
bioengineering

Review

Recent Advances of Polyaniline-Based Biomaterials
for Phototherapeutic Treatments of Tumors and
Bacterial Infections

Chiranjeevi Korupalli 1,† , Poliraju Kalluru 2,† , Karthik Nuthalapati 3, Naresh Kuthala 3 ,
Suresh Thangudu 3 and Raviraj Vankayala 4,*

1 Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
chiranjeevikorupalli@gmail.com

2 Department of Chemistry, University of Calgary, Calgary, AB T2N1N4, Canada; raju.poli@gmail.com
3 Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan;

karthik.iitm904@gmail.com (K.N.); knareshiitm@gmail.com (N.K.); suresh120689@gmail.com (S.T.)
4 Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur,

Rajasthan 342037, India
* Correspondence: rvankayala@iitj.ac.in
† Equally contributed.

Received: 15 June 2020; Accepted: 11 August 2020; Published: 13 August 2020
����������
�������

Abstract: Conventional treatments fail to completely eradicate tumor or bacterial infections due to
their inherent shortcomings. In recent years, photothermal therapy (PTT) has emerged as an attractive
treatment modality that relies on the absorption of photothermal agents (PTAs) at a specific wavelength,
thereby transforming the excitation light energy into heat. The advantages of PTT are its high efficacy,
specificity, and minimal damage to normal tissues. To this end, various inorganic nanomaterials
such as gold nanostructures, carbon nanostructures, and transition metal dichalcogenides have been
extensively explored for PTT applications. Subsequently, the focus has shifted to the development
of polymeric PTAs, owing to their unique properties such as biodegradability, biocompatibility,
non-immunogenicity, and low toxicity when compared to inorganic PTAs. Among various organic
PTAs, polyaniline (PANI) is one of the best-known and earliest-reported organic PTAs. Hence, in this
review, we cover the recent advances and progress of PANI-based biomaterials for PTT application in
tumors and bacterial infections. The future prospects in this exciting area are also addressed.
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1. Introduction

Hyperthermia (also known as thermotherapy or thermal therapy) is a medical treatment approach
that involves the exposure of the body tissue to higher temperatures in an effort to tackle various
diseases such as cancer, bacterial infection, inflammatory diseases, etc., via eradication of disease cells or
pathogens through the denaturation of proteins or disintegration of membranes [1–4]. The conventional
hyperthermia methods involve induction heating, direct application of heat through the use of heated
saline pumped through catheters, sitting in a hot room or wrapping a patient in hot blankets, resistive
heating, microwave heating, ultrasound heating etc. [5,6]. However, most of these methods are invasive
and may cause unwanted damage to healthy tissues [7]. Therefore, to overcome the limitations of
conventional hyperthermia, noninvasive hyperemia methods involving the excitation of near-infrared
(NIR) light, radiofrequencies, or inductively coupled magnetic fields have been employed to localize
the generated heat to the diseased tissue [8].
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Photothermal therapy (PTT) relies on the conversion of electromagnetic radiation energy into
heat through the activation of photosensitizing agents and has drawn great attention in recent times
owing to its minimal invasiveness, reduced side effects, and high specificity to diseased tissues [9].
In PTT, the NIR light with wavelength ranging from 700–900 nm is more useful when compared to that
of the UV-Vis light, because biological chromophores (hemoglobin, oxyhemoglobin, and melanin) and
water absorb strongly in this region, and convert to heat, thereby results in hyperthermia damage to
both diseased sites and healthy tissues [10]. Additionally, NIR light penetrates deeper into biological
tissues than UV-Vis light [10]. Therefore, it represents an ideal phototherapeutic agent (PTA) with
large absorption cross-sections in the NIR region along with low toxicity, ease of functionalization,
and high solubility in biocompatible solutions. In the last two decades, the advancements in the
nanotechnology have led to the development of variety of inorganic PTAs with strong absorption in
NIR region including nanostructures of noble metals such as Au, Ag or Pt, transition metal oxide or
sulfide nanoparticles, carbon-based nanomaterials such as carbon nanotubes and graphene [11–13]. All
these inorganic PTAs exhibited excellent photothermal therapeutic efficacies in in vitro and preclinical
animal experiments; however, their poor biocompatibility, non-degradability, and long-term toxicity
severely hinder their prospects in clinical applications.

Alternatively, organic nanoparticles such as conjugated polymer nanoparticles based on polyaniline
(PANI), poly (3,4-ethylenedioxythio-phene): poly(4-styrenesulfonate), polypyrrole, polydopamine
and semiconducting polymer nanoparticles, and porphysome have been developed as the promising
candidates for PTT because of advantages including good biocompatibility, biodegradability, ease of
surface modification and processing into nanoparticles with different size, and suitability for preparing
multifunctional nanoparticles by co-loading with other diagnostic and therapeutic agents [14–19].
Conjugated polymers possess alternative single and double bonds in which unpaired electrons
(π electrons) of carbon are localized in a pz orbital that is positioned out of plane. These π electrons
are mobile and liable to delocalization and transition. Upon excitation with photon energy, these π

electrons undergo internal conversion (IC) to lowest singlet excited state (S1) and relax to the ground
state via nonradiative pathways and can generate heat [20–22]. Among these organic PTAs, PANI
was the first reported organic polymer PTA and has been widely applied in PTT and photoacoustic
imaging (PAI) [14,23]. This review mainly discusses the recent advancements in the development of
PANI-based biomaterials for photothermal ablation of tumors and pathogens.

2. Chemical Structure and Stability of PANI

PANI, with a ratio of diiminoquionoid and diaminobenzenoid rings, is a well-known conducting
polymer and has attracted great attention in biomedical applications due to its low cost, environmental
and chemical stability, facile synthesis, high conductivity, and outstanding physicochemical
properties [24–27]. Furthermore, PANI exhibits the unique feature of switching between a conductor
and an insulator depending on the extent of oxidation (variation in the number of electrons) and
the degree of protonation (variation in the number of protons). Among different oxidation states,
emeraldine base (EB) and emeraldine salt (ES) are the most stable oxidation states of PANI, and they
are inter-convertible to each other through protonation and deprotonation based on the pH of the
microenvironment [28]. Switching from the EB state to the ES state in the presence of oxidative species
or an acidic environment leads to a red shift of PANI’s absorption peak from the visible to the NIR
region due to charge transmission between benzenoid and quinoid rings through enhanced electron
movement, leading to potential PTT applications [14,29]. Therefore, PANI has been exploited in PTT
applications owing to its biocompatibility and high photothermal conversion efficiency [14,29–31].
Unlike organic dyes, PANI exhibits excellent photostability upon light irradiation, thus enabling
repeated phototherapeutic treatments [28]. Nevertheless, the hydrophobic nature and the necessity
of extremely low pH (pH < 4) conditions for EB to ES transition significantly hinders the biological
applications of PANI [32]. Thus, researchers have made tremendous efforts to enhance the solubility of
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PANI in biological media in order to make PANI useful as PTA in the pathological environment for the
ablation of cancer cells or bacteria (Figure 1).
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Figure 1. Schematic illustration for photothermal property of PANI.

3. PANI-Based Biomaterials for Tumor Ablation

Cancer is a major cause of death and accounts for one in every four deaths in the United States [33].
It is a disease that involves uncontrolled growth of abnormal cells and has the potential to spread or
invade to organs of the body [34]. Conventional therapeutic treatments for cancer include surgical
excision, radiotherapy, chemotherapy, and combination methods [35–37]. However, surgery usually
results incomplete tumor removal, whereas radiotherapy and chemotherapy cause systemic cytotoxicity
due to non-specific drug delivery to all tissues, including healthy tissues [38]. The above-mentioned
drawbacks necessitate the development of new therapeutic approaches to efficiently eliminate cancer
cells without damaging the healthy tissues. It is known that cancer cells are vulnerable to temperatures
above 45 ◦C. Thus, PTT, as a non-invasive hyperthermia approach, is gaining greater attention for
the treatment of tumors, because it has the capability to selectively destruct cancerous cells without
damaging surrounding healthy tissue [10]. Therefore, in this section we discuss developments in
PTT of tumors using PANI-based materials. The reported PANI-based PTAs for cancer treatment are
summarized in Table 1.

Table 1. Summary of PANI-based photothermal agents for cancer treatments.

Composition of PTA PTA
Structure

Irradiation
Conditions In Vitro In Vivo Function Reference

PANI/PEG NPs 808,
2.45 W/cm2 A431 Yes PTT [14]

PANI/F-127 NPs 808,
0.5 W/cm2 HCT116 Yes PTT [30]

PANI/PVP NPs 785,
0.5 W/cm2 LM2 No PTT [39,40]

UiO66@PANI NPs 808,
0.7 W/cm2 CT26 Yes PTT [41]

PANI/PSS NPs 808,
2.08 W/cm2 HeLa No PTT [42]
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Table 1. Cont.

Composition of PTA PTA
Structure

Irradiation
Conditions In Vitro In Vivo Function Reference

PANI/GdIII/PVA/CET NPs 808,
1.5 W/cm2 A431 Yes Targeting,

MRI, PTT [43]

PANI/Cu(II) NPs 808,
0.3 W/cm2 HeLa Yes MRI, PTT [44]

PANI/MnFe2O4/
pyrene/CET NPs 808,

5 W/cm2 A431 No Targeting
MRI, PTT [45]

PANI/Lipid/FA NPs 808,
2.0 W/cm2 Hela Yes PAI, PTT [46]

PANI/Ag/ICG/
PEG NPs 808,

1.0 W/cm2 Hela Yes PAI, FI, PTT,
PDT [47]

PANI/Si/HA-DA NPs 808,
2.0 W/cm2

MDAMB-231
KB

MDCK
Yes FI, PTT [48]

PANI/γ-PGA NPs 808,
1.5 W/cm2 4T1 Yes PAI, PTT [23]

PANI/HA NPs 808,
0.64 W/cm2

HFF
HCT-116

HeLa
Yes Targeting,

PTT [49]

PANI/LA/Tween80 NPs 808,
10 W/cm2 MDA-MB-231 No Self-doping,

PTT [50]

NMPA/CS Hydrogel 808,
0.5 W/cm2 Hep3B Yes Self-doping,

PTT [51]

PANI/Au/PEG NPs 808,
2 W/cm2

HEK293T
HepG2
HeLa

Yes Charge
transfer, PTT [52]

PANI/BSA NPs 808,
1.0 W/cm2 4T1 Yes Self-doping,

PAI, PTT [31]

PANI/LT/MTX/PVP/SDS/
PLGA/DSPE-PEG2000-mal NPs 808,

2 W/cm2
MCF-7

MDA-MB-231 Yes
Targeting,

Chemotherapy
PTT

[53]

PANI/5-FU/ZIF-8 NPs 980,
0.8 W/cm2 MCF7 Yes Chemotherapy,

PTT [54]

PANI/cisplatin/lecithin/cRGD
or FA-PEG-DSPE NPs 808,

1.54 W/cm2
MGC-803

MDA-MB-231 No
Targeting,

Chemotherapy,
PTT

[55]

PANI/DOX/Si NPs 808,
1.4 W/cm2 4T1 Yes Chemotherapy,

PTT [56]

PANI/cisplatin/lecithin/PEG-PCL/
Tmab NPs 808,

1.54 W/cm2 SK-BR-3 No
Targeting,

Chemotherapy,
PTT

[57]

PANI/Ce6/lecithin/cRGD-PEG-PCLNPs 808,
1.54 W/cm2

MGC-803
MCF-7 No

Targeting,
Chemotherapy,

PTT, PDT
[58]

PANI/MoS2/PEG NPs 808,
1.5 W/cm2 4T1 Yes PAI, CTI

RT, PTT [59]

PANI/WS2/Ce6/HA NPs 808,
1.5 W/cm2 4T1 Yes

FI, PAI, CTI,
PTT, PDT,

RT
[60]

PANI/R848/GCS NPs 808,
0.9 W/cm2 CT26 Yes Immunotherapy,

PTT [61]
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3.1. Synthesis of PANI PTAs

3.1.1. Chemical Polymerization

The photothermal conversion capability of PANI was first published by Yang et al. in 2011 [14].
This is also the first demonstration on the usage of organic nanoparticles for PTT applications. In this
study, hydrophobic PANI was synthesized via chemical oxidative polymerization using protonated
aniline monomer and ammonium persulfate (APS) as an oxidant followed by dedoping with alkali
solution. Then, the hydrophobic EB polymer was coated with PEGylated fatty acid through the
nanoemulsion method to provide required water solubility. The as-developed PANI NPs demonstrated
colloidal stability in biological media, and intracellular pH and oxidative environment dependent
NIR absorption. Furthermore, PANI NPs transformed into EB state to NIR light absorbed ES state by
biological doping process and caused hyperthermic ablation of A431 tumor cells in both in vitro and
in vivo experiments via PTT effect (Figure 2). However, these nanoparticles are larger in size, with a
mean diameter of 115.6 nm, and the toxicity under dark conditions was also not well studied. Thus,
several other research groups have synthesized PANI NPs using various biocompatible polymers as
surfactants and synthetic strategies to improve PANI’s dispersibility in biological media and decrease
the size of NPs [14,30,39–42]. In one study, Zhou et al. synthesized PANI NPs with suitable size through
hydrothermal method using oxidant ammonium persulfate (APS), and stabilizers 6-aminocaproic
acid sodium oleate. The as-synthesized PANI NPs were surface-modified with polyoxyethylene
chains containing pluronic F-127 for hydrophilic conversion (F-PANPs). The F-PANPs exhibited good
water-solubility, size with a mean diameter of 48.5 nm, high photothermal conversion efficiency and
therapeutic effect [30]. In another study, PANI nanoparticles were prepared through nucleation and
growth polymerization, using poly (vinylpyrrolidone) (PVP) as a surfactant and APS as oxidant [39,40].
The as synthesized PANI NPs did not induce significant toxicity to the cells under dark conditions
indicating the biocompatibility of PANI. This study also suggests that cell toxicity after laser irradiation
could be attributed to a synergistic effect mediated by hyperthermia-induced cell necrosis and heat
diffusion/ROS migration caused apoptosis [39].
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Figure 2. Schematic illustration of the preparation of polyaniline nanoparticles and their application
for the photothermal ablation of epithelial cancer cells by NIR laser irradiation (image is reproduced
from [14] with the copyright permission from WILEY-VCH Verlag GmbH & Co.).

Recently, Wang et al. developed a porous metal organic framework hybrid (MOF) as a PTA
by coating PANI onto UiO-66 (UiO-66@PAN) through chemical oxidation [41]. The as-synthesized
UiO-66@PAN showed good strong NIR absorbance and photothermal properties. Additionally,
the UiO-66@PAN effectively caused cancer cell death and tumor growth inhibition in in vitro and
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in vivo, respectively, upon laser irradiation. By using this approach, one can combine drug delivery
with PTT which is difficult to achieve with previously discussed studies.

3.1.2. Enzyme-Catalyzed Polymerization

Usually, the polymerization of PANI involves using chemical and electrochemical methods
which are either environmentally hazardous or produces water-insoluble products that require further
modification with surfactants [14,30]. These concerns can be overcome by using enzyme-catalyzed
polymerization approach [62,63]. For example, Li et al. reported an environmentally friendly
approach to produce water soluble PANI nanoparticles using eco-friendly oxidant hydrogen peroxide,
peroxidase activity mimic iron phosphates (FePOs) and polystyrene sulfonate (PSS) as template [42].
The as-synthesized PANI nanoparticles demonstrated good water solubility and remarkable tumor
cells killing effect on HeLa via the PTT mechanism. This approach has paved a way for the synthesis
of PANI in eco-friendly manner.

3.2. Multifucntional PANI-Based Materials

The studies discussed above successfully overcame several hurdles of PANI for applications
in PTT, e.g., water solubility and NIR photothermal conversion efficiency. However, these PANI
NPs considerably exhibit a single function, i.e., PTT, and lack other functionalities intended to
improve delivery efficiencies, therapeutic efficacy, and, ultimately, patient outcome. It is known that
multifunctional nanomedicine platforms with targeting, imaging and therapeutic functionalities can
improve the overall treatment efficacies and can eventually help to minimize the damage of normal
human tissues during treatment [64–66]. Therefore, researchers have made extensive efforts to develop
multifunctional PANI-based materials by employing various bioactive molecules, polymers, etc.,
to empower PANI-based materials with targeting, imaging properties along with PTT.

3.2.1. PANI Nanoparticles with MRI Imaging and PTT

Magnetic resonance imaging (MRI) is a non-invasive imaging technology which allows the
examination of anatomic structures, physiological functions, and molecular composition of tissues. It is
often used for prognosis, and to monitor the activity and optimal treatment response of disease [67,68].
Additionally, it is the most reliable imaging technique for the diagnosis of tumors due to its high spatial
resolution, superior soft tissue contrast and specificity, and good penetration depth [69]. Therefore,
by combining MRI with therapeutic modalities, one can achieve tumor imaging and treatment at the
same time. To this end, in an early study, Lee et al. developed cetuximab (CET; anti EGFR) modified
and gadolinium (Gd), an effective MR contrast agent, enriching PANI NPs (GPAPs) as theranostic
agents to achieve tumor targeting, MRI and PTT simultaneously through a single nanosystem [43].
In this nanosystem CET, Gd and PANI endow the GPAPs with epithelial cancer cell targeting, MRI
imaging, and PTT properties, respectively (Figure 3A). The results from in vitro experiments clearly
demonstrated that high epidermal growth factor receptor (EGFR) expressed A431 cells have efficiently
uptaken GPAPs due to CET and EGFR interactions and exhibited strong and bright signals in the
T1-weighted MR-images than untreated A431 cells; whereas, low EGFR expressed MCF-7 cells have
minimal uptake of GPAPs due to lack of specific interactions, and thus did not exhibit any noticeable
differences when compared to untreated MCF-7 cells in terms of T1-weighted MR-images signal
intensities (Figure 3B). Furthermore, upon NIR-irradiation, significant cell death was observed only
for GPAPs treated A-431 cells compared to untreated A-431, MCF-7 and GPAPs treated MCF-7 cells
(Figure 3C). These results reveal that GPAPs are useful to target EGFR express cells, MRI imaging and
PTT. This study had exposed a pathway to develop PANI-based multifunctional materials with imaging
and PTT modalities. For instance, Lin et al. developed Cu-doped PANI (CuPANI) nanoshuttles (NSs)
as theranostic agents by doping Cu (II) ions into PANI NSs [44]. The Cu ions and PANI allowed the
CuPANI NSs with MRI imaging and PTT properties, respectively.
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Figure 3. (A) Schematic illustration for the preparation of Gd (III)-loaded polyaniline nanoparticles
(GPAPs) and their application as theranostic agent for epithelial cancer. (B) T1-mapped and respective
color-mapped MR images of A431 (EGFR+) and MCF-7 (EGFR−) cell lines after treatment with different
amount of GPAPs. (C) Fluorescence microscopic images of A431 (EGFR+) and MCF-7 (EGFR−) cells
stained with Calcein AM and ethidium homodimer-1 (EthD-1) after treatment with GPAPs followed by
NIR laser irradiation for 10 min (808 nm, 10 W cm−2). White-dotted curves represent the location of the
laser beam (images are reproduced from [43] with the copyright permission from WILEY-VCH Verlag
GmbH & Co.).

Usually, PANI molecules exhibit strong affinity between themselves due to aromatic π-π
interactions and interchain hydrogen bonding, thus hindering their hybridization with inorganic
materials [69,70]. To overcome this limitation, Lee et al. used pyrene as a crosslinker between PANI
and MnFe2O4 magnetic nanoparticles and synthesized magnetic polyaniline nanoparticles (MPANs)
for simultaneous MRI imaging and PTT. The MPANs were conjugated with CET which further allowed
targeting ability [45]. This study demonstrated a pathway for the fabrication of composites between
PANI and inorganic substances thereby achieve multi-functionality to the nanoparticles.

3.2.2. PANI Nanoparticles with PAI Imaging and PTT

Photoacoustic imaging (PAI) is a noninvasive and nonionizing biomedical imaging modality and
based on the use of laser-generated ultrasound [71]. It possesses high optical contrast and spatial
resolution, and is promising for diagnosis of disease. PAI has high sensitivity to optical absorption and
deep tissue penetration than other optical imaging technologies such as fluorescence imaging [72].
Thus, combining PAI with PTT can allow a precise diagnosis and excellent therapeutic efficacy of
tumor. Wang et al. developed lipid-PANI hybrid nanoparticles for PA imaging guided PTT of tumor.
Folic acid (FA), a targeting ligand, was also conjugated to lipid-PANI nanoparticles (FA-Lipid-PANI
NP) to achieve tumor targeting property [46]. The FA-Lipid-PANI NPs demonstrated significant
PAI signals and PTT effect in in vivo upon laser irradiation due to high NIR absorbance. Later on,
ICG-Ag@PANI [47], PANI/Si/HA-DA [45], PANI/γ-PGA [23] nanocomposites were reported for PAI
imaging mediated PTT. All these composites exhibited precise diagnosis and PTT effect of tumor
upon laser irradiation. In a continuation of above studies, Jiang et al. synthesized hyaluronic acid
(HA)-PANI NPs through electrostatic interactions between negatively charged HA and positively
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charged PANI [49]. The as-synthesized HA-PANI NPs exhibited targeting specificity to CD-44 expressed
cancer cells and PTT mediated cell-killing efficacy both in vitro and in vivo.

3.3. Self-Doping of PANI

It is well known that PANI exists in a dedoped EB state in the physiological pH environment
and converts from the EB state to the ES state under acidic conditions through protonation, which
causes a redshift in absorption from visible to NIR region and improves its applicability for PTT
applications [29]. This conversion requires an acidic environment with pH < 4.0; therefore, the
tumor acidic microenvironment (pH 5.4–7.0) is insufficient for this conversion and severely limits the
application of PANI as PTA for cancer treatment [32]. It was reported that pH response range of PANI
can be tuned by self-doping of PANI through introduction of acidic groups into the PANI chains [73]
or by improving the charge transfer rate via incorporation of conductive nanomaterials into PANI
matrix [74]. When relying on this strategy, researchers have made attempts to improve the application
of PANI as PTA in cancer treatment [31,50–52]. Hong and coworkers synthesized PANI nanoparticles
by incorporating lauric acid (LA) as a stabilizer and localized dopant [50]. These nanoparticles
exhibited high photothermal conversion efficiency even at a neutral pH due to doping with LA.
In another study, 3-mercapto-1-propanesulfonic acid was grafted onto the PANI backbone to avail
with self-doping property [51]. All the above mentioned attempts to tune the pH response range
of PANI are based on the introduction of acid groups to the PANI backbone. However, the acid
self-doped PANI was mostly soluble in alkaline conditions only, which is limiting its suitability for
biological applications. Later on, Qu et al. introduced gold nanoparticles (AuNPs) into the core
of PANI nanoparticles through the electrostatic interaction. These nanocomposites demonstrated
pH-dependent NIR absorbance and preserved PTT effect in tumor microenvironment due to charge
transfer between AuNPs and PANI [52]. Nevertheless, the introduction of nonbiodegradable Au may
produce long-term toxicity. To minimize these limitations, Tian and coworkers recently developed a
tumor pH environment-responsive PANI-based theranostic agent using bovine serum albumin (BSA)
and PANI for PAI and PTT of tumors [31]. In this study, the intermolecular acid–base reactions between
the imine moieties of the PANI backbone and the carboxyl groups of BSA led to a self-doping effect
and change in the pH responsive range of PANI thereby redshift of absorption peak from visible
to NIR region at a relatively high pH (<7.0) (Figure 4). Furthermore, the as-developed BSA-PANI
NPs demonstrated strong PAI performance and PTT in tumor environment both in in vitro and
in vivo [31]. The biocompatibility of BSA-PANI NPs was examined in vitro using non-cancer HUVEC
cells. As shown in Figure 4C, the BSA-PANI NPs did not exhibit significant toxicity to HUVEC cells in
dark even at high concentrations up to 2 mg/mL indicating that PANI-based PTAs are biocompatible [31].
These results can provide a possible pathway for the development of PANI-based materials that are
responsive to pH of tumor.

3.4. Combination Therapy of Cancer Using PANI-Based Materials

In general, it is difficult to eradicate tumors completely using a single therapeutic modality. Thus,
integration of different treatments with diverse strategies, such as chemotherapy, radiotherapy (RT),
photodynamic therapy (PDT) and PTT into single platform has attracting great interest in recent
times because it can enhance the therapeutic outcome of cancer [75]. Various bioactive molecules
can be incorporated into PANI NPs through chemical interactions such as grafting onto functional
groups or physical interactions including electrostatic, π-π stacking, hydrogen bonding or hydrophobic
interactions. Therefore, it is a suitable PTA to combine with other modalities. In this regard, PANI has
been increasingly integrating with other therapeutic biomolecules to achieve high curative outcome
through synergetic effect between PTT and other therapeutic modalities.
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Figure 4. (A) Schematic illustration for the preparation bovine serum albumin (BSA)-polyaniline
(PANI) assemblies. (B) BSA-PANI assemblies for amplified photoacoustic imaging and augmented
photothermal therapy. The potential mechanism is based on intermolecular acid–base reactions between
carboxyl groups of BSA and imine moieties of PANI. (C) In vitro biocompatibility of the BSA-PANI
assemblies for noncancerous HUVECs cells after 24 h of incubation. (images are reproduced from [31]
with the copyright permission from WILEY-VCH Verlag GmbH & Co.).

3.4.1. PANI Nanocomposites with Chemotherapy and PTT

Chemotherapy is a conventional approach in the treatment of cancer. However, undesired side
effects, discomfort of patients, and multi-drug resistance of cancers limit its curative efficacy [76].
It has been reported that hyperthermia can sensitize the cells to chemotherapeutic drugs by affecting
the DNA damaging process [77]. Therefore, a chemotherapeutic agent has been incorporating into
NIR responsive materials to induce synergistic anticancer effects [78,79]. In a study, Nguyen and
coworkers developed a multifunctional hybrid polymer system comprising of PANI NPs as PTA
and Methotrexate (MTX) as an anticancer drug for combined photo–chemotherapy [53]. In in vivo
experiments, mice treated with combined therapy showed a higher tumor growth inhibition rate than
PTT or chemotherapy alone, due to a synergistic effect, implying that combining PANI with other
chemotherapeutic agents can exert better efficacy. The other PANI-based chemo-photothermal agents
are also listed in Table 1 [54–58].

3.4.2. PANI Nanocomposites with RT and PTT

Radiotherapy (RT), another cancer treatment approach along with surgery and chemotherapy, kills
cancer cells and shrinks tumors under high doses of radiation, and is a cost-effective single modality
treatment [35]. It involves local application of ionizing radiation (e.g., γ-ray, X-ray) on the tumor to
generate oxygen free radicals from surrounding water molecules that cause the DNA damage [80].
The cellular oxygen levels highly influence the degree of cellular damage in this approach. Therefore,
the tumor hypoxia is a major problem for implementation of RT [81]. However, a proper level of
hyperthermia could improve oxygen levels in the tumor microenvironment by increasing intratumoral
bloodstream thereby sensitize cells to RT [82,83]. Therefore, it has been reported that combining PTT
with RT can improve the therapeutic outcome of tumors [84,85]. Thus, hybrid nanocomposites were
developed by combining radio therapeutic agents and PANI for radiophotothermal therapy [59,60].
Wang et al. fabricated an inorganic–organic nanohybrid using MoS2 quantum dot and polyaniline
(MoS2@PANI) to accomplish simultaneous CT/PA imaging and synergistic PTT/RT combination therapy
for tumor [59]. In vitro, the as-fabricated MoS2@PANI nanohybrids induced 78.4% cancer cell death
upon simultaneous PTT/RT treatments, whereas single PTT or RT induced 62.3% or 51.1% cell death,
respectively (Figure 5A). In vivo, MoS2@PANI + PTT/RT group remarkably inhibited tumor growth
compared to control groups, including PBS, MoS2 + PTT, MoS2@PANI and MOS2@PANI + PTT
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alone/RT alone (Figure 5B). These results demonstrate the efficiency of PANI in eradicating tumors
through synergistic radio-photothermal therapy.Bioengineering 2020, 7, x FOR PEER REVIEW 10 of 17 
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irradiation (808 nm, 1.5 W cm−2) and X-ray radiation (6 Gy). (B) Tumor growth in different groups of
mice after various treatments (images are reproduced from [59] with the copyright permission from
American Chemical Society).

3.4.3. PANI Nanocomposites with PDT and PTT

Photodynamic therapy (PDT) is a clinically approved non-invasive therapy that can be used in
the selective treatment of various types of cancers [86]. It causes cell death through generation of
reactive oxygen species (ROS) such as hydroxyl radical (OH), singlet oxygen (1O2), and superoxide
(O2−) intracellularly, upon photoexcitation of photosensitizers with light of suitable wavelength [64].
However, the low oxygen levels in the tumor microenvironment are also the main obstacle in PDT [87].
Therefore, PDT has been combined with PTT to enhance the oxygen levels and improve therapeutic
efficacy [88]. Most organic photosensitizers are hydrophobic and contain an aromatic component;
therefore, they can be easily combined with PANI through hydrophobic or π-π stacking interactions
to exert PDT and PTT modalities in a single nanoplatform [47,58,60]. For instance, Tan et al. loaded
the photosensitizer Indocyanine Green (ICG) (the only FDA approved NIR dye) into Ag@PANI
nanocomposites through π-π stacking and the hydrophobic interaction [47]. The as-synthesized
ICG-Ag@PANI nanocomposite showed strong optical absorption in the NIR region and excellent
photothrermal and ROS generation properties upon laser irradiation. In vitro and in vivo, the
combination of PTT and PDT exhibited remarkable cancer cell lethality and tumor growth inhibition,
respectively, compared to PTT or PDT alone upon photoexcitation of ICG-Ag@PANI with 808 nm light.
This study is showed a way to incorporate photosensitizers with PANI.

Apart from this, PANI was also combined with immunotherapeutic drugs [61] through
hydrophobic interactions to achieve PTT mediated immunotherapy. Overall, the results from these
studies reveal that the therapeutic outcome can be enhanced using combinational therapy and
necessitating further development of such strategies using PANI.

4. PANI-Based Biomaterials for Eradication of Bacterial Infections

Infectious diseases caused by pathogenic bacterial infections have become a major healthcare
problems in human health and causing nearly one third of deaths globally [89,90]. The most common
treatment for bacterial infections is usage of antibiotics. However, the overuse of antibiotics has
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resulted in the emergence of multidrug-resistant bacteria such as vancomycin-resistant enterococcus
(VRE), vancomycin-resistant staphylococcus aureus (VRSA), and methicillin-resistant staphylococcus
aureus (MRSA), which pose a serious threat to human health [91]. Therefore, alternative bactericidal
therapeutic strategies for which microbes are less prone to develop resistance are urgently needed. Heat
at temperatures above >50 ◦C can cause a bactericidal effect through denaturation of proteins/enzymes
or cell membrane damage [92,93]. Thus, PTT has been considered one of the most promising novel
bactericidal therapeutic approaches to combat MDR bacteria because it is less potential to stimulate
resistance and toxicity. Thus, this section discusses the recent research findings of PANI-based materials
for PTT eradication of bacterial infection and summarized in Table 2.

Table 2. Summary of PANI-based photothermal agents for bacterial infection treatment.

Composition
of PTA PTA Structure Irradiation

Conditions Bacteria In Vivo Functions Reference

PANI/PVPS NPs 808,
2 W/cm2

S. aureus,
E. coli No PTT [94]

NMPA/CS Hydrogel 808,
0.5 W/cm2 MRSA Yes PTT [29]

PANI/GCS NPs 808,
0.6 W/cm2

MRSA
E. coli Yes Targeting,

Imaging, PTT [95]

PANI/polymer NPs 785,
0.5 W/cm2 P. aeruginosa No Imaging [96]

PANI/PLNP/GCS NPs 808,
1.5 W/cm2

S. aureus,
E. coli
MRSA

Yes Targeting,
Imaging [97]

4.1. Self-Doping of PANI

As we discussed before, PANI can exhibit strong photothermal conversion efficiency at pH below
3. Since the local pH of bacterial infection is likely to be between 6.0–6.5 [98], it is impossible for PANI
to exhibit high light-to-heat conversion efficiency in an infection environment. Therefore, it is necessary
to further modify PANI with self-doping agents such as acids to make PANI practical for bacterial
eradication. Kim et al. developed a PANI-based photothermal agent using poly (vinylpyrrolidone)
sulfobetaine (PVPS) and PANI (PVPS-PANI) for bacterial eradication [94]. The PVPS-PANI was formed
through electrostatic interaction between negatively charged sulfones in PVPS and cationic PANI.
These interactions also led to the charge transfer and consequently resulted in the improvement of the
optical properties of PANI. Upon NIR laser exposure, PVPS-PANI exhibited increase in the solution
temperature due to broad NIR absorption and eradicated both gram-positive and gram-negative
bacteria through bactericidal effect (Figure 6).

4.2. Bacteria-Trageting and Multifucntinal PANI-Based Materials

The uncontrollable distribution of PTT agents leads to a rise in the temperature of surrounding
healthy tissue upon irradiation and causes damage to the normal cells. Therefore, to confine the
heat generation to the infection site and selectively eradicate bacteria, pH-responsive physical state
transformable and charge switchable nanoparticles have been developed using chitosan derivatives
as backbone polymers and PANI as PTT agent [29,95]. Likewise, recently, Yan et al. fabricated a pH
switchable nanoplatform composed of NIR-emitting persistent luminescence nanoparticles (PLNP;
Zn1.2Ga1.6Ge0.2O4:Cr3+), PANI and glycol chitosan (GCS) for persistent luminescence imaging-guided
selective eradication of pathological cells while protecting surrounding normal cells (Figure 7) [97].
The GCS and PANI endowed the PLNP@PANI-GCS nanoparticles with pH-responsive charge
switchable property and PTT property, respectively. The as developed NPs caused aggregation
of the bacteria at the pH of focal infection through electrostatic interactions and destroyed them without
damaging surrounding normal cells upon laser irradiation due to strong PTT efficiency of PANI.
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5. Summary and Future Perspectives

Photothermal therapy (PTT) has been proposed as a prospective alternative treatment for
conventional therapeutic modalities of tumor and bacterial infections. Polyaniline (PANI) is a
well-known and interesting organic photothermal agent (PTAs) owing to its unique properties.
However, the inherent properties of PANI, which include hydrophobicity and low transition pH,
severely limit its practical utility in PTT applications. This review summarized the recent advancements
in the research on PANI that have been made to improve its applicability. The PANI surface has been
modified with biocompatible polymers through nanoemulsion and chemical grafting methods to
improve its dispersibility in biological media and its transition pH through self-doping. To further
improve the specificity and therapeutic outcome, the photothermal conversion efficiency of PANI was
combined with targeting moieties, imaging agents and other therapeutic modalities. Despite great
achievements, there is still a lot of room to carry out research on PANI. The possible directions for
future research are as follows: (1) detailed information on the long-term toxicity, bio-distribution,
and biodegradation of PANI is missing. Such investigations are needed for potential clinical translation;
(2) although the photothermal properties of PANI have been known for almost one decade, the number
of reports based on the PTT properties of PANI is low; (3) one of the unique properties of PANI is its
pH-responsive photothermal properties, which should be explored in more detail in the design of PTT,
including therapeutic materials; and (4) most studies on PANI as PTA have been related to tumor
treatment, and very few have been related to bacterial infection. It should also be considered for other
applications such as for inflammatory diseases. We strongly believe that this review will shed light
on the advancements and promising and exciting possibilities in the field of research on PTT using
PANI-based materials, and we expect that this will be the subject of future research.
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