

Figure 4. Coefficients’ values fixing λ = λmin in the LASSO model. The up and down positions on the y-axis show the variables 

which most contribute to the model as its associated coefficients take the highest values in the training set. On the middle 

positions, the variables which contribute less to the model are located, as its associated coefficients are close to 0. 
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After the feature selection process, we constructed two new datasets: the first one 

(Balance 1) resulted from oversampling the minority class in the original dataset until it 

reached the majority class size. In the second one (Balance 2), the minority class was over-

sampled, maintaining a reasonable balance between both classes without equalizing their 

sizes. Original and new dataset sizes and proportions are shown in Table 2. 

Table 2. Proportion of HFpEF and HFrEF phenotypes in the original dataset and in the two balanced 

datasets created with SMOTE. 

n (%) Original Balance 1 Balance 2 

Total size 2284 2140 3745 

HFpEF class 1749 (76.58) 1070 (50) 2140 (42.86) 

HFrEF class 535 (23.42) 1070 (50) 1605 (57.14) 

HFpEF, heart failure preserved ejection fraction. HFrEF, heart failure reduced ejection fraction. 

Table 3 summarizes the performance of the candidate models. All the results were 

obtained from testing these models in the testing dataset. While NPV was high among all 

models (ranging between 0.84 and 0.88), PPV presented a higher variance (0.44 as the low-

est value vs. 0.75 as the highest). Note that the models performed with the original dataset 

reached a higher accuracy, varying from 0.80 to 0.84, as compared to models performed 

with balanced datasets. C-statistics were around 0,70 and the Precision–Recall Curve 

(AUCpr) obtained the highest values with the original datasets, with its maximum value 

obtained with the Random Forest model (0.51). 

Table 3. Performance measures of the predictive models in the Testing Dataset. 

    AUC AUCpr Accuracy Sensitivity Specificity PPV NPV 
HFrEF Class 

(%) * 

XGBoos

t 

Full models         

Original 0.70 0.45 0.80 0.53 0.88 0.57 0.86 24.11 

Smote 50-50 0.69 0.38 0.70 0.69 0.70 0.41 0.88 26.05 

Smote balanced 0.65 0.35 0.72 0.53 0.77 0.41 0.84 21.63 

Reduced models        

Original 0.70 0.46 0.81 0.49 0.90 0.60 0.85 17.47 

Smote 50-50 0.68 0.38 0.72 0.61 0.76 0.44 0.86 25.05 

Smote balanced 0.66 0.36 0.71 0.53 0.76 0.40 0.84 19.04 

RF 

Full models                 

Original 0.70 0.51 0.83 0.46 0.95 0.72 0.85 4.23 

Smote 50-50 0.69 0.38 0.73 0.65 0.75 0.44 0.88 16.57 

Smote balanced 0.72 0.44 0.77 0.62 0.82 0.51 0.88 15.42 

Reduced models               

Original 0.70 0.51 0.84 0.46 0.95 0.75 0.85 3.8 

Smote 50-50 0.70 0.38 0.73 0.65 0.75 0.44 0.88 14.38 

Smote balanced 0.72 0.44 0.78 0.62 0.83 0.52 0.88 12.55 

AUC area under the curve; AUCpr area under precision recall curve; PPV positive predictive value; NPV negative predictive 

value, RF Random Forest. * Percent of HFrEF class identified. 

3.3. Models Performance 

The full model from the original dataset, obtained with XGBoost, was applied in a 

large dataset of 79,057 HF patients, and among them, 26,376 patients were treated in pri-

mary care in the absence of a routine cardiology consultation and without available LVEF, 

Table 4. Applying the algorithm can identify patients with HFrEF: 19060 among all pa-

tients with HF and 6359 among those without a regular cardiology consultation. 
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Table 4. Demographics and chronic diseases of the Heart Failure population tested. 

Variables All Subjects (n = 79,057)  Primary Care (n = 26,376) 

Demographics     

Male 36,539 (46.22) 10,082 (38.22) 

Age, mean (SD) 77.75 (11.35) 80.88 (10.36) 

Comorbidities     

Atrial fibrillation 31,277 (39.56) 6571 (24.91) 

Anemia 30,132 (38.11) 9197 (34.87) 

Diabetes 31,607 (39.98) 9998 (37.91) 

Hypertension 66,181 (83.71) 21,048 (79.8) 

Obesity 17,599 (22.26) 3757 (14.24) 

Pulmonary HTN 842 (1.07) 260 (0.99) 

CKD 15,469 (19.57) 2018 (7.65) 

Valve disorders 13,061 (16.52) 1016 (3.85) 

COPD 20,569 (26.02) 6647 (25.2) 

Myocardial infarction 13,243 (16.75) 2038 (7.73) 

Angina 24,655 (31.19) 4727 (17.92) 

CKD Chronic kidney disease. COPD Chronic obstructive pulmonary disease. 

4. Discussion 

Left Ventricle Ejection Fraction phenotypes guide the management of HF patients, 

but are frequently not recorded in the EHR from primary care. Having alternatives to help 

estimate the HF class could be helpful, not only for research in health care services but 

also for physicians to choose better treatment. In the present study, a machine learning 

algorithm to predict the phenotype category based on the main characteristics and dis-

eases of the patient was developed. The full XGBoost model excelled because it offered 

better modelling, maximized the sensitivity, and reached a high NPV. This present ap-

proach could be applied to other clinical conditions. 

Few studies attempted to develop methods to predict left ventricular ejection fraction 

in patients with heart failure. Some used administrative claims from Medicare [21–23] or 

a specific database such as the Swedish Heart Failure Registry [24]. For those using ad-

ministrative claims, a large number of variables were used in the training sample, identi-

fied by the ICD-code. On the other hand, the Swedish Heart Failure used a restricted num-

ber of variables but included laboratory parameters and treatments. The studies differ 

from this present one in that this study includes EF-measured patients and uses a different 

methodological approach. Lee et al. [23] identified atrial fibrillation, obesity, pulmonary, 

hypertension and valvular disease as being significantly associated with the development 

of heart failure with HFpEF, while male gender, history of cardiomyopathy, and myocar-

dial infarction were significantly associated with the risk of heart failure with HFrEF. 

Overall, and despite limitations, routine clinical characteristics could potentially be used 

to identify different EF subphenotypes in databases. 

Previous studies have also developed statistical and unsupervised learning algo-

rithms to classify LVEF phenotypes. In the Desai study [22], the analysis included 11,073 

patients, which was much larger than our sample size. Furthermore, the proportion of 

HFrEF and HFpEF individuals was well-balanced, leading to an easier distinction be-

tween classes. Despite the above, the overall accuracy of the selected binomial logistic 

model did not overcome the measures that we obtained with our final model. Our analysis 

was based on supervised analysis and, although machine learning techniques are far from 

being emergent technologies, its application on LVEF measure prediction is certainly in-

novative. In this study, we used SMOTE, LASSO and two powerful algorithms: Random 

Forest and XGBoost. Synthetic minority oversampling technique (SMOTE) is one of the 

most commonly used oversampling methods to solve imbalance problems in the training 
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and test datasets. It aims to balance class distribution by randomly increasing minority 

class examples by replicating them. Although the concept is very promising when stuck 

with extremely skewed data, it does not always improve the model results, such as in our 

case. However, in this kind of study, it can be very useful. 
Continuing onto a brief description of these algorithms, Random Forest is a combi-

nation of Decision Tree algorithms and Bagging, where both belong to supervised analy-

sis. Together, they train a model to predict the class of the target variable with earlier 

knowledge of the output values deduced from prior data [13]. The other technique used, 

XGBoost, combines Boosting and Gradient Boosting algorithms. Boosting sequentially the 

corrects the errors committed by the previous models, which wrongly classified the ele-

ments, while Gradient Boosting tries to modelize the residuals, that is, transform the er-

rors into a function to avoid overfitting [13]. We chose these algorithms because these 

were the most suitable for the dataset and also for the binary class of the target. In addi-

tion, they achieved the best results among the other models, based on alternative machine 

learning algorithms, such as Naive Bayes, Support Vector Machine and Artificial Neural 

Network. In particular, XGBoost is becoming popular in machine-learning competitors 

and data scientists, as it has been battle tested for production on large-scale problems [20]. 

Applying the algorithm to the large amount of data for patients with HF allowed 

around 24% of patients with HFrEF who would benefit from more precise treatment to be 

recognized. Future research will include time variables such as time-to-inclusion from di-

agnoses dates and medication and hospital admissions. Furthermore, exploring other bal-

ancing techniques, such as generating synthetic data based on the individual characteristic 

distribution, could lead to analytical improvement. 

There are some limitations to our research which should be mentioned. As we col-

lected the information from the EHR system, there was not a large number of patient’s 

LVEF measures and, furthermore, we dealt with an unbalanced dataset, as HFrEF repre-

sents a minority of the total HF patients. In addition, there was a wide variety of perfor-

mance measurements that could be used to evaluate the models. Depending on the char-

acteristics and the goal of the problem, some metrics will perform better than others. The 

selection of the optimum λ was based on the AUC metric, which is the most intuitive and 

typically used metric. Finally, our goal was to maximize the PPV value which entails a 

relative lower value in the sensitivity analysis. 

Heart Failure Guidelines stratify patients based on the LVEF in HFrEF or HFpEF 

[4,25], In those with HFrEF, well-defined treatment strategies improve the risk of hospi-

talization and survival and, therefore, a clear treatment algorithm is recommended. In 

those with HFpEF, no treatment has demonstrated an improvement in the outcomes to 

date. Identifying patients with HFrEF in the absence of measured LEVF can help to intro-

duce treatments which have been successful. In addition, it can help to retrieve real world 

data from large databases in epidemiological, health care burden and cost studies. 

In conclusion, the presented step-by-step AI approach, in the case of the HF pheno-

type, is a methodology that can help to obtain phenotypes from partially completed data-

bases for different diseases, a common scenario in the EHRs. 
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