
bioengineering

Review

Designer Exosomes: Smart Nano-Communication Tools for
Translational Medicine

Madhyastha Harishkumar 1,*,†,‡ , Madhyastha Radha 1,†,‡, Nakajima Yuichi 1,‡,
Gothandam Kodiveri Muthukalianan 2,‡, Ohe Kaoru 3,‡, Koichiro Shiomori 3,‡ , Kentaro Sakai 4,‡

and Watanabe Nozomi 1,*,‡

����������
�������

Citation: Harishkumar, M.; Radha,

M.; Yuichi, N.; Muthukalianan, G.K.;

Kaoru, O.; Shiomori, K.; Sakai, K.;

Nozomi, W. Designer Exosomes:

Smart Nano-Communication Tools

for Translational Medicine.

Bioengineering 2021, 8, 158.

https://doi.org/10.3390/

bioengineering8110158

Academic Editor:

Prakash Gangadaran

Received: 27 August 2021

Accepted: 21 October 2021

Published: 26 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki,
Miyazaki 8891692, Japan; radharao@med.miyazaki-u.ac.jp (M.R.); yunakaji@med.miyazaki-u.ac.jp (N.Y.)

2 School of Biotechnology and Biosciences, VIT University, Vellore 632014, Tamil Nadu, India;
k.m.gothandamm@vit.ac.in

3 Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki 8892192, Japan;
okaoru@cc.miyazaki-u.ac.jp (O.K.); shiomori@cc.miyazaki-u.ac.jp (K.S.)

4 Center for Collaborative Research, Frontier Science Division, University of Miyazaki,
Miyazaki 8892192, Japan; k-sakai@cc.miyazaki-u.ac.jp

* Correspondence: hkumar@med.miyazaki-u.ac.jp (M.H.); nozomi_watanabe@med.miyazaki-u.ac.jp (W.N.);
Tel.: +81-985851785 (M.H. & W.N.); Fax: +81-985857932 (M.H. & W.N.)

† Co-first author.
‡ Equal contributors.

Abstract: Exosomes are the master transporters of genes, RNAs, microRNAs, proteins, and lipids.
They have applications in major diseases, including cancer, cardiovascular diseases, neurological
disorders, and diabetes mellitus. Delivery of the exosomes to recipient cells is governed by the func-
tional heterogenicity of the tissues. Engineered exosomes are promising tools in tissue regeneration.
In addition to their role as intracellular communication cargos, exosomes are increasingly primed as
standard biomarkers in the progression of diseases, thereby solving the diagnostic dilemma. Futuris-
tic empowerment of exosomes with OMICS strategy can undoubtedly be a bio-tool in translational
medicine. This review discusses the advent transformation of exosomes in regenerative medicine
and limitations that are caveats to broader applications in clinical use.

Keywords: exosome; microvesicles; cell engineering; regenerative disease

1. Introduction

In multicellular organisms, a balance between cellular function and tissue homeostasis
is mediated by effective intracellular communications by either direct cell to cell interac-
tion or molecular transporter cargos, such as extracellular vehicles (EVs). These master
vesicles are derived from endosomes and plasma membranes [1]. Small EVs, also known
as exosomes, are released from the cells into the body fluids, which include blood, semen,
saliva, urine, breast milk, and cerebrospinal fluids [2,3]. The effective delivery of exosomal
components, such as proteins, lipids, RNAs, and DNAs, depends on the interactive ability
of the exosomes with the recipient cells. Exosomes are conventionally isolated by differ-
ential and buoyant density centrifugation, ultrafiltration, size exclusion chromatography,
ligand concentrate method, and immunoaffinity chromatography [4]. Recently, techniques
such as polymer-based trapping, micro-fluidics separation, and one-step exo-cap kits have
been standardized [5,6]. The exosomes’ size, shape, charge, density, and porosity are prime
parameters of utmost importance for understanding the action mode. These parameters are
evaluated by various bio-physical techniques, including transmission electron microscopy
(TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), nanoparticle
tracking analysis (NTA), dynamic light scattering (DLS), resistive pulse sensing (RPS),
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enzyme-linked immunosorbent assay (ELISA), flow cytometry, fluorescence-activated cell
sorting (FACS), microfluidics, and electrochemical biosensors captures [7].

Secreted exosomes are generally 20 to 200 nm diameter in size and have the similar
topology as the parent cell. Specific signals transmitted by the latter governs trafficking of
the exosomes to recipient cells; host cell permissiveness, therefore, has novel applications in
human health and disease [8]. Most cell types, such as fibroblasts, immune cells, epithelial
cells, and endothelial cells secrete exosomes into body fluids. The exosomes are in constant
circulation, thereby influencing the physiological and pathological process [9]. Controlling
the infections depends on the immune system’s ability to recognize and respond to specific
organisms during the pathogenic invasion. Research studies have demonstrated the role
of exosomes in promoting or inhibiting host immunity in response to parasitic, fungal,
and bacterial infections. Interestingly, exosomes can be exploited by pathogenic prions
and viruses to evade the immune response, and hence are implicated in viral particles
spreading in the human body, including SARS-COVID-19 [10–12]. Pathogen-associated
molecular patterns (PAMPs), such as carbohydrates, genetic materials, and proteins from
the pathogens are delivered through exosomes to the pattern-recognition receptors (PRRs)
and Toll-like receptors (TLRs), found on the target cell surface, thereby initiating the cell-
signaling cascade [13]. Functional validation of exosomes depends on the types of cells
and loading patterns of metabolites. Table 1 provides the details of functions of exosomes
with respect to their origin.

Table 1. Functions of exosomes.

Cell Type/Tissue/Host Nature Function Reference

Breast cancer-derived Metastasis protein transport [14]

Virology COVID-19 infection [11]

Host-pathogen interaction Toxic transport [13,15]

Fibroblast to cancer cell Communication [16]

Serum miRNA transport [17]

Normal cell exosomes Nanoparticle delivery [18]

Metastasis breast cancer GTPase and Rab27B delivery [19,20]

Ovarian cancer cell Lysosomal delivery [21]

Microglia Neuron signal communication [22]

Cardiomyocytes Non-coding RNA signals [23]

Osteoblast cells MiR-31 transport [24–26]

Neutrophils Inflammatory signals [27,28]

Fibroblast Deviation in TGF beta signaling [29]

Cardiac tissue Heart failure [30]

Neuronal cells Neuron diseases [22,31]

Endothelial cell Endocytosis [32]

Melanoma miRNA circulation [17]

Alveolar cell Cancer metastasis [33]

Normal cell Exogenous siRNA transport [34,35]

Neuronal cell Alzheimer disease [36]

Oligodendroglia Cell communication [31]

Mesenchymal stem cell miR-31 and miR-28 transport [24,26]

Myeloid leukemia Tumor growth factor communication [14]

Osteoclast miR-28 loading [26]

Lung airway cell Let-7 regulation [37]

Adipose-derived stem cells Angiogenesis [38]
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Understanding the positive and negative effects of exosomes is vital in the context
of tissue hemostasis. Although the relevance of exosomes in pathophysiology has been
studied for the past two decades, insights on molecular loading into exosomes, traffick-
ing of exosomes, and the application of engineered exosomes as tools for targeted drug
delivery still requires more attention. This review focuses on the role of exosomes in the
pathophysiological arena and the benefits of engineering them to be used as theranostic
tools for tissue regeneration.

Prelims of Exosome Biogenesis and Cargo Loading Patterns

Numerous hypotheses are proposed for the formation, initiation, and maturation of
exosomes. Biogenesis starts with the interaction between syntenin and syndecan proteins
(SDCs) with proteins such as ALG-2 interacting protein X (ALIX) and CHMP4 interacting
with endosomal sorting machinery, namely the endosomal sorting complexes required
for transport (ESCRT) [39,40], to initiate the process of genesis. ALIX and ESCRT work
synergistically towards protein sequestration, modification, processing, trafficking to the
respective vesicles, and subsequent fusion with the plasma membrane [16]. Syndecans
(SDCs) are type-1 integral membrane heparan sulphate proteoglycans (HSPGs) composed
of four different genes (SDC 1-4). The master gene SDC 4 regulates several vesicular traffick-
ing molecular pathways together with syntenin and the adaptor protein Bro1/ALIX [32].
These mechanisms of biogenesis have been the subject of vigorous debate in recent years.
However, it is now clear that the first step of membrane invagination requires ALIX, syn-
tenin, and syndecan and that the SDC-4 gene is actively involved in intraluminal vesicle
formation and selection of cargo in an ESCRT dependent mechanism. ESCRT independent
mechanisms involving lipids and tetraspanins also assist exosome formation [41]. Together
with transmembrane and cytosolic proteins, these lipoprotein superfamilies mediate the
organization of tetraspanins-enriched microdomains (TEMS) in the plasma membrane and
help biogenesis of exosomes, as described by Hemler [42]. Ceramide, a simple spingo-lipid
(SL) molecule, plays an essential role in the ESCRT independent exosome biogenesis mech-
anism. In the endoplasmic reticulum (ER), L-serine and palmitoyl-CoA are condensed
by serine palmitoyl-transferases (SPT) to form long SL bases. The bases are reduced by
3-ketospinganine reductase and N-acylation of ceramide by dihydroceramide desaturases
form the exosome blubbing [43]. The details of the biogenesis and exosome loading patterns
are depicted in Figure 1 [35]. Extra cellular components such as proteins, lipid moieties,
and metabolites enter the cells by endocytosis through the cell membrane. Bud formation
takes place in the luminal side of the membrane, and this bud eventually forms into micro
vesicles as first step of biogenesis. The key proteins involved in exosome biogenesis include
Rab GTPases, ESCRT proteins, and others that are also used as markers for exosomes (CD9,
CD81, CD63, flotillin, TSG101, ceramide, and ALIX). Exosome surface proteins include
tetraspanins, integrins, and immunomodulatory proteins. Exosomes can contain different
cell surface proteins, intracellular proteins, RNA, DNA, amino acids, and metabolites, and
the content can vary with different bio-metabolites [15,35].
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the endocytosis of metabolite endocytosis into the cell, formation of exosomes in the lumen of 
plasma membrane, and exocytosis of the loaded exosomes. Figure is taken from [35], copyright from 
the American Association of Advancement of Sciences. 

2. Scenario Oof Exosomes in Translational Medicine 
2.1. Relationship between Cancer and Exosomes 

The rate of exosome production and their release from cancer cells exceeds that of 
the normal cells. First reported in 1983, the research on exosomes in cancer biology and 
metastasis has expanded exponentially [44]. Exosomal cargo (RNA, miRNA, proteins, 
DNA, and small apoptotic bodies) significantly changes recipient cells’ fate and genetic 
signature. Exosomes released from acute myeloid leukemia cells have a higher load of 
TGFβ1, which binds to receptors in the recipient cells and helps in tumor progression 
through ERK, AKT, and anti-apoptotic pathways [14]. The paracrine mechanisms by 
which exosome dependent intercellular communications have been studied in detail, for 
example, glioma cells transfer exosomes rich in oncogenic receptor EGFRvIII to glioma 
cells lacking the receptor and triggers oncogenic signals through the AKT pathway in the 
recipient cells. A similar mechanism was revealed in breast cancer progression by exo-
somes harboring PDL-1[45]. Exosomes derived from tumor cells governs endothelial cell 
biochemistry and promote excessive angiogenesis in a hypoxic environment. Cancer cell-

Figure 1. Biogenesis and loading pattern of exosomes. The key steps of exosome biogenesis include
the endocytosis of metabolite endocytosis into the cell, formation of exosomes in the lumen of plasma
membrane, and exocytosis of the loaded exosomes. Figure is taken from [35], copyright from the
American Association of Advancement of Sciences.

2. Scenario Oof Exosomes in Translational Medicine
2.1. Relationship between Cancer and Exosomes

The rate of exosome production and their release from cancer cells exceeds that of
the normal cells. First reported in 1983, the research on exosomes in cancer biology and
metastasis has expanded exponentially [44]. Exosomal cargo (RNA, miRNA, proteins,
DNA, and small apoptotic bodies) significantly changes recipient cells’ fate and genetic
signature. Exosomes released from acute myeloid leukemia cells have a higher load of
TGFβ1, which binds to receptors in the recipient cells and helps in tumor progression
through ERK, AKT, and anti-apoptotic pathways [14]. The paracrine mechanisms by which
exosome dependent intercellular communications have been studied in detail, for example,
glioma cells transfer exosomes rich in oncogenic receptor EGFRvIII to glioma cells lacking
the receptor and triggers oncogenic signals through the AKT pathway in the recipient cells.
A similar mechanism was revealed in breast cancer progression by exosomes harboring
PDL-1 [45]. Exosomes derived from tumor cells governs endothelial cell biochemistry and
promote excessive angiogenesis in a hypoxic environment. Cancer cell-derived exosomes
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that contain TSPAN8 and integrin α4 promote over-proliferation and angiogenesis of
endothelial cells [46]. Cancer-associated fibroblast exosomes (CAF-Des) with a heavy load
of ADAM10 enhance the motility of cancer cells through GTPase-mediated RhoA and
NOTCH signaling [47]. The strong impact of exosomes in cancer drug resistance through
the high load of miRNAs (miR-30a, miR-222, and miR-100) is well studied in ovarian
and melanoma cancer cells [17,21]. Exosomes exert multiple effects on cancer metastasis.
Metastasis involves several steps, including cell migration and invasion, circulation via
the lymphatic system or blood vessels, intravasation, and extravasation to distant organs’
parenchyma [33]. Exosomes also govern the cancer cell polarity and movement. Fibronectin
and integrin-rich exosomes from fibrosarcoma cells facilitate the integrin clustering and
modifying of the extracellular matrix components, ultimately promoting cell migration [19].
The exosome-dependent mechanism of cancer metastasis can be easily explained by the
seed, soil, and germinate hypothesis. Successful metastasis depends primarily on intrinsic
factors of the cancer cells (seed) to initiate genetic changes and target the microenvironment
of the target organ (soil) for the survival of the cancer cells in the new organ (germinate).

The engineering of exosomes in cancer theranostic has increased substantially. The
functional molecules can be inserted into a cavity or surfaced into the membrane of
exosomes for therapeutic use. One of the most promising areas is exosome payloads with
lipid-based or conjugated designer drugs for cancer. A small load of hydrophobic molecules
with folic acid with sonication and shear force conjugation method helps in the selective
target of the lipid layer in the cancer cell [48]. Electroporation is another technique for
loading small nucleotide DNA, miRNA, siRNA, and RNAi into the cavity of the exosomes.
In this technique, a mild electric field is applied to increase permeability for small molecule
drugs and the large biologicals through the exosomal membrane. Hypotonic techniques
are also used to incorporate drugs into exosomes with higher loading efficacy but cause
pH changes during the dialysis. Therapeutic drugs such as curcumin and doxorubicin
can be injected into exosomes by the co-incubation method with advantages of drug
availability in the target site without much degradation in the circulation. Shtam and
others [34] successfully demonstrated the encapsulation of siRNA in exosomes by using
the transfection agent lipofectamine. Other researchers also demonstrated that exosomes
loaded with gold nanoparticle (GNP) drugs can selectively kill the lung cancer cells [18,49].

2.2. Neurogenerative Diseases and Exosomes

Exosomes and microvesicles are known to have multifactorial roles in the functioning
of the central nervous system. The role of exosomes in the transport of the transmissible
prion protein (PrPC), α-synuclein in Parkinson’s disease and Tau in Aβ Alzheimer’s dis-
ease (AD), Huntington’s disease (HD), multiple sclerosis, and traumatic brain injury is
well documented [36,50]. Oligomeric forms of Aβ are neurotoxic and found to be closely
associated with exosomes. The primary release of exosomes is regulated by the process of
depolarization in the cortical neurons and astrocytes. Some neurons such as oligodendro-
cytes also release exosomes, which extend the beneficial effect towards neurons against
neurons stress phenomenon by transporting SOD1, catalase, and synapsin-1 [31]. The
genetic and lipid transporters of exosomes also provide a suitable strategy for neurologic
disease-based biomarkers as they can be detected in the cerebral spinal fluids. Researchers
have identified exosome-related miRNA panels that show expression differences between
control and diseased individuals [51]. Autophagic lysosomal dysfunction of neurons in
AD is due to the leakage of cathepsins, B and D, and lysosomes associated membrane
proteins (LAMP-1), resulting in lysosomal exocytosis. The role of exosomes in synaptic
regulation through control of the neurotransmitters and myelin membrane functions is
also well documented [52]. The neurons and glial cells orchestrate the central nervous
system hemostasis with the help of exosome-mediated neuroimmune communication. The
communication is bidirectional mode; neurons sense the inflammatory signals, glial cells
counter-sense the signal and prevent the neuropathic changes by a contact-dependent
mechanism mediated by exosomes. The player molecules include the neuron-specific
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transmembrane ligand proteins like, cluster differentiation 200 (CD200) and fractalkine
(CX3CL1), and their microglia-specific receptors CD200 receptor (CD200R) and fractalkine
receptor (CX3CR1) [22]. Exosomes play governing roles in clearing these red spot molecules
in brain inflammation conditions.

It is now a point of concern and debate as to how to reconcile beneficial and harmful
aspects of exosomes in brain resilience during the central nervous system inflammation
condition by exosome bioengineering aspects. Secretion of exosomes is an additional
benefit of unburdening the neuron’s lysosomal damage system by delivering endosomal-
lysosomal material into the extracellular space, where other cell types may contribute to
the degradation of neuronal debris. One possibility is that maintaining robust neuronal
exosome production may prevent or mitigate endosomal and lysosomal abnormalities
linked to aging and neurodegenerative diseases. Another target of controlling brain disease
is hemostasis control of reactive oxygen stress in neurons. Antioxidant-decorated miRNA
encapsulated exosomes can regulate neurodegenerative diseases. However, there is insuf-
ficient research data to uncover the precise mechanisms of exosome engineering in CNS
pathology. Detailed guidelines on clinical limitations in the context of exosomes ae avail-
able in the recently published guideline “Minimal information for studies of extracellular
vesicles 2018” [MISEV2018] [15].

2.3. Cardiovascular Complications and Exosomes

Cardiovascular homeostasis is tightly controlled by a complex network and interac-
tions of various cell types, such as cardiomyocytes, cardiac fibroblasts, endothelial cells,
macrophages, neurons, and several immune cells. All these cells are vital players in the
maladaptive function of the heart characterized by cardiac hypertrophic growth, capillary
refractions, myocardial scar formation, interstitial fibrosis, and exacerbated inflammation in
myocardial cells [30]. The role of exosomes in the cardiovascular scenario primarily focuses
on non-coding RNAs (ncRNAs) [23]. Several types of ncRNAs are studied as per the sizes
(small miRNAs and long lncRNAs), shape (linear and circular circRNAs), and position in
cell (nucleolar snoRNAs and cytoplasmic). The high population of circRNAs in ischemic
myocardium was associated with the metabolic biogenesis of vesicle generation. The
depleted circRNAs ignited transforming growth factor-beta (TGF-β) signaling in cardiomy-
ocytes, commonly associated with myocardial fibrosis and inflammatory condition [29].
Although ncRNAs can travel through gap junctions between the cells, exosome-mediated
transfer is also reported [53]. Exosome-mediated ncRNAs are emerging as critical players in
the cardiac cellular cross-talk, significantly affecting the cardiac microvasculature hemosta-
sis. Sporadic information is available on the significance of lncRNAs, and circRNAs, as
new therapeutic exosome targets. To date, miR-122 loaded is the only ncRNA that has
reached a phase II clinical trial through engineering aspects.

2.4. Skeletal Muscles, Bones, and Exosomes

Around 30–40% of the body comprises skeletal muscle. High contractile forces disin-
tegrate the sarcolemma during eccentric muscle contraction. Regeneration of the damaged
tissue is regulated by types of protein secreation, inflammatory cytokines, miRNAs, and
membrane lipids [54]. Exosomes in the bone micro-environment facilitate intercellular
communication by targeting the same cell, nearby cells, and distant cells through cir-
culation traffic. Exosomes packed with physiologically active molecules can be used
for molecular therapy in musculoskeletal disorders, such as osteoporosis, imperfect os-
teogenesis, and fracture healing. Several techniques are being developed, including (1)
low-velocity spin (300–500 RCF) to remove cells and apoptotic debris, (2) a higher speed
spin (1000–20,000 RCF) to eliminate larger vesicles, and finally, (3) high-speed centrifuga-
tion (100,000–150,000 RCF) to isolate exosomes from bone-derived fluids. Bone is a major
hard tissue with a high remodeling feature regulated by a highly coordinated activity of
osteoblasts and osteoclasts. Osteoblast-derived exosomes communicate with the osteoclasts
with an exchange of growth factors, mRNAs, and miRNAs. Exosomes derived from miner-
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alized osteoblasts contain several miRNAs, such as miR-1192, miR-680, miR-302, that are
delivered to bone marrow stromal cells (BMRC) to initiate osteogenic differentiation [24].
MiRNAs such as miR-185 transported through exosomes contribute to osteoporosis and
age-dependent bone pathology, especially in older women [55]. It is now clear that inter-
organ communication is largely managed by circulating micro-vesicles where miRNAs
play a vital role. MiR-218 is a crucial molecule in the signal-amplification circuit-dependent
mechanism during osteogenic differentiation in human adipose tissue-derived stem cell
differentiation [26]. The role of ncRNAs as therapeutics for musculoskeletal diseases,
including osteoarthritis, rheumatoid arthritis, and muscular dystrophies have been iden-
tified [25,56]. However, the precise mechanisms of delivering the ncRNAs to the target
tissues remain to be investigated.

Currently, there is no long-term effective treatment available for osteoarthritis. Clinical
experts prescribe pain killers, stiffness reducers, and surgical joint replacement as options
to manage joint dysfunction. Delivering antagonists to marker miRNAs, or targeting
the factors upstream of these miRNAs that trigger their expression (e.g., reactive oxygen
species, reactive nitrogen species), may represent innovative approaches for slowing the
loss of bone volume with age progression, especially during the hip joint pathogenesis. In
bone regeneration therapy, cell-free alternates are being attempted with exosomes. Exo-
somes loaded with growth factors, bioactive molecules, cytokines, and chemokines can be
considered novel alternatives to cell-free therapy in bone [57]. Exosomes loaded with anti-
inflammatory agents that inhibit the over-activation of macrophages or nano-glucocorticoid
agents may serve as an alternate strategy to combat bone resorption disorders [58]. In-
hibiting the nucleotide-binding domain and leucine-rich repeat-containing family, pyrin
domain-containing 3 (NLRP3) inflammasome through the nano-engineering principle can
also be an alternate tool in bone remodeling [59].

2.5. Inflammatory Disorders and Exosomes

Tissue inflammation is defined as the caveat response of cells to harmful stimuli, such
as exposure to pathogens, injuries, or environmental stress. Immediately upon stimulus,
cellular hemostasis ignites the defense mechanism to clear the intruders and dead cells
and initiate the tissue repair through communication between resident cells and immune
cells. PRRs and TLRs first sense the bacteria, viruses, parasites, and fungi, and initiate the
synthesis and release of various inflammatory cytokines and chemokines. There are several
subtypes of TLRs with diverse functions. TLRs 1, 2, 4, 5, and 6 are expressed on the cell
surface, while TLRs 3, 7, 8, and 9 are found in intracellular compartments with recognition
patterns for different microbial components, such as lipoproteins/lipopeptides, peptidogly-
can, glycosylphosphatidylinositol, phenol-soluble modulin, zymosan, and glycolipids [60].
Exosomes act as carriers of the inflammatory signaling molecules to macrophages [61,62]
and play important roles in mediating and resolving inflammation. The guard cells, includ-
ing macrophages and mast cells, ignite the inflammatory signaling pathways by releasing
chemokines and cytokines, which eventually attract the neutrophil extravasation and subse-
quent clearance of pathogens [15,27]. Dendrite cells, neutrophils, T-cells, and macrophages
can secrete and receive the inflammatory mediator molecules. The trans- communication
between donor and recipient cells dictates the degree of inflammation directly proportional
to the exosomal load. Scientific databases such as ExoCarta (Exocarta.org), EVpedia (evpe-
dia.info), Vesiclepedia (microvesicles.org) and miRandola (mirandola.iit.cnr.it) are loaded
with the latest updates on exosomes and inflammation [63–66]. The role of exosomes
in inflammatory-related cancer pathogenesis, neurogenerative disease, musculoskeletal
disorder, cardio-pulmonary etiology, and chronic inflammatory skin diseases is widely
reported [67–69]. An imbalance between pro and anti-inflammatory mediators also triggers
inflammatory bowel diseases by carrying the Ras related proteins, such as 27A (RAB27A)
and RAB27B [70]. In the scenario of respiratory tract diseases, such as asthma and aller-
gic sensitization, exosomes perform crucial pathophysiological functions in developing
and continuing the pathogenic mechanisms in the alveolar cells, goblet cells, and airway
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epithelial cells [15,71]. The airway epithelium is the first defense barrier against external
irritants and toxins, including air pollutants, smoke, allergens, and pathogens. The surface
layer of bronchi and alveoli in airway epithelial cells (AECs) are in direct contact with the
external environment. Hence, these cells immediately contribute to the establishment and
progression of asthma and allergic airway inflammation and activate the over-secretion of
exosomes. The miRNA Let-7, a key marker of asthma, is carried by exosomes to neighbor-
ing cells. Direct binding of Let-7 to cytokine IL-13 at the 3′-UTR region has been observed
in airway inflammation [37]. However, different unknown signaling biochemical pathways
about the specific role of exosome hypersecretion in airway inflammation still need to be
defined. Exosomes are “professional transporters and carriers of molecules” to the target
cells, thus making them a possible target for the therapeutic delivery of small interference
RNAs (siRNAs), miRNAs, and short hairpin RNAs (shRNAs) during allergic inflamma-
tion. miRNA-exosome “omics research” is required to establish the signature database in
inflammation research that provides investigators and clinicians with better diagnostic,
prophylactic, and therapeutic approaches.

3. Empowering of Exosome by Engineering

The strategy for exosome empowerment is depicted in Figure 2. Different cells se-
crete different exosomes into the circulatory medium in the body. Exosomes have shown
great potential as biomarkers for disease diagnostics as well as drug delivery vehicles
for therapeutics. The surface protein and lipid composition of exosomes are crucial in
redesigning the payload into the cavity of exosomes. Therefore, it is important to study the
surface composition of exosomes before evolving the strategy of loading them with drugs.
Attempts are made to use the tumor-derived exosomes for transport of chemotherapeu-
tics agents and vaccines for cancer immunotherapy. However, default-loaded molecules,
including cathepsin D, adhesion molecules such as vimentin, galectin 3-binding protein,
annexin A1, and plasminogen activators, have been associated with tumor-promoting
aspects in recipient cells [20]. Furthermore, tumor-derived exosomes exhibit induction
of pro-inflammatory cytokines by imparting the monocyte differentiation, induction of
myeloid suppressive T cells, and suppressing the lymphoid activation signaling cascade
in the tumor microenvironment [72]. These constraints are being abolished by adopting
the alternate route of delivering the exosomes derived from natural sources. In this regard,
exosomes derived from milk may find a unique place in treating various degenerative
diseases, including cancer. Exosome derived from vertebrate milk is a source of countless
research. Research on the effect of exosomes isolated from milk derived from various
species such as human, bovine, horse, sheep, and goat, in controlling and governing dis-
eases are reported [73]. Milk exosomes can be loaded with hydrophobic and hydrophilic
drugs either through simple co-incubation or active incorporation methods, including elec-
troporation, sonication, freeze-thaw cycling, extrusion, and changes in the physicochemical
environment (pH and temperature) of the reaction milieu. However, the majority of the
studies on drug loading into exosomes are confined to the simple method of incubation.
Intended therapeutic benefits of milk exosome delivery in clinical translation require a
standardized mode of administration of exosomes.

Another route of exosome engineering is surface engineering with antibodies, ligands,
aptamers, and other macromolecules that are specific to the specific target cells. Simple lipo-
binding techniques are being discussed for drug load enhancement at the surface [32,74].
Recently, the click-chemistry technique involving the conjugation of 1-Ethyl-3-(3-dimethyl
aminopropyl) carbodiimide -N-hydroxy succinimide and azido group was standardized
to modify the surface chemistry of the exosomes. Electrostatic interaction, i.e., the fusion
of positively charged molecules such as pullulan, lipids, and polymers with negatively
charged exosomal membrane proteins, is also being tested. Surface coronation with self-
assembling transferrin, folic acid, and hyaluronic acid is also being tried [7,28,43,56]. In
cancer biology, exosomes comprising both chemotherapeutic drugs and contrast materials
(imaging/diagnostic agents) are gaining importance as theranostic agents. Loading of para-
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magnetic FeO2 nanoparticles, defined as fexosomes in cancer imaging (MRI techniques),
and gold nanosomes for CT/PET imaging require further insight for the development of
“exo-theranostic” composite. Liver injury and clearance of unwanted metabolites from
liver cells is a challenging issue in hepato-pathology. The normal liver contains different
cells, such as hepatocytes, hepatic stellate cells (HSCs), and Kupffer cells. Liver fibrosis
occurs as a direct consequence of the activation of the HSCs with the overproduction of
cytokines and growth factors. HSCs derived exosomes carry marker molecules, such as
carboxylesterase-1 (CES1), alcohol dehydrogenase-1 (ADH1), glutathione S-transferase,
apolipoprotein A-1 (APOA1), albumin (ALB), haptoglobin (HP), and miRNA-122 [75].
Various cytokines (TGF-β, PDGF, IL-1β, IL-6, IL-13, IL-33, and TNF-α) play essential roles
in liver fibrosis. Factors such as alcohol consumption, viral infections, metabolic disorders,
toxins, obesity, steatosis, and cholestasis are also involved in liver fibrosis. The delivery
of a nano-based drugs formulated using liposomes and polymers is gaining attention as
a pharmacotherapy strategy to control liver diseases. Tailoring the nanomedicine with
exosomes to target the liver cells and delivering the potent specific pharmaco-immune
modulator has a bright future.
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negatively charged exosomal membrane proteins, is also being tested. Surface coronation 
with self-assembling transferrin, folic acid, and hyaluronic acid is also being tried 
[7,28,43,56]. In cancer biology, exosomes comprising both chemotherapeutic drugs and 
contrast materials (imaging/diagnostic agents) are gaining importance as theranostic 
agents. Loading of paramagnetic FeO2 nanoparticles, defined as fexosomes in cancer im-
aging (MRI techniques), and gold nanosomes for CT/PET imaging require further insight 
for the development of “exo-theranostic” composite. Liver injury and clearance of un-
wanted metabolites from liver cells is a challenging issue in hepato-pathology. The normal 
liver contains different cells, such as hepatocytes, hepatic stellate cells (HSCs), and Kup-
ffer cells. Liver fibrosis occurs as a direct consequence of the activation of the HSCs with 
the overproduction of cytokines and growth factors. HSCs derived exosomes carry 
marker molecules, such as carboxylesterase-1 (CES1), alcohol dehydrogenase-1 (ADH1), 
glutathione S-transferase, apolipoprotein A-1 (APOA1), albumin (ALB), haptoglobin 
(HP), and miRNA-122 [75]. Various cytokines (TGF-β, PDGF, IL-1β, IL-6, IL-13, IL-33, and 
TNF-α) play essential roles in liver fibrosis. Factors such as alcohol consumption, viral 
infections, metabolic disorders, toxins, obesity, steatosis, and cholestasis are also involved 

Figure 2. Schematic of exosome engineering.

An interesting approach could be dissecting the exosome membrane protein,
tetraspanins. This superfamily protein governs and organizes the membrane architec-
ture by a mechanism termed ‘tetraspanins enriched microdomains’ by cluster formation
and interacting with transmembrane cytosolic signaling proteins [35]. Among tetraspanins,
CD9, CD63, CD81, CD82, and CD151, are present in several tissues, while Tssc6, CD37,
and Cd53 are specific to hematopoietic cells [15,76]. Aptamers, also known as chemical
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antibodies with single-stranded DNA or RNA with 3D globe-like structure, are synthe-
sized by PCR-based cell SELEX (systematic evolution of ligand by exponential enrichment)
method [77]. The aptasensor technology is highly sensitive with rapid response and hence
is beneficial as a nanoprobe in exosome aided early detection of cancers. Exosomes labeled
with aptamers can be used to identify the diseased cell. Nano-capturing platforms using
exosomes with aptamers specific for target proteins can help as aptasensor diagnostic tools.

4. Summary and Future Road Map

Following a humble beginning two decades ago, exosome engineering is now paving
the way for developing new and effective tools in disease diagnostics and therapeutics.
The details of the schematic of drug loading engineering are tabulated in Table 2.

Table 2. Metabolites loading patterns during exosome engineering.

Cargo Types Technique of Loading Principle Merits/Demerits

Synthetic drugs Incubation Membrane diffusion Simple and easy [4]

Nucleic acid, peptides, Transfection Gene manupulation Efficiency coefficient to be
standardized [78]

Drugs, materials Polymerisation Issues of membrane pore formation Very high loading efficiency [79]

Nucleic acids, RNA,
and Peptides Freeze-Thaw Membrane fusion with liposomes Moderate loading [43]

Proteins, Peptides,
and Materials Surfactant Membrane fusion and nanopore Very effective and high loading [80]

RNAs and DNAs Dialysis and
hybridization

Issues of rapid pH changes
in the medium Easy and less time consuming [18]

Nanomaterials Hybridization Chemo-biological reaction Stability [56]

Chemical and nano-engineering efforts have led to designing designer exosomes with
an improved pharmacokinetic profile of specific diseases. Starting from the systematic evo-
lution of ligands by exponential enrichment (SELEX) technique, research is now focused on
developing the nPLEX technology with higher sensitivity for disease detection, fluorescent-
based micro-fluid chips for early identification, and interferometric imaging hybrids for
imaging techniques using next generation exosomes. More research is required on the
aspects of exosome quantification and in vivo imaging techniques. Gateway research by
Gupta and others [81] forecasts a new avenue of live imaging using luciferase conjugated
tetraspanins termed as nanoLuc or ThermoLuc method for live distribution of exosomes
in tissue levels. Non-invasive tracking of exosomes through the luciferase system yields
higher results due to the high pitch and intensity and half-life of luciferase systems at
the sub-tissue level. A step higher strategy such as double conjugation of tetraspanins
rich exosome with luciferase and lipophilic fluorescent dyes could yield better results.
Another avenue is acousto-fluidics; combining acoustics material in biocompatible fluids
with nano-drug-loaded exosomes may serve as promising tools in bio-medical sensor
detection in protein separation [82]. The functional efficacy of exosome-based delivery of
drugs depends on the nature of the producer cells. Optimizing the safety, efficacy, and
cost-effectiveness of exosome-guided therapy requires the source of exosome-producing
cells and cell stimulation. For example, a unique material that stimulates the membrane
proteins and overproduction of exosomes in the donor cell without countering the safety
of the engineered exosomes is a benchmark demand of exosome-mediated drug deliv-
ery. However, key challenges persist, particularly in exosome heterogeneity in terms of
exosome loading patterns. Therefore, the next decade will evidence more tremendous
efforts, particularly on developing the membrane modification techniques in exosomes
and smartly controlling the loading patterns.
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