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Abstract: Harnessing adult mesenchymal stem/progenitor cells to stimulate skeletal tissue repair is 

a strategy that is being actively investigated. While scientists continue to develop creative and 

thoughtful ways to utilize these cells for tissue repair, the vast majority of these methodologies can 

ultimately be categorized into two main approaches: (1) Facilitating the recruitment of endogenous 

host cells to the injury site; and (2) physically administering into the injury site cells themselves, 

exogenously, either by autologous or allogeneic implantation. The aim of this paper is to 

comprehensively review recent key literature on the use of these two approaches in stimulating 

healing and repair of different skeletal tissues. As expected, each of the two strategies have their 

own advantages and limitations (which we describe), especially when considering the diverse 

microenvironments of different skeletal tissues like bone, tendon/ligament, and 

cartilage/fibrocartilage. This paper also discusses stem/progenitor cells commonly used for 

repairing different skeletal tissues, and it lists ongoing clinical trials that have risen from the 

implementation of these cells and strategies. Lastly, we discuss our own thoughts on where the field 

is headed in the near future. 
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1. Introduction 

Repair/regeneration of damaged tissue is fundamental in the maintenance of normal 

homeostasis and it is fine-tuned at the cellular and molecular levels. The process of wound healing is 

highly conserved across the animal kingdom from some of the most primitive organisms, such as 

hydra [1] and amoeba [2], to advanced organisms like mammals [3,4]. However, the regenerative 

capabilities of advanced vertebrates are comparatively limited. In humans, certain tissue types, such 

as blood vessels and epidermis or the gastrointestinal track, can repair within hours, whereas in parts 

of the nervous system and skeletal system, repair and remodeling may take several weeks to months 

[5].  

Musculoskeletal tissue is on the front line of exposure to injury in any active individual. It 

comprises nearly 40% of the total body mass and it is vital for body movements, which are tightly 

regulated by the coordinative efforts of its different components, such as bone, cartilage, muscle, 

ligament, and tendon. Skeletal tissue injuries occur by various means, which include, but are not 

limited to: overuse (i.e., wear and tear), trauma (i.e., accidental/sport injuries), and degenerative 

diseases (i.e., muscular dystrophy, osteoarthritis, etc. [6,7]). In most tissues, wound healing begins 

with the formation of a blood clot [8,9], followed by the recruitment of mesenchymal stem cells 
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(MSCs). Studies have shown that MSCs are integral to the repair process as they help replace 

damaged tissue by differentiating and directly replacing damaged tissue [10], as well as by mediating 

indirect paracrine actions that regulate the migration and behavior of mature cells to promote healing 

[11,12]. These paracrine effects are mediated by factors secreted into the extracellular space by MSCs 

that are collectively referred to as the secretome, which regulates immunomodulation, angiogenesis, 

migration, cell proliferation/survival features. For further reading on the MSC secretome and its 

influences on tissue healing, please refer to Daneshmandi et al., 2020 [13].  

The skeletal system consists of different tissues which exist in varying micro-environments that 

inherently have, or do not have, access to specific resources [14]. Due to these complexities, not all 

tissues have the same level of access to MSCs, hence factoring into why repair efficacy can vary 

dramatically between different skeletal tissues. In efforts to account for this disparity, different cell-

based approaches have been implemented in order to jumpstart the repair process, including 

administering (or physically relocating) exogenous MSCs as biologic therapies to injury sites, or 

administering chemokines, growth factors, scaffolds (and combinations) to stimulate activation and 

migration of native endogenous MSCs to these locations (Figure 1). Surgical procedures (such as tibial 

microfracture surgery for knee cartilage focal defect repair) have also been developed to facilitate the 

migration of native MSCs from one tissue to another (i.e., bone to cartilage), without having to 

physically relocate the cells, in order to facilitate repair. Here, we will review the repair efficacies of 

both “endogenous” and “exogenous” cell-based repair approaches as they have been reported in 

different pre-clinical models. We will also touch on the limitations of these strategies. 

 

Figure 1. Conceptual diagrams of the two main approaches used to stimulate skeletal tissue healing and 

repair by sequestering the help of stem/progenitor cells. (A) Biomaterials/scaffolds and/or bioactive 

agents, such as growth factors, chemokines, and small molecules are placed at the site of injury to 

stimulate the migration and differentiation of endogenous native mesenchymal stem cells for aiding in 

the repair process. (B) Cells are physically administered exogenously, from one anatomical location of 

the patient to the site of injury, or from a donor, to aid in the repair process. This can be done with or 

without a scaffold or biomaterial to hold the newly administered cells in place. 

2. Common Progenitor/Stem Cells Utilized for Skeletal Tissue Repair 

Stem cell-based therapies have gained great interest from scientific communities in the last two 

decades, not only for their dynamic potential to treat infectious diseases and cancers, but also for 

their ability to stimulate tissue healing. Strategies to enhance healing by mimicking the natural 

cellular processes that occur during skeletal development are actively being explored. Most notably, 

transplantation of tissue specific progenitor cells or stimulating the recruitment of endogenous/native 

progenitors are approaches that are utilized to enhance healing of skeletal tissues in preclinical 

models [15–19]. The self-renewal capacities of skeletal tissues diminish with aging. This is partly 
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attributed to the reduced abundance and efficiency (i.e., loss of proliferative capacity and/or 

differentiation potential) of native adult stem cells that are normally involved in repairing these 

tissues. The importance of recruiting and/or administrating cells with the greatest potential to rebuild 

the specific skeletal tissue in question have been highlighted in previous reviews [20–24]. 

Human clinical trials involving stem/progenitor cells for the treatment of musculoskeletal injuries 

are increasing [25–29]. Many of these trials involve somatic (adult) stem cells, with mesenchymal 

stem/progenitor cells being the most commonly used variety. MSCs are essential for the development 

and repair of the skeletal system—from embryonic bone formation to adult fracture healing and 

remodeling [30]. MSCs are heterogeneous populations of multipotent cells residing in adult tissues 

[30,31]. These cells are scattered throughout the skeletal system and they aid in the restoration of 

damaged tissue (Figure 2). 

 

Figure 2. Diagram depicting various sources of Mesenchymal Stem Cells (MSCs) and their cellular 

microenvironments of adjacent skeletal tissues that make up a joint. These include MSCs from 

synovium, cartilage, bone marrow, periosteum, and ligament/tendon. Additionally, MSCs from 

adipose tissue such as fat pad (not depicted here) are also present. This represents how each tissue is 

not a closed system but rather that they are constantly in the direct proximity of MSCs from adjacent 

tissues. 

MSCs can be isolated from marrow [32], periosteal bone [33,34], cartilage [35–37], fibrocartilage 

[38,39], adipose tissue [40], tendon [41], ligament [42–44], and synovium [45]. MSCs isolated from 

these different tissues may vary in phenotype, morphology, differentiation, and proliferation 

capacity, but the consensus is that they all possess similar characteristics to bone marrow derived 

stromal cells (BM-MSCs), suggesting that MSC populations found across all skeletal tissues share a 

similar ontogeny [46]. Veritably, a set of minimum criteria have been described for the identification 

of these cells [47]; although, these criteria still need further refinement as some adult cells have been 

found to be capable of de-differentiating into stem-like cells in culture, further blurring the line 

between native MSCs and culture inspired MSC-like cells [48,49]. Regardless, however, both native 
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MSCs and de-differentiated MSC-like cells exhibit demonstrated usefulness for tissue engineering 

applications as well as stimulating and/or enhancing tissue healing [50–53].  

MSCs secrete a large variety of bioactive molecules that facilitate a regenerative environment. 

This trophic activity deem them immunosuppressive, especially to T-cells, and as a result, allogeneic 

MSCs can be used for therapeutic purposes [54]. MSCs exhibit significant immunomodulatory 

capacity and play an important role in maintaining immune homeostasis by interacting with 

chemokines, cytokines and cell surface molecules [55]. Besides considering which type of MSC is 

optimal for therapy, another equally important consideration is the microenvironment of the injured 

tissue in question, which also dictates overall repair success. The local tissue microenvironment can 

influence how cells integrate into the existing tissue matrix and how they restore the damaged tissue 

[14]. Tissue structure, organization, extracellular matrix (density and content), cellularity, and 

vasculature are all determining factors of how quickly and how well it will heal.  

Alongside MSCs, human induced pluripotent stem cells (iPSCs) have also emerged as a potential 

cell source for skeletal tissue repair. iPSCs are cells that have been dedifferentiated into the state of 

pluripotency by the induction of select transcription factors including octamer-binding transcription 

factor-3/4 (OCT3/4), SRY-related high-mobility-group (HMG)-box protein-2 (SOX2), c-MYC, and 

Kruppel-like factor-4 (KLF4) [56,57]. These cells represent an inexhaustible cell source for tissue 

repair and regeneration; however, their incredible plasticity leads to concerns about their tendency 

to differentiate resulting in unexpected and undesirable phenotypic changes, which are now being 

addressed [58]. 

3. Stimulating Bone Repair 

Bone is the most rigid and vital tissue of the skeletal system since it provides our bodies with 

structure, protects vital organs, and facilitates hematopoiesis occurring in the bone marrow. The 

structural components that shape the microenvironment of long bones are nanocrystals of 

hydroxyapatite (referred as mineral phase); collagen type-I (referred as organic phase); cellular 

components that include osteoclast, osteoblast, and osteocytes; ions (primarily calcium); and lastly, 

growth factors and cytokines [59]. The most common broken bone injury is the fracture. Compared 

to the other tissues of the skeletal system, bones are equipped with sophisticated microvasculature 

regularly supplying necessary components such as nutrients for growth and maintenance of 

homeostasis. Bone marrow, which is the primary site for hematopoiesis, attracts not only cytokines 

and growth factors, but it also attracts metastatic cells (in some cancers), hence stability of the bone 

microenvironment is critical during injury repair and metastatic disease [60]. 

Although the architecture and microenvironment of bone tissue allows fracture repair to 

efficiently occur, often healing to pre-injury state, about 10% of fractures will not heal normally [61]. 

Bone repair after fracture is a complex process involving a series of cellular and molecular events 

leading to new bone formation through systemic and local factors [59]. In general, fracture healing 

mainly involves five steps: hematoma formation, inflammation, angiogenesis, fibrocartilaginous 

callus formation to bony callus formation, and bone remodeling—with stem/progenitor cells 

contributing to each stage of healing [62,63]. Following bone fracture, the bone marrow is exposed 

and results in the rapid formation of a hematoma due to damaged blood vessel. This involves an 

inflammatory response where specific cytokines like interleukin-1 (IL-1), IL-6 and tumor necrosis 

factor-α (TNF-α) [64], neutrophils, macrophages, and other inflammatory cells initiate the bone 

healing mechanism, towards endochondral bone formation and remodeling [65]. Growth and 

differentiation factors like TGF-β superfamily including bone morphogenetic protein (BMPs), as well 

as insulin-like growth factors (IGFs), fibroblast growth factors (FGFs), and platelet-derived growth 

factors (PDGF), orchestrate MSC cell proliferation and differentiation (i.e., chondrogenesis, 

osteogenesis) [66]. Lastly, during revascularization of the injury site (angiogenesis), BMPs stimulate 

the expression of vascular endothelial growth factor (VEGF) by osteoblasts [67]. Due to these 

orchestrated events, bones have a high capacity for healing but repairing comminuted fractures that 

result in bone loss remains a major challenge [68]. Bone is the most commonly transplanted tissue, 

leading to 1.5 million annual grafts in the United States [69,70]. However, due to hurdles such as the 
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limited availability of donor tissue for grafts [71], donor site morbidity [72], possibility of allograft 

rejection [73], and ethical dilemmas concerning putting potential donors at risk make this approach 

challenging [74,75]. Hence, alternative approaches to heal fractured or damaged bone tissue become 

necessary. 

Previous studies have documented the use of cells and other biologics in the treatment of injured 

bone. Induction of osteogenesis by co-culturing C3H10T1⁄2 mesenchymal stem cells with 

chondrocytes stimulated well-known bone formation markers including osteopontin, osterix, and 

osteocalcin, to enhance the bone healing [76–79]. Other treatment strategies such as osteoanabolic and 

antiresorptive treatment strategies (including Wnt/ß-catenin signal activation to promote cell 

proliferation, differentiation, and microcirculation) have also been utilized [80]. Additionally, 

parathyroid hormone treatment and bisphosphonate injections have had promising results, but they 

have several limitations since long-term ablation of bone resorption interferes with the ongoing 

renewal of the bone matrix and affects skeletal integrity, ultimately affecting the fracture healing 

process [81–85]. These studies collectively suggest that current approaches still need refinement.  

Hematopoietic stem cells (HSCs) have been widely used as a potential candidate for the bone 

injury healing. Kumar et al. demonstrated using a rat model that the treatment of IGF1 in combination 

with AMD3100 elevates the growth of fractured bone that is primarily regulated by cell signaling 

pathways, Akt and Erk [86]. Further, using a clonal cell transplantation model, Malhotra et al. 

demonstrated that HSCs migrate and give rise to osteocytes and chondrocytes aiding the healing 

process of fractured bones [87]. Recently, Chan et al. identified human skeletal stem cells (hSSCs) that 

undergo local expansion upon injury to the bone. Interestingly, upon comparative analysis, the study 

also identified evolutionary differences between mouse and human skeletogenesis [57]. Furthermore, 

the periosteum is considered to be the primary source of mesenchymal progenitor cells, giving rise 

to the fracture callus [88], but there is evidence that BM-MSCs and muscle progenitor cells also 

contribute to the bone repair process [63,89,90].  

Exogenous injection/transplantation of MSCs seems to be the most common and most effective 

avenue of cell-motivated bone fracture repair that has been reported to date. In late 1960, Friedenstein 

et al. [91,92] first demonstrated the osteogenic potential of BM-MSCs. The authors filled a diffusion 

chamber with bone marrow and bone marrow fragments, which was placed in filtered culture 

containers, showing that the ectopic transplantation of bone marrow cells result in osteogenesis 

[91,92]. These findings were then further validated in the 1980s when it was documented that the 

injection of bone marrow aspirants directly on to the sites of bone fractures successfully promoted 

healing [93]. In the past two decades, several preclinical studies documenting the positive role of 

bone marrow aspirant injections on the healing of fractured bones have been conducted using rodent 

models [86,94,95]. Clinical studies have also been conducted using bone marrow aspirant to stimulate 

healing of fractured bones. Independent case studies conducted on 20 patients by Garg et al. and Sim 

et al. in 1993 showed 90% and 85% radiographic healing of the fractured bones, respectively [96,97]. 

Kim and colleagues conducted an open randomized clinical trial consisting of 64 patients with a long 

bone fracture, that were treated with a local injection of 3.0 × 107 osteogenically differentiated 

autologous BM-MSCs mixed with fibrin [98]. After 2 months, injected patients showed no 

complications and exhibited significant fracture healing. Overall, these studies demonstrate the 

efficacy of using BM-MSCs in a clinical setting for bone repair. However, due to the limitations of 

BM-MSC abundance (especially in older patients [99]) and their reduced regenerative capacity with 

continuous cell expansion [100], there is a need for a detailed clinical trial considering factors such as 

age and gender for their therapeutic applications.  

Several groups have shown the potential of exogenous stem cells such as circulating skeletal 

progenitors as potential therapeutic candidates for the healing of fractured bones. Almost two 

decades ago, Kuznestove et al. isolated fibroblast-like skeletal progenitors from rodents and humans 

and demonstrated the significant osteogenic potential of these cells upon transplantation [101]. 

However, these circulating skeletal progenitors were shown to be rare in humans [102]. Other studies 

in nude mice have demonstrated that administering human adipose stem/progenitors (ASCs) directly 

on to sites of calvarial bone injuries induces the expression of osteoblast markers (including Alpl, 
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Col1a1, Runx2) and stimulates bone formation [103,104]. Interestingly, the exogenous cells persisted 

only for 14–15 days and were eventually replaced by the host’s own cells.  

Progenitor-like cells isolated from dental pulp, referred to as dental pulp stem cells (DPSCs), 

were also investigated for bone healing due to their potential for differentiating down the osteoblast 

lineage (in vitro) and their ability to stimulate bone formation (in vivo) [105–107]. In 2000, Gronthos 

et al., first isolated DPSCs from adult human dental pulp, and determined their in vitro and in vivo 

characteristics [108]. Recently, Fuji et al. demonstrated the osteogenic differentiation of DPSCs in 

vitro and bone regeneration in vivo in mouse calvaria defects using a derivative of helioxanthin, 

which is known to induce osteogenic differentiation of pre-osteoblasts and MSCs [108]. Lee et al. 

compared the osteogenic and bone regeneration potential of DPSCs and BM-MSCs in vitro and in 

vivo in a rabbit model [109]. Although, DPSCs have been used pre-clinically for repairing various 

tissues including cardiovascular tissue, cornea, and muscular, further clinical studies are needed to 

evaluate their therapeutic potential [110–112]. 

Many preclinical studies demonstrate the positive effects of a variety of exogenous and 

endogenous stem/progenitor cells on bone fracture repair (Table 1). On the other hand, only two 

ongoing US clinical trials testing the efficacy of human MSCs on bone fracture repair and 

osteochondral defect repair is being carried out at the time of this review (Table 2) suggesting that 

there is a fairly large gap that separates bench and bedside. This does not necessarily imply that pre-

clinical cell-based strategies for bone repair translate poorly, but rather it is more likely that such 

strategies are difficult to translate into clinical approaches that comply with established regulatory 

standards set by the Center for Biologics Evaluation and Research (CBER) branch of the Food and 

Drug Administration (FDA), which take into careful consideration factors such as cell source, 

purity/homogeneity, and culturing conditions. Furthermore, this field would benefit greatly from an 

influx of clinical studies that thoroughly evaluate different factors such as donor age, sex, and the 

number of cells to be injected as this would improve our understanding of therapeutic applications 

of exogenous stem/progenitor cells for bone healing. 
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Table 1. Pre-clinical studies of endogenous and exogenous use of stem/progenitor cells in skeletal tissue. 

Tissue Approach 
Animal 

Model 
Injury Model Experimental Treatment Outcomes/Results References 

Bone Endogenous Mice 
Long Segmental 

Defect 

Growth factor + 

AMD3100 treatment  

2 weeks: 

IGF1 showed increased proliferation and migration of isolated 

MSC as well as augmented bone growth. 

Kumar et al., 

[86] 2012 

Bone Exogenous 
Nude 

mice 

Calvarial defect 

(4 mm) 

Undifferentiated Human 

ASCs + PLGA scaffold + 

(rh) BMP2 

8 weeks: 

Gross analysis, microCT, and histological examination showed 

complete healing and trabecular bone formation in the hASCs 

treated group compared to the scaffold only group and empty 

defects. 

 

Levi et al., 

[103] 2010 

Bone Exogenous Rats Femoral fracture BMSCs + skin fibroblasts 

5 weeks: 

Callus size and mechanical properties were significantly 

higher in the MSC injected group compared to fibroblast and 

the PBS control. Quantitative analysis showed GFP-positive 

MSCs were present in callus in MSC group at 5 weeks after 

fracture. 

 

Huang et al., 

[113] 2015 

Bone Exogenous Mice Femur fracture Mouse BMSCs/RFP 

42 days: 

BMSCs injected on day 7 post-fracture accelerated fracture 

healing with improved callus and bone quality. 

 

Wang et al., 

[114] 2018 

Bone Exogenous Rat Bone nonunion 
Primary MSCs sheet + 

SDF1 injection 

4 and 8 weeks: 

At 4 weeks, new formed bone tissue united the distal and 

proximal sites in the MSC sheet/SDF group compared to 5 

other groups. At 8 weeks, the MSC sheet/SDF group showed 

complete bridging of the fracture site, forming hard bony 

union. 

Chen et al., 

[115] 2016 

Bone 
Exogenous + 

Endogenous 
Mice 

Osteogenesis 

impairment 

Peptidomimetic ligand 

(LLP2A) + Alendronate 

(LLP2A-Ale) injection 

3 and 12 weeks: 

At 3 weeks, the hMSC cells injected intravenously in the 

xenotransplantation model were observed at the bone surface 

in the LLP2A-Ale group. At 12 weeks, the LLP2A-Ale group 

could augment bone formation in mice.  

Guan et al., 

[116] 2012 
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Tendon Exogenous Rats 

Multi-

differentiation 

potential 

TSCs + Matrigel (gel-

cells) 

 

8 weeks: 

Transplantation of TSCs subcutaneously resulted in the 

formation of tendon, cartilage and bone-like tissues.  

 

Zhang et al., 

[117] 2010 

Tendon Exogenous Rat Achilles Tendon 

MSCs cultured in 

hypoxic and normoxic 

condition 

2 and 4 weeks: 

Tendon rupture site and biomechanical properties were 

superior in hypoxic MSC group compared to the normoxic and 

control.  

 

Huang et al., 

[118] 2013 

Ligament 

Endogenous; 

Growth 

factors 

Canine ACL defect 
Collagen-Platelet Rich 

Plasma (PRP) Scaffold 

3 and 6 weeks: 

The percent filling defect was significantly higher in the 

treated group at both 3 and 6 weeks compared to the untreated 

defects. Mechanically, the ACL treated group had 40% increase 

in strength at 6 weeks, compared to untreated defects. 

 

Murray et 

al., [119] 

2006 

Ligament 

Endogenous; 

Growth 

factors 

Porcine ACL defect 

Suture + Collagen-

Platelet Rich Plasma 

(PRP) hydrogel 

4 weeks: 

At 4 weeks, the collagen-PRP hydrogel group stimulated 

healing and improved biomechanical properties after suture 

repair, compared to suture repair alone. However, both groups 

remained significantly inferior to the intact ligament group. 

Murray et 

al., [120] 

2007 

Tendon 

Endogenous; 

Growth 

factors 

Rat Rotator Cuff 

3D printed scaffold + 

Growth factors (CTGF, 

CTGF + TGF-b + BMP2) 

1 and 4 weeks 

GF embedded (+GF) scaffolds promoted recruitment of 

endogenous tendon progenitor cells and healed tendon-to-

bone via formation of cartilaginous interface compared to –GF 

scaffold. 

 

Solaiman et 

al., [121] 

2019 

Tendon Exogenous Rat Achilles Tendon TDSCs and BMMSCs 

1, 2 and 4 weeks: 

TDSCs showed higher regenerative potential with high 

mechanical strength, better appearance density and well-

organized longitudinal fibrous structure and BMSCs also 

showed positive results.  

 

Al-Ani MK 

et al., [122] 

2015 
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Tendon Exogenous Rabbit 
Patellar Tendon 

defect 

BMSCs + Type I bovine 

collagen gel 

4 weeks: 

Mechanically and histologically, the MSC + gel group showed 

significantly greater material and structural properties 

compared to the collagen gel alone control. However, 

treatment group improvements were not impressive compared 

to the normal healthy tendon. 

 

Awad et al., 

[123] 1999 

Ligament Exogenous Rabbit 
ACL 

Reconstruction 
BMSCs + Silk scaffold 

8, 16 and 24 weeks: 

The MSC/Scaffold group showed abundant ligament ECM 

(Col I was more prominent compared to Col III and Tenascin-

C), compared to the scaffold alone control. The tensile strength 

was comparable to the mechanical properties of daily 

activities. 

 

Fan et al., 

[124] 2008 

Tendon Exogenous Rat 
Rotator Cuff 

injury 
BMSCs + PRP 

4 and 8 weeks: 

Gene and protein detection at 4 weeks, showed that combined 

therapy enhanced the expression of growth factors and genes 

related to tendon repair (Col I, Tenomodulin, Scx). At 8 weeks, 

mechanical testing demonstrated that combined therapy was 

most efficient to promote tissue regeneration, compared to 

single therapy control (PRP alone and MSC alone).  

 

Han et al., 

[125] 2019 

Tendon Exogenous Rat Tendon injury hASC + fibrin glue 

4 weeks: 

Treatment group of hASCs demonstrated enhanced tendon 

healing biomechanically, compared to the fibrin alone and 

sham group. Cells were showed to survive for 4 weeks, in vivo 

and secreted human-specific Col I and Tenascin-C. 

 

Lee et al., 

[126] 2017 

Tendon Exogenous Rat 

Partial 

Transection of 

Achilles Tendon 

ASCs + Fibrin Sealant 

(FS) from serpent venom 

21 days: 

In vivo analysis at day 14 revealed higher quantification of the 

transplanted fluorescent ASCs in the tendon treated with ASCs 

+ FS compared to ASC alone. The ASCs group up-regulated 

Tenomodulin expression compared to normal (without 

transection), transection alone and the FS group. TIMP-2 and 

Scx expression compared to N group. FS group demonstrated 

great organization of collagen fibers followed by ASCs + FS 

and ASCs alone in comparison to N 

 

Frauz et al., 

[127] 2019 
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Tendon 
Endogenous; 

Growth factor  
Rat Patellar Tendon 

TSCs (CD146+) + Fibrin 

glue + CTGF 

1, 2 and 4 weeks: 

CTFG treated CD146+ cells led to tendon regeneration with 

dense collagen fibers, compared to the untreated CD146+. By 

week 4, the CTGF group generated tendon with dense collagen 

fibers compared to the fibrin alone group and tensile property 

on the level of native tendon compared to CD146- and 

untreated CD146+. 

 

Lee et al., 

[128] 2015 

Tendon 
Endogenous; 

Growth factor 
Sheep 

Rotator Cuff 

injury 

rhPDGF-BB coated 

sutures 

6 weeks: 

rhPDGF-BB coated sutures enhanced histologic scores of sheep 

rotator injury and enhanced tendon healing. However, load to 

failure was equivalent to standard suture repair. 

 

Uggen et al., 

[129] 2010 

Cartilage Exogenous Rat 
Osteo-chondral 

Defect 

hiPSCs pellet or hiPSCs 

+ alginate hydrogel 

12 weeks: 

Defects treated with chondro-induced hiPSCs implantation 

had smooth, firm tissue with good restoration of articular 

surface compared to control or alginate alone. However, 

histological appearance showed reduced amount of 

proteoglycan compared to the normal cartilage. 

 

Ko et al., 

[130] 2014 

Cartilage Exogenous Rat Osteoarthritis  
Human umbilical MSCs 

+ Hyaluronic acid (HA) 

6 and 12 weeks: 

Macroscopic observation of the femur surface at 6 weeks, 

showed signs of OA progression with cartilage surface 

roughness and osteophyte formation compared to preserved 

cartilage in MSC + HA group; at 12 weeks, joint surface 

showed OA progression in all 3 groups. 

Histologically at 6 weeks, the MSC + HA group showed 

abundant proteoglycan and reduced cartilage loss, whereas at 

12 weeks, Saf-O staining was significantly reduced compared 

to 6 weeks Hence, single injection of hUC-MSCs had  

temporary effects to decelerate OA progression. 

 

Xing et al., 

[131] 2020 
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Cartilage Exogenous Rat 

Full thickness 

cartilage defect 

(2mm) 

BMSCs + SUMO1/ 

SUMO2,3/ SUMO1,2,3 

4 weeks: 

BMSCs overexpressing SUMO1 differentiated into articular 

cartilage with hard surface; BMSCs overexpressing SUMO1,2 

reduced inflammation and improved damaged cartilage 

microenvironment; BMSCs overexpressing SUMO1,2,3 

showed better survival, less inflammatory response, and 

improved tissue repair. 

 

Liu et al., 

[132] 2020 

Cartilage Exogenous 

Rabbit 

and 

Minipigs 

Osteo-chondral 

defect 

ECM group: autologous 

MSC-derived ECM 

scaffold; 

BMS group: 

Bone marrow 

stimulation 

Rabbits: 6hrs, 3 and 7 days: 

Macroscopic appearance of exudate healing wounds showed 

less fibrosis and histology showed evenly distributed 

chondrocyte in the EMS group compared to the BMS. The 

CFU-F assay showed increased number of bone MSCs in the 

ECM group. 

Minipigs: 6 months: 

Macroscopic and MRI finding improved in the ECM compared 

to BMS group. Repaired tissue in ECM had similar histological 

characteristic to normal hyaline cartilage. 

 

Tang et al., 

[133] 2019 

Cartilage Exogenous Rat 

Full thickness 

cartilage defect 

(2mm) 

Equine BMSCs and 

Synovial Fluid-Derived 

MSC (SFMSCs) + 

agarose gel 

1 and 12 weeks: 

At 1 week, the knee joint showed the presence of MSCs at the 

injured site. 

Macroscopic and histological analysis demonstrated better 

healing of cartilage in MSC treated knees at 12 weeks, 

compared to the control. SFMSC treated showed significantly 

higher Col II, suggesting presence of hyaline cartilage at the 

defect site. 

 

Zayed et al., 

[134] 2018 

Cartilage 

Endogenous; 

Growth 

factors 

Rabbit 
Humeral Head 

incision 

TGF-β3 adsorbed or 

TGF-β3-free + collagen 

hydrogel 

4 months: 

The TGF-β3 treated group had significantly greater matrix and 

articular cartilage thickness compared to the TGF-β3-free 

group, showing that the articular cartilage of the synovial joint 

was regenerated by homing endogenous cells. The TGF-β3 

treated group also had consistent distribution of Col II and 

Aggrecan. 

 

Lee et al., 

[135] 2010 
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Cartilage 

Endogenous; 

Growth 

factors 

Rats 
Osteo-chondral 

Defect (1.6mm) 

Silk fibroin scaffold + 

SDF-1α + TGF-β1 

12 weeks: 

Scaffold treated with + SDF-1α and TGF-β1 (GSTS) had the 

most significant cartilage regeneration compared to 4 other 

control groups. The GSTS group also produced more type II 

collagen compared to other groups, which generated 

fibrocartilage. 

Chen et al., 

[136] 2019 

Cartilage 

Endogenous; 

Growth 

factors 

Rabbit 
Osteo-chondral 

Defect (5mm) 

Hydroxyapatite collagen 

(Hap/Col) scaffold + 

FGF-2 with 10 and 100 

µg/mL concentration 

collagen (HAp/Col) 

scaffold 

 

3,6, 12 and 24 weeks: 

Abundant bone formation observed in the Hap/Col group 

compared to the defect group. The FGF10 group demonstrated 

abundant bone regeneration as well as satisfactory cartilage 

regeneration with a hyaline-like appearance.  

Maehara et 

al., [137] 

2010 
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4. Stimulating Tendon and Ligament Repair 

Tendon and ligament are the dense connective tissue that connects bone to muscle and bone to 

bone, respectively. Both are highly prone to injury and can be difficult to repair due to their structural 

organization, hypo-cellularity and hypo-vascularity [138–141]. Tendon tissue primarily consists of 

collagens I, II, III, V, XI, XII, XIV, elastin, and glycosaminoglycans (GAGs) [142–145]. Type I collagen 

is a most robust component of the tendon extracellular matrix (ECM) network [146]. Tendon cells, or 

tenocytes, are fibroblast-like in appearance and they synthesize ECM components including collagen 

fibers, elastin, proteoglycans [142,147]. The proportion of tendon/ligament ECM constituents can 

vary among individuals, mainly due to differences in the mechanical loading environment; however, 

they tend to have relatively consistent physiology and structure [148,149].  

The healing response to tendon/ligament injury can be divided into three overlapping stages—

(1) inflammation, (2) proliferation, and (3) remodeling [150]. These stages are ushered by specific 

cytokines and cellular processes. In the inflammatory phase, a blood clot is formed after tendon 

injury, which is followed by activation of chemoattractant inflammatory cells like neutrophils, 

monocytes, and lymphocytes [151]. The clot primarily serves as a scaffold to harbor the cells and 

releases important growth factors like TGF-β, IGF-1, PDGF, and VEGF causing inflammation [152]. 

The second phase, proliferative phase begins roughly after 2 days following injury. This phase is 

directed by macrophages and tenocytes of the endotenon and epitenon region of the tendon. 

Macrophages release growth factors to direct cell recruitment and tenocytes help in synthesis of a 

matrix, primarily consisting of type III collagen [153–155]. The proliferative phase is identified by 

increased cellularity, synthesis of ECM, and the deposition of scar tissue by fibroblasts [156]. After 

about 1-2 months following injury, the remodeling phase begins with reorganization of tenocytes and 

collagen fibers, aligning in the direction of stress [156] with a decrease in type III collagen and GAG 

content [157] and increased synthesis of type I collagen [158]. This process continues for months after 

injury; however, the newly formed tissue gradually changes to scar-like tendon tissue. The repaired 

tissue also lacks biomechanical, biochemical, and ultrastructural properties of native uninjured 

tendon tissue [159,160]. 

This complex microenvironment of tendon and ligament tissues makes the healing process slow 

[161,162]. In the US alone, tendon and ligament injuries account for almost half of the 32 million 

musculoskeletal injuries incurred each year [163]. These rates are rising due to the increasing aged 

population and also due to increased participation in sports activities [156]. Rotator cuff tears increase 

with age, from 9.7% in patients 20 years and younger to 62% in patients that are 80 years and older 

[164], which represents a significant burden [165]. The main challenge in tendon healing is the failure 

to functionally attach tendon to bone. The attachment, called enthesis, consists of the transitional 

gradient of tendon, fibrocartilage, calcified fibrocartilage and bone; and it mainly allows dissipation 

of stress between these tissues of different properties [166,167]. Although the enthesis can be 

reattached surgically, the gradient is disrupted and replaced with scar tissue exhibiting impaired 

mechanical properties [160,168]. As with tendon, anterior cruciate ligament (ACL) surgical repair 

results in failure due to the lack of blood clot formation, intra-articular hypo-vascularity, loss of 

intrinsic cell migration, and poor healing capacity of ACL [169,170]. There is even a high risk of failure 

when the ACL is repaired surgically by suturing in adolescent patients [171]. Severe tendon/ligament 

injuries that result in lost or unsalvageable tissue require tissue autografts, which often lead to donor 

site morbidity [172,173]. Ultimately, current surgical paradigms fail to restore the functional, 

biochemical, and structural properties of the native tissue [156].  

Tenocytes and ligamentocytes (ligament cells) express Scleraxis (Scx)—a transcription factor that 

regulates the expression of the glycoprotein Tenomodulin, which is a specific marker of these mature 

cells [174–176]. Like other connective tissues, tendon also contains a unique population of 

heterogeneous tissue-specific MSCs. They are capable of differentiating into tenocytes, and true to 

the nature of all MSCs, they can differentiate along the chondrogenic, osteogenic, and adipogenic 

lineages upon in vitro induction [177]. Further, these cells are capable of generating tendon, cartilage, 

and tendon-bone junction-like tissues in rats [178], rabbits [117], and equine animal models [179]. 
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Over the years, regenerative approaches for treating tendon and ligament injuries have been 

explored. These include: (i) cell based therapies [180–182] (ii) gene therapy [24,183] (iii) 

orthobiologics/platelet rich plasma injections (PRP) [119,120,184], and recently, (iv) cell free strategies 

that implement sustained released growth factors to recruit endogenous stem cell that promote 

healing [121]. Biochemical factors such as cytokines (IL-6, IL-10, IL-1β,TNF-α) [185–187] and growth 

factors (transforming growth factor (TGF)-β, basic fibroblast growth factor (bFGF), IGF-1, PDGF) play 

a crucial role in maintaining tissue homeostasis [152,188]. Many endogenous and exogenous cell-

based therapies have been used to repair tendons and ligaments in pre-clinical models (Table 1). 

It has been reported that tendon derived stem/progenitor cells (TDSCs) exhibited a higher 

regenerative potential towards ruptured Achilles tendon, compared to BM-MSCs at 4 weeks in a rat 

model [122]. However, due to the limited availability of these cells, they must be culture expanded. 

Unfortunately, in vitro expansion has been reported to cause the cells to lose their phenotypic 

markers [189] and studies have demonstrated that the number of TDSCs are greatly reduced with 

aging, showing diminished proliferative capacity [190,191]. With this in mind, other cell sources are 

being investigated for therapeutic use. 

Bone marrow is a widely explored alternative cell source for tendon and ligament tissue 

engineering [123–125,192]. Gulotta et al. explored the use of BM-MSCs for treating unilateral 

detachment of the supraspinatus tendon in the rats [193]. Although there were no significant 

differences found between the treated and untreated groups, they showed that cells were present and 

metabolically active at the repair site following treatment. The same group found that cell-based 

strategies alone may not be sufficient to improve the structure, composition, and strength of the 

healing tendon tissue [193]. Two years later, they showed that administering BM-MSCs transduced 

with adenoviral-mediated Scleraxis improved rotator cuff repair in a rat model [194]. There seemed 

to be no difference in the histological appearance between the Scx and MSC group, but the Scx 

transduced cell treated group had more fibrocartilage, higher load-to-failure and stress-to-failure 

ratio at 4 weeks, compared to BM-MSC group alone. Genetic modifications of administered BM-

MSCs and ACL fibroblast with bone morphogenetic factor (BMP)-12 and BMP-13 has also been 

demonstrated to induce ligamentogenic differentiation, in vitro [195].  

ASCs are also interesting for tissue engineering due to their accessibility and great abundance 

when extracted from human subcutaneous adipose tissue [196,197]. Park et al. demonstrated that rat 

ASCs, when treated with growth differentiation factor-5 (GDF-5), exhibited enhanced ECM 

production and tendonogenic differentiation of cells, in vitro [198]. Multiple studies have reported 

the in vivo efficacy of using ASCs to stimulate tendon healing and improve biomechanical properties 

and normal collagen fiber organization, compared to the control groups [126,199,200]. Recently, 

Kokubu et al. demonstrated that ASCs improved tendon healing by stimulating collagen fiber 

reformation and preventing ectopic ossification of tendons in mice, compared to the control group at 

2 and 4 weeks after injury [201]. This study suggested that ASCs can modulate inflammation and 

induce neovascularization at the site of injury. Tracking of transplanted ASCs revealed that they were 

present at 2 and 7 days post transplantation, but no longer present by 3 weeks, post transplantation 

[201]. 

When used in combination with fibrin sealant or hydrogels, ASC treatment has been reported 

improved tendon healing with increased expression of Col1, Scx, and Tenomodulin in the damaged 

tendon tissue. In vivo survival of ASCs injected with scaffolds (fibrin sealant or hydrogel) into the 

defect region was confirmed at day 14 [127] and day 31, post injury [202]. While these studies 

effectively demonstrate that there are several different approaches for utilizing exogenous cell 

treatments (with/without bioactive scaffolds or growth factors) to stimulate tendon and ligament 

repair [119,120,127,183,184,202], further comprehensive studies are needed to assess the safety and 

efficacy of these approaches to take the research from bench-to-bedside. 

Endogenous cell-based approaches for tendon regeneration have also emerged as a promising 

strategy consisting of applying different growth factors and biomaterials to effectively recruit native 

stem/progenitor cell population. Solaiman et al. demonstrated a tissue engineering integrated 

approach, utilizing both in vitro and in vivo models, by a precise spatiotemporal growth factor 
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delivery system embedded in 3D-printed flexible scaffolds, which resulted in regeneration of the 

tendon-to-bone interface by recruitment of endogenous stem/progenitor cells [121]. 

Immunofluorescence analysis 7 days post-implantation showed the infiltration of CD146+ cells into 

the growth factor embedded scaffold, suggesting an endogenous cell source does exist for tendon-to-

bone healing in a rat model [121]. The regenerative potential of tissue-resident stem/progenitor cells 

(CD146+) in a rat model was evaluated by Lee et al., [128] These cells, after enriching with connective 

tissue growth factor (CTGF), were mixed with fibrin gel and delivered at the injury site. By the end 

of week 1 and 2, CTGF led to a dense, aligned collagen fibers, compared to the group without CTGF 

delivery. By post-operative week 4, CTGF generated tendon exhibited dense collagen structure 

compared to the scar-like tissue in the fibrin-alone group [128]. Furthermore, expression of different 

growth factors are evaluated in early phases of tendon healing [203,204].  

Several ongoing clinical studies are trying to better understand the implications of treating 

injuries with MSCs alone or in combination with bioactive scaffolds to repair tendon and ligament 

(Table 2). Hernigou et al. showed 10-year follow up results, after injecting MSCs to have enhanced 

rate of healing and reduced number of re-tears over time [205]. Kim et al. revealed that an injection 

of ASCs in combination with fibrin sealant, significantly improved re-tear rates of rotator cuff injuries 

[206]. Ligament injuries like ACL tears have also shown promising results in small number of patients 

using autologous injection of bone marrow nucleated cells [207]. Murray et al. developed a bridge 

enhanced ACL repair (BEAR) which combines suture repair with an extra cellular matrix scaffold to 

bridge the gap between the ligament ends [27] and presented the first-in-human study to show no 

graft or repair failures following a two year follow up [28]. 
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Table 2. List of few ongoing clinical trials for skeletal tissue. 

Condition 
NCT 

Identifier 
Title Status Intervention 

Non Union Fracture NCT03325504 

A Comparative Study of 2 Doses of BM Autologous H-MSC + 

Biomaterial vs Iliac Crest AutoGraft for Bone Healing in Non-Union 

 

Recruiting 

Biological: Cultured Mesenchymal 

Stem Cells 

Procedure: Autologous iliac crest 

graft 

Osteochondral Fracture of 

Talus 
NCT03905824 

The Effectiveness of Adding Allogenic Stem Cells After Traditional 

Treatment of Osteochondral Lesions of the Talus 
Recruiting 

Biological: Allogenic stromal 

mesenchymal cells derived from 

the umbilical cord 

Procedure: Debridement and 

microfracture 

 

Full Thickness Rotator 

Cuff Tear 
NCT02484950 

Mesenchymal Stem Cell Augmentation in Patients Undergoing 

Arthroscopic Rotator Cuff Repair 
Recruiting 

Biological: Mesenchymal stem cell 

augmentation in rotator cuff repair 

Procedure: Standard arthroscopic 

rotator cuff repair 

 

Rotator Cuff Tear 

Rotator Cuff Tendinitis 
NCT03752827 

Autologous Adult Adipose-Derived Regenerative Cell Injection into 

Chronic Partial-Thickness Rotator Cuff Tears 
Recruiting 

Device: Adipose Derived 

Regenerative Cells 

Drug: Corticosteroid 

 

Rotator Cuff Tear NCT03688308 
Bone Marrow Derived Stem Cells for the Treatment of Rotator Cuff 

Tears 
Recruiting 

Procedure: Arthroscopic rotator 

cuff repair with bone marrow 

aspirate concentrate 

 

Rotator Cuff Tear NCT03551509 LifeNet: Extracellular Matrix Graft in Rotator Cuff Repair Recruiting 

Biological: ArthroFLEX ECM 

scaffold graft 

Procedure: Control 

Biological: Crossover 

 

Rotator Cuff Tears NCT04325789 
Rotator Cuff Healing Using a Nanofiber Scaffold in Patients Greater 

Than 55 Years 
Recruiting Device: Rotium nanofiber graft 

ACL—Anterior Cruciate 

Ligament Rupture 
NCT03294720 

BioACL Reconstruction with Amnion Collagen Matrix Wrap and 

Stem Cells Case Series 

 

Active, not 

recruiting 

Procedure: Bio-ACL 

Device: amnion wrap and BMAC 
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ACL—Anterior Cruciate 

Ligament Rupture 
NCT03294759 

Bio ACL Reconstruction Amnion Collagen Matrix Wrap and Stem 

Cells 

Active, not 

recruiting 

Other: Bio ACL 

Other: Control 

Anterior Cruciate 

Ligament Tear 
NCT02664545 Bridge-Enhanced ACL Repair vs. ACL Reconstruction 

Active, not 

recruiting 

Device: BEAR Scaffold 

Procedure: Tendon Graft 

 

Defect of Articular 

Cartilage 

Cartilage Injury 

Osteoarthritis, Knee 

NCT02696876 
Synovium Brushing to Augmented Microfracture for Improved 

Cartilage Repair 
Recruiting 

Device: Arthroscopic synovial 

brushing 

Procedure: Microfracture 

 

Degenerative Lesion of 

Articular Cartilage of 

Knee 

NCT02090140 
Microfracture Versus Adipose Derived Stem Cells for the Treatment 

of Articular Cartilage Defects 
Recruiting 

Procedure: ADSC Application 

Procedure: Microfracture 

 

Osteoarthritis, Knee NCT04205656 
Prospective Evaluation of PRP and BMC Treatment to Accelerate 

Healing After ACL Reconstruction 
Recruiting 

Biological: Leukocyte-Poor Platelet 

Rich Plasma (LP-PRP) 

Biological: Bone Marrow 

Concentrate (BMC) 

Other: Control group (Placebo) 

 

Osteoarthritis, Knee  NCT02805855 
Autologous Culture Expanded Mesenchymal Stromal Cells for Knee 

Osteoarthritis  
Recruiting  

Drug: Autologous Adipose-

Derived Mesenchymal Stromal 

Cells 

 

Knee Osteoarthritis NCT03014401 The Effect of Adipose-Derived Stem Cells for Knee Osteoarthritis Recruiting 

Procedure: Arthroscopic 

debridement with stem cell 

transplantation 

Procedure: Arthroscopic 

debridement only 

 

Osteoarthritis, Knee 

Knee Pain 
NCT03467919 

The Effect of Micro Fragmented Adipose Tissue (MFAT) on Knee 

Osteoarthritis 
Recruiting 

Procedure: Micro Fragmented 

Adipose Tissue 

Procedure: Corticosteroid injection 

 

Post-Traumatic 

Osteoarthritis of Knee 
NCT04222140 Early Regenerative Intervention for Post-Traumatic Osteoarthritis 

Not yet 

recruiting 

Combination Product: ERIPTO 

Protocol 

Biological: BMAC Only 

Knee Osteoarthritis NCT04043819 

Evaluation of Safety and Exploratory Efficacy of an Autologous 

Adipose-derived Cell Therapy Product for Treatment of Single Knee 

Osteoarthritis 

Active, not 

recruiting 
Drug: PSC-01 



Bioengineering 2020, 7, 86 18 of 33 

Musculoskeletal Pain 

Knee Osteoarthritis 

Cartilage Injury 

Cartilage Degeneration 

NCT03477942 Impact of Mesenchymal Stem Cells in Knee Osteoarthritis Recruiting 
Biological: Autologous 

Mesenchymal Stem Cells 

     

Articular Cartilage 

Disorder of Knee 

Articular Cartilage; 

Degeneration 

NCT03101163 

Efficacy and Safety Study of Intra-Articular Injections of Autologous 

Peripheral Blood Stem Cells Following Subchondral Drilling Surgery 

for the Treatment of Articular Cartilage Injury in the Knee 

Recruiting 

Biological: Autologous peripheral 

blood stem cells and hyaluronic 

acid 

Other: Hyaluronic acid 

     

Osteoarthritis, Hip NCT03608579 
Autologous Culture Expanded Adipose Derived MSCs for 

Treatment of Painful Hip OA 
Recruiting 

Drug: Autologous Adipose 

Derived Mesenchymal Stromal 

Cells 

 

Osteoarthritis NCT03818737 Multicenter Trial of Stem Cell Therapy for Osteoarthritis (MILES) Recruiting 

Biological: Autologous Bone 

Marrow Concentrate (BMAC) 

Biological: Adipose-derived 

Stromal Vascular Fraction (SVF) 

Biological: Umbilical Cord Tissue 

Drug: Depomedrol and Normal 

saline (Corticosteroid injection) 
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5. Stimulating Articular Cartilage Repair 

Articular cartilage is a resilient yet flexible tissue which is a vital component of the skeletal 

system. The extracellular matrix (ECM) of articular cartilage is mainly composed of water, 

proteoglycans, and collagen fibers. The chondrocyte is the primary type of cell found in cartilage, 

which almost completely lacks blood vasculatures and neural architecture [208]. This means that the 

sole mode of nutrient supplements to the chondrocytes is though adjacent tissues and fluids such as 

subchondral bone and synovial fluid, respectively [209,210]. In comparison to other connective 

tissues, articular cartilage has the lowest turnover of ECM and it has a very limited capacity for 

healing after injury [211]. Chondrocytes reside in small compartmented cavities called lacunae that 

are surrounded by large areas of dense cartilage ECM making it difficult for these cells to move freely 

or migrate in response to biological cues of damaged tissue. Moreover, the lack of blood vasculature 

prevents the infiltration of articular cartilage by circulating immune cells [212]. Multiple approaches 

have been documented to help restore cartilage without surgical proceedings, but the fact remains 

that there are virtually no clinical treatment options in existence that completely restore damaged 

articular cartilage to its native state [213–217].  

Given its poor capacity for healing, knee injury resulting in cartilage damage is a great clinical 

challenge [218–222]. Widely practiced clinical procedures for attempting cartilage restoration include 

endogenous cell-based methods like bone marrow stimulation by creating microfractures [223,224], 

and exogenous transplantation of tissue and cells such as the use of osteochondral grafts [225,226], 

and autologous chondrocyte implantation (ACI) [227–232]. ACI was first described by Brittberg and 

colleagues in 1994 where patients’ own cartilage tissues were harvested in one surgery to extract the 

chondrocytes, followed by cell culture expansion and injection into the defect site during a second 

surgery [231]. This treatment, along with the matrix induced autologous chondrocyte implantation 

(MACI) method [233], has shown positive clinical results for larger cartilage defects [234],[235]. 

However, each method has its own limitations that have been previously discussed to great lengths 

[236–240]. 

With regards to novel methodologies that are still in development for cartilage repair, pre-

clinical strategies fall into one (or both) of two avenues: (1) utilizing biomaterials that can replace/fill 

lost cartilage and restore some loadbearing capacity to defect region; (2) utilizing/stimulating cells to 

assist with rebuilding lost cartilage ECM [241]. Cellular approaches involve BM-MSCs and ASCs 

along with the induction of chondrogenesis. Chondrogenesis is thought to be more functional in a 

3D culture system as chondrocytes tend to lose their original characteristics, dedifferentiate in the 

monolayer and acquire a fibroblastic morphology [242,243]. Studies have demonstrated the 

chondrogenic differentiation of BM-MSCs and ASCs in monolayer culture as well as in 3D aggregate 

cultures [40,45,244–246]. The preclinical use of stem/progenitor cells for cartilage repair has been 

documented in different animal models (Table 1). Ko et al. investigated the chondrogenic and 

hypertrophic potential of human iPSCs compared to BM-MSCs and also demonstrated the healing of 

damaged cartilage in rats by grafting iPSCs [130]. Additionally, Xing et al. demonstrated that a single 

injection of human umbilical cord derived MSCs into sprague dawley rat knee joint, 4 weeks post-

surgery, resulted in a significant retardation of OA progression compared to controls [131]. Other 

studies have also reported that stem cells induce cartilage repair in rodents [132,133], porcine [133] 

as well as the equine models [134]. Although cell/tissue transplantation-based therapeutic strategies 

seem promising, there are drawbacks such as donor-site morbidity, the possibility of graft rejection 

and rapid cell ‘wash-out’ from synovial fluid [247]. Due to these limitations, scientists are actively 

considering the guided delivery of the biologics such as proteins, nucleic acid, and growth factors to 

redirect the native/endogenous cells to the site of cartilage tissue injury [248–250]. These strategies 

are intended to motivate cartilage stem/progenitor cells (CPCs) and mature chondrocytes to help 

accelerate healing [251].  

For large cartilage defects, growth factors are used in combination with biomaterials/scaffolds 

that have the dual role of providing the necessary structural support while also facilitating the 

recruitment of endogenous cells over time [135]. Scaffold can also be laced with other bioactive 
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molecules, like chemokines, to promote cartilage repair. Chen et al. demonstrated a silk fibroin-

porous gelatin scaffold (capable of sustained release) loaded with growth factors stromal-derived 

factor-1α (SDF-1α) and TGF-β1 can promote in vitro MSC homing, migration and chondrogenesis 

and cartilage regeneration in vivo [136]. Other bioactive molecules like IGF-1 and FGF-1 encapsulated 

in bio-scaffolds, were reported to accelerate the repair process ex vivo and in vivo [137,252–255].  

Current clinically practiced methods to reduce pain, increase joint lubrication, and subside 

inflammation include: intra-articular injections of platelet rich plasma (PRP), hyaluronic acid, and 

corticosteroids. Administering specific growth factors have also showed promise for stimulating 

healing [248,249]. An early phase clinical trial [26] seem to suggest that intra-articular injections of 

ASCs induce a degree of cartilage regeneration, as they can differentiate along the chondrogenic 

lineage [256–258]. However, ASCs maintain their chondrogenesis potential up to 15–16 passages with 

diminishing efficiency to differentiate into chondrocytes, comparatively less than that of BM-MSCs 

[246,259]. A clinical trial comparing the efficacy of using microfracture vs. application of ASCs on a 

collagen scaffold (NCT02090140) for articular cartilage defect repair is currently ongoing. 

Simultaneously, randomized phase III clinical trials are being conducted to evaluate which source of 

stem cells are superior (NCT03818737). In addition, ongoing is a trial comparing the outcomes in 

patients with osteoarthritis (OA) injected with fragmented adipose tissue (NCT03467919) in 

comparison to the current standard treatment of treating with corticosteroid to alleviate pain. Refer 

to Table 2 for more details on ongoing clinical trials. 

Although studies to date suggest that the stem/progenitor cells are capable of cartilage repair, 

the combination approach of using cells with different growth factors and bio-scaffolds may be 

beneficial for future pre-clinical studies seeking to improve tissue repair efficacy. While facilitating 

the migration of endogenous cells to areas of injury is clinically appealing from a regulatory 

standpoint, aging ensures that these cells have dwindling capacity for self-renewal and healing. 

Unfortunately, elderly individuals make up the largest population suffering from cartilage 

degeneration. Taking the road less traveled by genetically modifying these cells, in order to enhance 

their regenerative potential, may change the therapeutic paradigm for cartilage repair. 

6. Conclusions 

Skeletal tissues like bone, cartilage, tendon, and ligament are difficult to repair completely upon 

injury due to their complex microenvironment. Surgical approaches to repair these damaged tissues 

are widely used but due to their limitations, cell-based approaches have emerged, and they are being 

tested in both pre-clinical models and in current ongoing clinical trials. The approach of stimulating 

recruitment of endogenous cells to the injury site is preferable and advantageous in order to avoid 

donor site morbidity and graft/cell rejection that is associated with use of exogenous cell-based 

approaches detailed here. Unfortunately, in the aging population, the existing native 

stem/progenitors may have diminished capacity for proliferation and repair, hence the use of 

exogenous cells may be preferable. An intriguing solution that should be more deeply explored in 

the future is to combine these approaches—by administering both exogenous cells and growth factors 

that will also help recruit native cells to aid in repair.  
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