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Abstract: Microfluidics platforms can program small amounts of fluids to execute a bio-protocol, and
thus, can automate the work of a technician and also integrate a large part of laboratory equipment.
Although most microfluidic systems have considerably reduced the size of a laboratory, they are
still benchtop units, of a size comparable to a desktop computer. In this paper, we argue that
achieving true mobility in microfluidics would revolutionize the domain by making laboratory
services accessible during traveling or even in daily situations, such as sport and outdoor activities.
We review the existing efforts to achieve mobility in microfluidics, and we discuss the conditions
mobile biochips need to satisfy. In particular, we show how we adapted an existing biochip for mobile
use, and we present the results when using it during a train ride. Based on these results and our
systematic discussion, we identify the challenges that need to be overcome at technical, usability and
social levels. In analogy to the history of computing, we make some predictions on the future of
mobile biochips. In our vision, mobile biochips will disrupt how people interact with a wide range of
healthcare processes, including medical testing and synthesis of on-demand medicine.
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1. The Premises of Microfluidics as Micro-Laboratories

In the common practice of biological laboratories, the tasks composing the various stages of
bio-protocols are separately performed by manual interfacing between them. Figure 1 illustrates,
for example, the main stages of a typical bio-protocol. During a working day, lab researchers have
to pipette fluids in tubes, carry them from one machine to another, individually program each
machine, carefully document each step of the process and then convert the results into data before their
analysis and validation. A major challenge in biology research is the reliable implementation of an
automated and integrated workflow, which truly enforces bio-protocols reliability and reproducibility.
An important step forward towards the solution of the problem is the integration of microfluidics into
the laboratory workflow.

  

Bioengineering 2019, 6, x; doi: FOR PEER REVIEW www.mdpi.com/journal/bioengineering 

Review 

Mobile Microfluidics 
Mirela Alistar 

Atlas Institute and Department of Computer Science, University of Colorado Boulder, Boulder, CO 80309-
0320, USA; mirela.alistar@colorado.edu; Tel.: +49-151-7196-9187 

Received: 18 November 2018; Accepted: 24 December 2018; Published: date 

Abstract: Microfluidics platforms can program small amounts of fluids to execute a bio-protocol, 
and thus, can automate the work of a technician and also integrate a large part of laboratory 
equipment. Although most microfluidic systems have considerably reduced the size of a laboratory, 
they are still benchtop units, of a size comparable to a desktop computer. In this paper, we argue 
that achieving true mobility in microfluidics would revolutionize the domain by making laboratory 
services accessible during traveling or even in daily situations, such as sport and outdoor activities. 
We review the existing efforts to achieve mobility in microfluidics, and we discuss the conditions 
mobile biochips need to satisfy. In particular, we show how we adapted an existing biochip for 
mobile use, and we present the results when using it during a train ride. Based on these results and 
our systematic discussion, we identify the challenges that need to be overcome at technical, usability 
and social levels. In analogy to the history of computing, we make some predictions on the future 
of mobile biochips. In our vision, mobile biochips will disrupt how people interact with a wide range 
of healthcare processes, including medical testing and synthesis of on-demand medicine. 

Keywords: microfluidic biochips; mobility; healthcare 
 

1. The Premises of Microfluidics as Micro-Laboratories 

In the common practice of biological laboratories, the tasks composing the various stages of bio-
protocols are separately performed by manual interfacing between them. Figure 1 illustrates, for 
example, the main stages of a typical bio-protocol. During a working day, lab researchers have to 
pipette fluids in tubes, carry them from one machine to another, individually program each machine, 
carefully document each step of the process and then convert the results into data before their analysis 
and validation. A major challenge in biology research is the reliable implementation of an automated 
and integrated workflow, which truly enforces bio-protocols reliability and reproducibility. An 
important step forward towards the solution of the problem is the integration of microfluidics into 
the laboratory workflow. 

 
Figure 1. We depict schematically the bio-protocol called “Ovation Target Enrichment Technology 
for DNA”, developed by NuGEN Technology Inc. [1]. As illustrated, the duration of the bio-protocol 
is of 3.5 h, out of which 90 min of manual pipetting. 

Figure 1. We depict schematically the bio-protocol called “Ovation Target Enrichment Technology for
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At the beginning of the 1990s, microfluidic technology progresses made possible the realization
of the first examples of “micro total analysis systems”, demonstrating the possibility of automation,
miniaturization and integration of complex biochemical protocols [2].

The trend today is toward microfluidic platforms, which according to reference [2], provide “a set
of fluidic unit operations, which are designed for easy combination within a well-defined fabrication
technology”, and offer a “generic and consistent way for miniaturization, integration, customization
and parallelization of (bio-)chemical processes”. Microfluidic platforms are used in specific applications
in healthcare such as drug discovery [3], diagnostic testing [4], prenatal screening [5], environmental
monitoring [6], as well as optimizing laboratory procedures in molecular biology [7], enzymatic and
proteomic analysis [8], single cell analysis [9,10], etc. Notable achievements are the microfluidic chips
for HIV and syphilis testing [4], for non-invasive testing of chromosomal abnormalities [5], and for the
discovery of the hepatitis C target and inhibitors [3].

Immediate advantages of microfluidics are miniaturization—minimizing the reagent consumption
and time to result, automation—reducing the likelihood of human error, and integration—eliminating
additional equipment for intermediate steps.

Significant research efforts have been directed toward reducing the size of microfluidic platforms.
Pressure-based microfluidics chips can integrate a million valves in an area less than the surface of a
coin [11–20]. Digital microfluidic platforms can contain electrodes of 100 µm pitch that can transport
30 picoliter droplets [21]. Acoustic microfluidic chips are usually less than 1 cm in diameter and
can manipulate droplets in the range of femtoliters [22]. The reduced size of microfluidic platforms
contributes to their portability, making them ideal candidates for near-patient and point-of-care
testing [23,24].

Moreover, due to miniaturization, the reagent and sample consumption is lower and the bioassay
time-to-result is shortened. By using smaller volumes of expensive reagents and hard-to-obtain
samples, the costs are significantly reduced and thus address an important concern for clinical
laboratories. For example, acoustic microfluidic sensors cost as low as $1.50 for each disposable
chip and can quantify the number of proteins bound to their surface [25]. These sensors have been
successfully integrated into a microfluidic platform for HIV testing [26].

Faster reaction times are observed when using volumes at the microliter scale, making
microfluidics suitable for flash chemistry applications [27,28]. Gray et al. [26] demonstrate that they
can use acoustic microfluidics to test for HIV within 5 min (the usual time is 24 h). Sista et al. [29,30]
developed a digital microfluidic platform to screen newborns for lysosomal storage diseases.
Their work showed that the testing time for Pompe and Fabry disorders can be significantly reduced
from 2 days to 120 min by using digital microfluidics. These great improvements are the direct result
of using smaller amounts of fluids. At microfluidic scale, the diffusion distance is significantly smaller,
thus reducing the time needed for the complete mixing of droplets, and consequently, triggering faster
biochemical reaction times.

Last, microfluidic platforms are programmable, i.e., that they can be controlled automatically,
by algorithms, and thus adapt real-time to various needs. The programmability aspect of microfluidics
has been explored for high-throughput execution of repetitive bio-protocols such as sample
preparation [31–33]. However, the history of computing taught us that there are more advantages of
automation then high-throughput. In the future, we may be able to build large-scale systems based
on microfluidics, with networking and communication capabilities, similar to today’s distributed
computer systems.

Even more, as schematically depicted in Figure 2, microfluidic platforms may become personal
instruments, enabling everyone to design and test their own bio-protocols through the means of
advanced automation algorithms. The types of personal bio-protocols can vary in their purpose and
complexity, from fundamental chemical experiments for educative purposes, to complex bio-protocols
serving a medical need. We envision people using microfluidic platforms to extract pigments,
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mix perfumes, and cook molecular drinks, but also to design their optimal hormonal contraceptive
and even to mix a phage cocktail targeting their bacterial infection.Bioengineering 2019, 6, x FOR PEER REVIEW 3 of 18 
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on a microcontroller and triggered after the biochip has been loaded with the required fluids. 
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formalized and automatized like any software execution. 
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focused on mobile, with significant efforts invested in embedding computation in wearables [35].  
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of problems (e.g., navigation, information retrieval) by means of software, we argue that microfluidic 
platforms can change how people interact with a wide range of healthcare processes, including 
medical diagnosis and synthesis of on-demand medicine. Indeed, significant research is being 
conducted to develop microfluidic platforms that are operable even in remote areas. Ng et al. [36] 
developed a microfluidic platform that tested children and adults for rubella and measles in a refugee 
camp in Kenya. Several research groups work on malaria detection using microfluidic platforms [37–
40]. 

In this paper, we investigate how far the development of mobile microfluidics can be pushed, 
and specifically, what needs to be done so that they impact our lives the same way mobile computing 
did. So far, all microfluidic platforms tested in remote areas are point-of-care systems, i.e., they are 
used in a controlled setting (e.g., someone’s house, a tent, an ad-hoc clinic) and operated by experts. 
While microfluidic platforms hold the promise of unlocking healthcare for people that do not have 
access to it, such as the Kenyan refugees, we wonder how the first-world society will be impacted if 
microfluidic platforms achieve mobility. Specifically, if microfluidic platforms transition from point-
of-care systems to mobile. Similar to smartphones, microfluidic platforms have to be more “compact 
and portable”, they have to be hand-held devices, more than “field-deployable”, they have to be 
operated off-grid (e.g., from a battery), and also in the absence of experts in unexpected situations 
such as during sport activities or camping trips (Figure 3). Real-time response, such as automatic fault 
handling based on sensor output, is also crucial to ensure the microfluidic platform adapts to the 
unpredictability of mobile use.  

Figure 2. The automated setup for executing a bio-protocol on a digital microfluidic biochip: after the
bio-protocol is designed, it is compiled automatically into an “electrode actuation sequence”, which
controls the movement of droplets to run the bio-protocol. The droplet control instructions are stored
on a microcontroller and triggered after the biochip has been loaded with the required fluids.

2. The Future: Mobile Microfluidics

Microfluidic platforms implement split, merge, and mix operations to manipulate fluids
containing chemical compounds, and such a process is somehow analogous to how a computer chip
combines low level mathematical operations such as additions, multiplications and logical operations
to numbers and data, in order to execute programs. Since microfluidic platforms implement the
execution of a series of wet-lab tasks, they have thus the potential to represent and run bio-protocols
as if they were “computer programs”. Thus, if bio-protocols can be fully described as programs
and microfluidic platforms can act as “execution units”, then a bio-protocol execution can be fully
formalized and automatized like any software execution.

Given that we placed the future of microfluidics, and by extension healthcare, into a digital
sphere, it is worth taking a look at the history of computing. In terms of their roadmap, computers
evolved from the room-size Electronic Numerical Integrator and Computer (ENIAC) [34], to desktop
computers, laptops, tablets and smartphones. The development in computing technology is currently
focused on mobile, with significant efforts invested in embedding computation in wearables [35].

Similar to how mobile computing has enabled over 60% of the population to solve a wide range
of problems (e.g., navigation, information retrieval) by means of software, we argue that microfluidic
platforms can change how people interact with a wide range of healthcare processes, including medical
diagnosis and synthesis of on-demand medicine. Indeed, significant research is being conducted to
develop microfluidic platforms that are operable even in remote areas. Ng et al. [36] developed a
microfluidic platform that tested children and adults for rubella and measles in a refugee camp in
Kenya. Several research groups work on malaria detection using microfluidic platforms [37–40].

In this paper, we investigate how far the development of mobile microfluidics can be pushed, and
specifically, what needs to be done so that they impact our lives the same way mobile computing did.
So far, all microfluidic platforms tested in remote areas are point-of-care systems, i.e., they are used in
a controlled setting (e.g., someone’s house, a tent, an ad-hoc clinic) and operated by experts. While
microfluidic platforms hold the promise of unlocking healthcare for people that do not have access to
it, such as the Kenyan refugees, we wonder how the first-world society will be impacted if microfluidic
platforms achieve mobility. Specifically, if microfluidic platforms transition from point-of-care systems
to mobile. Similar to smartphones, microfluidic platforms have to be more “compact and portable”,
they have to be hand-held devices, more than “field-deployable”, they have to be operated off-grid
(e.g., from a battery), and also in the absence of experts in unexpected situations such as during sport
activities or camping trips (Figure 3). Real-time response, such as automatic fault handling based
on sensor output, is also crucial to ensure the microfluidic platform adapts to the unpredictability of
mobile use.
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Figure 3. Transitioning towards mobile microfluidics implies that the instruments are operated from a
battery (a), hand-held (c) and used in similar contexts as a smartphone (b,c).

We argue that mobile microfluidics are far more reaching than providing access to medical
procedures. If mobile microfluidics succeeds as mobile computing did, then microfluidic platforms
will have a similar seductive power to make their use personal and intimate. The revolutionary change
we envision lays in the fact that people will start practicing healthcare through daily habits, thus
replacing the last-minute doctor visits. Mobile microfluidics strongly connects computing and health:
the platform can perform bio-protocols to monitor our physiological fluids, as well as help us check
progress through notifications and feedback.

3. Current Trends in Microfluidics Research

Microfluidic platforms can be classified according to the liquid propulsion principle used for
operation, e.g., capillary, pressure driven, acoustic or electrokinetic. In Table 1, we present an overview
of the four types of microfluidics, comparing them in terms of their size, programmability, mobility
and at-home use. As shown in column 5, the only two categories that have been explored for mobility
are capillary and electrokinetic microfluidics. Since the capillary platforms are not programmable,
we focus on electrical biochips in subsection “3.3 Candidates for Mobile Microfluidics” and present
our findings after testing the microfluidic platform with the smallest size biochip, OpenDrop [41],
in various mobile scenarios.

Table 1. Overview of the four types of microfluidic platforms.

Fluid
Propulsion Example Size Programmable Off-Grid At-Home

Capillary Pregnancy test Small
No Yes

Yes
(10 × 2 cm) (>106 users)

Pressure
MiniDrops [42] Medium

Yes
Not Not

(15 × 15 × 10 cm3) explored Tested

Quake-valve chips [11] Very small
Yes No

Not
(5 × 3 × 1 cm3) Tested

Acoustic SAW biochips [26] Very small
Yes

Not Not
(2.5 cm) explored Tested

Electrical

DigiBio Unit [43] Large
Yes No

Yes
(15 × 25 × 15 cm3) (<10 users)

DropBot [44] Medium
Yes

Not Yes
(15 × 20 × 10 cm3) explored (<20 users)

OpenDrop [41] Small
Yes Yes, we tested

Yes
(10 × 15 × 3 cm3) (>70 users)
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3.1. Fluid Actuation on Microfluidic Platforms

This section offers an overview of the existing microfluidic platforms. In the following paragraphs,
we discuss each one of the four categories by identifying the most known examples and assessing their
usage in the mobile context.

The capillary force can manipulate fluids solely based on the surface tension between them and
the solid substrate. The main use of capillary forces is in paper microfluidics. Usually, such microfluidic
platforms consist of paper strips previously primed with reagents and covered in plastic to avoid
contamination. The most common used capillary platform is the pregnancy test, which uses a strip
that, after dipped in urine, indicates through color whether the user is pregnant or not. These tests are
robust, cheap and can be used at home. Other common applications of paper microfluidics include the
widely spread tests for vaginal infections such as chlamydia [45] and glucose measurements in blood
samples [46] (Figure 4). Recently, research started to explore the potential of capillary microfluidics as
wearables, or so called “labs-on-skin” [47,48]. Examples include smart wound bandages [49] and a
soft stretchable arm patch that measures compounds found in sweat [50]. While these tests provide
cheap ad-hoc diagnosis, they fail to explore the programmability aspect of microfluidics. To overcome
that, recent developments combine paper microfluidics with the computational power of smartphones,
e.g., using their cameras to read the results for HIV tests [51,52] and pathogen tests in urine [53,54].
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Figure 4. A glucose meter is a commercial instrument that uses capillary microfluidics to measure
glucose levels in blood droplets. It is operated from a battery and can be used in mobile scenarios.

Pressure-driven microfluidics manipulates fluids in micro-channels. On such platforms,
miniature pressure valves control the flow of fluids in the channels, allowing two different fluids to be
transported and mixed as shown in Figure 5.
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Figure 5. Mixing in a flow channel microfluidic chip. (a) The lower valves are closed allowing the first
fluid to fill the upper part of the mixer. Similarly, by closing the upper valves and opening the lower
valves, the second fluid enters the chip. (b) The valves inside the rotary mixer are actuated one by one,
thus generating a flow that mixes the fluids. (c) The mixed fluid exits the rotary mixer.

Pressure-driven platforms currently attract the most research efforts in the microfluidics
community, with an average of 30,000 papers per year since 2015 (see Figure 6 for an overview
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of the publication trend in channel-based microfluidics). Comprehensive surveys cover the
existing microfluidics research in cell analysis [55–57], Caenorhabditis elegans modeling [58–60],
organ-on-chip [61–64], infectious diseases [65] and point of care diagnosis [66–68].

Unfortunately, in spite of the impressive reduction in the size of the valves (approximately
1 million valves can be packed in 1 cm2 [11]), flow-channel microfluidics are not suitable for mobile
use. The miniature chips require a complex setup of tubes and pumps, and it was observed that they
became “chips-in-a-lab”, rather than the awaited “labs-on-chip” [69].
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Figure 6. Publication count related to channel-based microfluidics. The count was retrieved
from Google Scholar, by differential search between the topics “microfluidic” and “electrowetting
microfluidics”. The values reported in this figure exclude patents and citations.

Two-phase flow microfluidic platforms use a similar setup as the valve-controlled channels to
manipulate individual droplets (also called “plugs”) by dispensing the target fluid into a carrier
fluid, such as oil. The fluid plugs are transported by pumped oil (Figure 7a) without the need of the
micro-valves to control the flow. Depending on the geometry of the channels, the plugs can turn right
or left (Figure 7b) or split (Figure 7c). The experimental setup is easy to build and can be powered by a
regular socket plug (i.e., not a pressure plug). Because of their usability, these chips are preferred for
a series of applications such as single-cell assays [70,71], magnetic particle washing of bacteria from
blood [72,73], and of fungi from blood [74]. Researchers from computer science developed algorithms
to automatically design channel layouts optimized for specific applications [75,76].
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Figure 7. (a) Plugs (elongated droplets) are transported by the flow of the carrier oil that is continuously
pumped through the micro-channels. (b) Plugs follow the direction of the oil flow along the channel,
unless (c) there is a bifurcation that causes the plug to split.

Recently, Stephenson [42] used small-size solenoid pumps to develop “MiniDrops”, a portable
two-phase flow microfluidic instrument. MiniDrops has an integrated microscope and it is currently
used at New York Genome Center Innovation Lab for single-cell RNA sequencing of rheumatoid
arthritis synovial tissue. With further engineering, MiniDrops can be significantly reduced in size
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and adapted to run from a battery, making it suitable for mobile scenarios. Even so, two-phase flow
microfluidic platforms are limited in terms of their adaptability: they are passive, i.e., the pathway of
the plug is determined by the layout of the channels and cannot be changed at runtime. Microfluidic
platforms can also use acoustic forces to manipulate fluids. Similar to the channel microfluidics, the
droplets are used as “plugs”, in a two-phase flow setup. What is different is a set of additional
interdigitated transducers positioned orthogonally to the micro-channels (Figure 8a). The transducers
can be programmed to emit surface acoustic waves (SAW) at high frequency and low amplitude. These
waves act like micro-earthquakes and can direct the droplet towards a specific channel, as shown
schematically in Figure 8b,c. The research in SAW microfluidics is still in its incipient phase, with most
of the work focused on fabrication [77,78] and theoretical modeling [79,80]. Notable results are the
prototypes for HIV testing [26] and Pseudomonas aeruginosa detection [81]. According to the most
recent survey, the trend is towards diagnosis and treatment of infectious diseases [82,83].

SAW-based chips have not been shown yet in a portable setting. We can envision a mobile
platform based on SAW chips that uses solenoid pumps (similar to MiniDrops [42]) to inject oil and a
surface-mount electronic circuit to generate and control the waves. Moreover, SAW-based chips are
active and can make better use of the channel geometry, allowing them to adapt better to mobile use.
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Microfluidic platforms can also manipulate the liquids as droplets, using electrokinetics.
As shown in Figure 9, droplets can be moved on an array of electrodes by applying an electrical
voltage to the target electrode, phenomenon known as “electrowetting-on-dielectric” (EWoD) [84].
These microfluidic platforms use fluids solely as individual droplets, and not as flow, thus earning
the name of “digital” biochips [85,86]. The electrodes can be programmed to bring the droplets to the
same location and then mix them by moving them together in a specific pattern. The droplets larger
than two electrodes can be split by actuating electrodes on both sides of the droplet (to pull the droplet
in two opposite directions).

Digital biochips are the most suitable for mobile use because they are small, programmable and
can be operated by at-home users [41]. The remainder of the paper focuses on digital microfluidics,
presenting its evolution, evaluating the current state of the art and proposing a realistic roadmap
toward achieving mobility.
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Figure 9. An EWoD biochip transports droplets on an array of electrodes. (a) In the absence of voltage,
the droplet does not wet the surface due to the hydrophobic layer that coats the electrode. (b) Electrical
voltage unbalances the force equilibrium at the solid-liquid-vapor interface, causing the droplet to wet
the surface. (c) Consequently, the droplet moves toward the charged electrode.
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Over the years, digital microfluidic platforms evolved from simple mixers to generic platforms
that enable the execution of stages composing complex bio-protocols. As schematically depicted
in Figure 10, Duke University developed in 2001 the first digital microfluidic biochip [86] capable
of mixing droplets in a circle module made of electrodes. The prototype was further developed to
integrate automatic dispensers and optical detectors [87]. Another breakthrough was achieved in 2010,
with the introduction of biochips as benchtop devices with disposable cartridges [29]. This prototype
was further developed by Advanced Liquid Logic [30] for fast and effective newborn screening
in clinics and hospitals. Wheeler’s lab from Toronto University [44] and Shin’s lab from Sogang
University [88] proposed in 2014 the use of printable paper-based electrodes for biochips, lowering
significantly the cost per cartridge. In 2016, OpenDrop [41] was designed as a “do-it-yourself” device
and released in the context of the open-science movement DIYBio.
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Figure 10. Illustration of the evolution of digital microfluidic biochips in the last years (from left to right):
test microfluidic mixer developed by Duke University, a biochip for glucose assay, a device for parallel
testing of 8 newborns for Pompe and Fabry diseases, DropBot—a generic do-it-yourself platform
using chromium based electrodes, AM-EWOD biochip containing large array of electrodes (64 × 64)
fabricated using thin-film transistor technology, biochips printed on paper using carbon nanotube ink,
Neoprep—a benchtop device using digital microfluidics for sample preparation, OpenDrop—a cheap
do-it-yourself biochip using printed circuit board technology.

Specifically, relevant results, validated by multiple research groups, were obtained for three
bio-protocols: the glucose assay [86,89–92], showing the potential for point-of-care testing, the Pompe
and Fabry screening [30], showing the potential for diagnosis, and sample preparation [93], showing
the potential to increase the throughput of laboratory workflows and procedures. In June 2017,
Madison et al. [94] showed that biochips can be used to modify genetically E. coli, thus opening a
new application area for digital microfluidics called “synthetic biology”. All such bio-protocols have
been tested in the context of nanotechnology laboratories, generally exploiting the miniaturization
advantage provided by microfluidics technology.

3.2. From Fluid Actuation to Bio-Protocol

Microfluidic platforms have also the potential to benefit from design automation technology,
an observation that stirred the interest of the computer engineering community. The trend so far was
to adapt design automation techniques that were well-established in other fields such as large-scale
integration of integrated circuits, for employing them in microfluidic systems. Specifically, recent
works have introduced bio-protocol compilers [95–98], error correction algorithms [99,100] and the
concept of synthesis of the physical device [93,101,102].

All automation algorithms proposed so far are based on a graph model [99,100] that captures
the bio-protocol as a sequence of fluidic operations represented by the nodes in the graph and their
dependencies, the edges in the graph. Figure 11 illustrates an example in-vitro bio-protocol graph.

The graph is given as input to a compiler algorithm that transforms the graph operations
into fluid movements. Concretely, the compiler calculates the best configuration of the biochip
for each of the fluidic operations, and eventually outputs the control sequence needed to complete
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the bio-protocol [93]. This step depends on the type and architecture of the microfluidic platform.
For example, a digital biochip can perform the basic fluidic operations as shown in Figure 12.
The actuation sequence is stored in a microcontroller and triggered when the biochip is ready to
run a bio-protocol, i.e., after the target fluids have been dispensed in the cartridge.Bioengineering 2019, 6, x FOR PEER REVIEW 9 of 18 
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is a template bio-protocol for identifying the microbes in the human samples using genetic testing. This
bio-protocol performs a series of dilutions with specific reagents that trigger a colorimetric reaction. The
microbial concentration is optically detected, by measuring the absorbance of the reaction product [103].
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Figure 12. Each fluidic operation is modeled as a node with inputs and outputs. (a) A dispensing
operation is a node with no predecessors, (b) a split operation divides one droplet into two equal
daughter-droplets, (c) a merge operation combines together two droplets, (d) a mix operation transports
a merged droplet over a specific route in order to achieve homogenous concentration, (e) a detection
operation reads out a certain property of the droplet by means of an external sensor and (f) an incubation
operation keeps the droplet at a constant temperature. For the detection and incubation, the biochip
needs additional sensors and a temperature bar, respectively.

In the context of mobile microfluidics, such algorithms can be used to adapt to unpredictable
scenarios, such as system failure or misuse. Transient faults (i.e., the droplets are stuck) can be detected
using sensor measurements and then automatically corrected by re-compiling the bio-protocol graph
to include the recovery operations [104]. For example, once detected, a faulty split can be corrected by
stopping the execution bio-protocol, re-mixing and re-splitting the droplets. A more complex failure
may need the complete re-creation of the faulty droplet.

3.3. Candidates for Mobile Biochips

To qualify for mobile use, a microfluidic platform has to be small in size (ideally hand-held),
programmable, operable off-grid, and easy to use at home. Apart from satisfying this minimum set
of requirements, mobile microfluidic platforms have to overcome a series of technical and usability
challenges. Moreover, to achieve revolutionary change, mobile microfluidic platforms need to be
adopted at a large scale by the consumers, a milestone that involves solving specific ethical and social
challenges. In this subsection, we present the results of a sanity screening of existing platforms and
identify the ideal candidates for mobile microfluidics. In the next section, “The Roadmap to Mobile
Microfluidics”, we derive the technical, usability and society challenges, based on the history of the
mobile phone as well as our own experience with mobile biochips.
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As seen in Table 1, pressure-based microfluidic platforms have yet to be developed in sizes that
can be hand-held and capillary microfluidics are not programmable. SAW biochips are extremely
small, and based on their operation requirements, with some engineering efforts can be powered from
a battery. In spite of being great candidates for mobile use, the research related to SAW biochips is still
in its incipient phase and so far, there has not been any work to demonstrate their off-grid use.

As the comparison in Table 1 shows, digital microfluidic platforms are currently the most suitable
platforms for mobile scenarios and also the only programmable microfluidic platforms that have
been tested for at-home use. Alistar [41] reports 72 users that tried to replicate and use OpenDrop
instrument (Figure 13a) at home during the years of 2015-2017. The user range varied from engineers to
artists and designers, with diverse interest also in using the platform for perfume mixing, information
display, diagnosis and DNA computing. DigiBio instrument (Figure 13c) and DropBot (Figure 13c) are
also within a portable size range, however, both platforms target scientists and researchers and have,
thus, not been tested for at-home use.
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4. The Roadmap to Mobile Microfluidics 

4.1. Technical Challenges 

Figure 13. Example digital microfluidic platforms: (a) the three versions of OpenDrop [41] developed
by Gaudilabs [105], (b) the latest version of DropBot [44] developed by Sci-Bots Inc. [106], and
(c) the instrument developed by DigiBio B.V. [43]. The Dropbot photo is from R. Fobel and used
with permission.

In Figure 14, we show a direct comparison between OpenDrop version 1 and DropBot version 1
(Figure 14a), and between OpenDrop version 3 and the DigiBio instrument (Figure 14b). Because of
the relatively small size (these biochips can be easily held in hand), we chose to adapt OpenDrop for
mobile use and give it a sanity test. The next section presents the lessons learnt from our experiment.
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4. The Roadmap to Mobile Microfluidics

4.1. Technical Challenges

To explore the vision of mobile microfluidics, we adapted OpenDrop version 2 [41] for mobile
use, i.e., we added a battery, casing, and reservoirs for reagents (Figure 15b). We then used
the resulting instrument to execute a bio-protocol during traveling on a train ride (Figure 15a).
We chose a water test quality from Aquanatura [107], which uses the chromogenic substrate
5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-GAL), to detect the presence of coliform
bacteria. We adapted the bio-protocol for microfluidic volumes. As a side effect of reducing the
volumes from 100 mL to 2.5µl, the bio-protocol now ran in 1 h (instead of the original 48 h).
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Testing the water quality of a creek on a camping trip. We equipped OpenDrop with batteries, a cover
to prevent damage to the electrodes and a cartridge with different reagents for basic health tests while
on the go.

4.1.1. First Challenge: Robustness under Shaking and Tilting

During mobile use, microfluidic platforms can endure sudden (intense) shakes and extreme tilting,
causing the droplets to slip off their trajectory. To overcome this, the platforms need to operate under a
feedback control system that allows them to adapt in real-time. In our study case, OpenDrop should be
equipped with an accelerometer that permanently records the position of the chip. The control software
would use these measurements to respond to changes ad-hoc, e.g., by increasing the switching delay
to allow the droplets enough time to reach the gap between electrodes and stabilize.

Our quick experiments with various switching delays showed their direct impact on droplet
movement. For our specific setup, we used 400 ms for the smooth parts of the train ride and increased
to 800 ms for the most intense shakes. A downside is an operation speed reduction of 50%.

OpenDrop can be further equipped to sense the exact position of the droplets and adapt to
eventual slips by re-positioning the droplets on their initial trajectory. We briefly explored this idea by
reprogramming a parallel redundant path to capture the slipping droplets.

OpenDrop, similar to previous work, such as Droplet-on-a-Wristband [108], can manipulate
water droplets against gravity. In the case of our sanity check, the challenge was to manipulate
droplets with much larger density and lower surface tension than deionized water. During our tests,
we found that the open (i.e., uncovered) biochip can successfully work under angles of maximum
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10 degrees. At larger angles it would fail, as the droplets are too heavy to be pulled by the electrodes.
We reduced the size of droplets from 23 µL to 2.5 µL by adding a top electrode at a gap height of
205 µm. As shown in Figure 16, the covered biochip can take angles of 80 degrees. When positioned
at 90 degrees sideways, the droplets started to slip slowly and eventually went off the trajectory.
The covered biochip worked successfully when kept upside down, while the droplets fell off the
single-sided biochip.
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4.1.2. Second Challenge: Reducing Costs

Currently, OpenDrop costs $150 to produce, on top of that there are costs per reaction of $0.1
(for reagents). Occasionally (after 5–8 reactions) the top electrode needs replacement, which would
add about $2 to the cost per reaction. The cost of the device in particular could substantially benefit
from mass-production and further engineering. The reaction costs would remain comparable.

4.1.3. Third Challenge: Reducing the Size

Currently the device measures 100 × 100 × 33 mm3, which is the size of the OpenDrop instrument.
The size can be reduced by removing excess empty volume and minimizing some of the circuitry.
This would compress the entire device down to about 100 × 70 × 20 mm (given the current electrode
array). At current scale the device fits in a purse/bag, this could be further reduced to pocket size
(e.g., comparable to a phone). This could be pushed even further by running the controls on phone
hardware and varying the size of the electrode array.

4.1.4. Fourth Challenge: Safety

Most digital microfluidic devices operate at an electrical voltage between 90 V to 300 V DC.
In the context of outdoor use, securing the electronic components becomes imperative. Alternatively,
mobile biochips can be fabricated using other technologies such as thin film transistor (TFT)-based
electrodes and complementary metal–oxide–semiconductor (CMOS) technology [109,110], that recently
demonstrated moving droplets at only 20 V DC.

Another safety challenge concerns the use of bio-materials. Here, mobile microfluidics can get
inspiration from its most successful applications: glucose meters and capillary tests. Sealed tubes with
reagents and sterile pricking needles for collecting the samples are some of the options that have been
implemented in the capillary tests and glucose meters.

4.2. Usability Challenges

In terms of usability, the main challenge is embedding the domain knowledge into the microfluidic
platform. In extreme situations, a mobile microfluidic platform will have to be able to guide the user to
make the right interpretation of the bio-protocol result without the experience of a doctor. Currently,
researchers tend to look at part of the solution, specifically at technical aid through smart sensors and
automation. The overlooked aspect is training users, prior to mobile use, through repetitive exercises
while on “safe” non-mobile settings, e.g., at home, or in the doctor’s cabinet.
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Other notable challenges at the usability level are integrating networking capabilities into biochips
and developing an appropriate communication protocol that ensures fault-free operation and secure
data coordination. In this context, security means ensuring the correctness of the medical results, data
authenticity, preventing attacks and avoiding misuse.

4.3. Society Challenges

Technological progress happens when people adopt at large the new technology and, historically,
that depended on how ready the society is to trust the new technology. Transitioning to mobile
microfluidics as a replacement for doctors’ cabinets may be too abrupt to be accepted by society. It has
to be built on the recently introduced “e-doctors”, i.e., medical experts that consult their patients
remotely, over the internet. Such e-doctors can be constantly in touch with the users of mobile
microfluidic platforms and intervene when their progress is not satisfying.

Regardless of how much people will trust mobile microfluidics, the questions of responsibility
and liability in case of misuse remain open and will be solved in conformance with the ethical and
legal stage of the society at that specific moment.

5. Discussion and Conclusions

We presented the vision of using mobile microfluidic biochips as a means to provide healthcare to
the broad population, even in situations that cannot be anticipated, such as during sports or outdoor
activities. They could also be used far away from a doctor, in rural areas.

Out of the four major types of microfluidic platforms, digital biochips have the greatest potential
to enable medical testing in situ—a first step toward enabling more effective preventive healthcare.
We derived, based on our tests using OpenDrop during a train ride, the main technical challenges
that need to be overcome by microfluidic research in order to achieve true mobility in healthcare.
Unfortunately, in the last years, research in digital microfluidics seems to have dwelled in a comfortable
zone, a fact shown by the stagnating number of publications (Figure 17).
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We argue that mobile use of microfluidics is not only a matter of efficiency, and it can expand 
beyond a tool to deliver drugs faster and cheaper. Mobile microfluidics can revolutionize the way we 
perceive healthcare by transforming it into a sum of our daily routines. To achieve that kind of 
intimate interaction with healthcare, microfluidic platforms need to get deeply embedded in our 
lifestyle in a similar way that mobile phones have achieved.  

In conclusion, we encourage microfluidic researchers to step out of the comfort zone and build 
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needed to achieve true mobility. 
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We argue that mobile use of microfluidics is not only a matter of efficiency, and it can expand
beyond a tool to deliver drugs faster and cheaper. Mobile microfluidics can revolutionize the way we
perceive healthcare by transforming it into a sum of our daily routines. To achieve that kind of intimate
interaction with healthcare, microfluidic platforms need to get deeply embedded in our lifestyle in a
similar way that mobile phones have achieved.
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In conclusion, we encourage microfluidic researchers to step out of the comfort zone and build
bridges with complementary disciplines, in order to address the usability and society challenges
needed to achieve true mobility.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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